
Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

Technical Report AC-TR-21-010
June 2021

Certified DQBF Solving by
Definition Extraction

Franz-Xaver Reichl, Friedrich Slivovsky and
Stefan Szeider

www.ac.tuwien.ac.at/tr

Certified DQBF Solving by Definition Extraction

Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider

TU Wien, Vienna, Austria
{freichl,fs,sz}@ac.tuwien.ac.at

Abstract. We propose a new decision procedure for dependency quan-
tified Boolean formulas (DQBFs) that uses interpolation-based definition
extraction to compute Skolem functions in a counter-example guided in-
ductive synthesis (CEGIS) loop. In each iteration, a family of candidate
Skolem functions is tested for correctness using a SAT solver, which ei-
ther determines that a model has been found, or returns an assignment
of the universal variables as a counterexample. Fixing a counterexample
generally involves changing candidates of multiple existential variables
with incomparable dependency sets. Our procedure introduces auxiliary
variables—which we call arbiter variables—that each represent the value
of an existential variable for a particular assignment of its dependency
set. Possible repairs are expressed as clauses on these variables, and a
SAT solver is invoked to find an assignment that deals with all previ-
ously seen counterexamples. Arbiter variables define the values of Skolem
functions for assignments where they were previously undefined, and may
lead to the detection of further Skolem functions by definition extraction.
A key feature of the proposed procedure is that it is certifying by design:
for true DQBF, models can be returned at minimal overhead. Towards
certification of false formulas, we prove that clauses can be derived in an
expansion-based proof system for DQBF.
In an experimental evaluation on standard benchmark sets, a prototype
implementation was able to match (and in some cases, surpass) the per-
formance of state-of-the-art-solvers. Moreover, models could be extracted
and validated for all true instances that were solved.

1 Introduction

Sustained progress in propositional satisfiability (SAT) solving [23] has resulted
in a growing number of applications in the area of electronic design automa-
tion [49], such as model checking [7], synthesis [43], and symbolic execution [5].
Efficient SAT solvers were essential for recent progress in constrained sampling
and counting [31], two problems with many applications in artificial intelligence.
In these cases, SAT solvers are used to deal with problems from complexity
classes beyond NP and propositional encodings that grow super-polynomially
in the size of the original instances. As a consequence, these problems are not
directly encoded in propositional logic but have to be reduced to a sequence of
SAT instances.

The success of SAT solving on the one hand, and the inability of proposi-
tional logic to succinctly encode problems of interest on the other hand, have

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

2 F. Reichl et al.

prompted the development of decision procedures for more succinct generaliza-
tions of propositional logic such as Quantified Boolean Formulas (QBFs). Eval-
uating QBFs is PSPACE-complete [45] and thus believed to be much harder
than SAT, but in practice the benefits of a smaller encoding may outweigh the
disadvantage of slower decision procedures [13]. A QBF is true if it has a model,
which is a family of Boolean functions (often called Skolem functions) that sat-
isfy the matrix of the input formula for each assignment of universal variables.
The arguments of each Skolem function are implicitly determined by the nest-
ing of existential and universal quantifiers. Dependency QBF (DQBF) explicitly
state a dependency set for each existential variable, which is a subset of universal
variables allowed as arguments of the corresponding Skolem function [3, 4]. As
such, they can succinctly encode the existence of Boolean functions subject to a
set of constraints [34], and problems like equivalence checking of partial circuit
designs [19] and bounded synthesis [13] can be naturally expressed in this way.

Several decision procedures for DQBF have been developed in recent years
(see Section 5). Conceptually, these solvers either reduce to SAT or QBF by in-
stantiating [16] or eliminating universal variables [20, 50, 18, 39], or lift Conflict-
Driven Clause Learning (CDCL) to non-linear quantifier prefixes by imposing
additional constraints [15, 47].1 We believe these methods should be comple-
mented with algorithms that directly reason at the level of Skolem functions [35].
A strong argument in favor of such an approach is the fact that DQBF instances
often have a large fraction of unique Skolem functions that can be obtained by
definition extraction, but the current solving paradigms have no direct way of
exploiting this [40].

In this paper, we develop new decision procedures for DQBF designed around
computing Skolem functions by definition extraction. We first describe a simple
algorithm that proceeds in two phases. In the first phase, it introduces clauses to
make sure each existential variable is defined in terms of its dependency set and
auxiliary arbiter variables. In the second phase, it searches for an assignment
of the arbiter variables under which the definitions are a model. Runs of this
algorithm can degenerate into an exhaustive instantiation of dependency sets for
easy cases, so we propose an improved version in the Counter-Example Guided
Inductive Synthesis (CEGIS) paradigm [43, 42, 28].

We implemented the CEGIS algorithm in a system named Pedant. In an
experimental evaluation, Pedant performs very well compared to a selection of
state-of-the-art solvers—notably, it achieves good performance without the aid
of the powerful preprocessor HQSPre [51]. One of the benefits of its function-
centric design is that Pedant internally computes a family of Skolem functions,
and can output models of true instances at a negligible overhead. Using a sim-
ple workflow, we are able to validate models for all true instances solved by
Pedant. Towards validation of false instances, we prove that clauses introduced
by Pedant can be derived in the ∀Exp+Res proof system [27, 6].

1 An approach that does not fit this simplified classification is the First-Order solver
iProver [29].

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 3

The remainder of the paper is structured as follows. After covering basic con-
cepts in Section 2, we present the new decision algorithms for DQBF and prove
their correctness in Section 3. We describe the implementation and experimental
results in Section 4. We discuss related work in Section 5, before concluding with
an outlook on future work in Section 6.

2 Preliminaries

Propositional Logic A literal is either a variable or the negation of a variable. A
clause is the disjunction of literals. A term is a conjunction of literals. A formula
is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses. Whenever
convenient, we identify a CNF with a set of clauses and clauses, respectively
terms, with sets of literals. We denote the set of variables occurring in a formula
ϕ by var(ϕ). We denote the truth value true by true and false by false. An
assignment of a set V of variables is a function mapping V to {true, false}.
We denote the set of all assignments for V by [V]. Moreover, we associate an
assignment σ with the term {x | x ∈ dom(σ), σ(x) = true} ∪ {¬x | x ∈
dom(σ), σ(x) = false}. Whenever convenient, we treat assignments as terms.
Let σ ∈ [V] and let W ⊆ V , then we denote the restriction of σ to W by
σ|W . For a formula ϕ and an assignment σ we denote the evaluation of ϕ by σ
with ϕ[σ]. A formula ϕ is satisfied by an assignment σ if ϕ[σ] = true and it
is falsified by σ otherwise. A formula ϕ is satisfiable if there is an assignment σ
that satisfies ϕ and it is unsatisfiable otherwise. Let ϕ and ψ be two formulae, ϕ
entails ψ, denoted by ϕ � ψ, if every assignment satisfying ϕ also satisfies ψ. A
definition for a variable x by a set of variables X in a formula ϕ is a formula ψ
with var(ψ) ⊆ X such that for every satisfying assignment σ of ϕ the equality
σ(x) = ψ[σ] holds [40].

Dependency Quantified Boolean formulas We only consider Dependency Quan-
tified Boolean formulas (DQBF) in Prenex Conjunctive Normal Form (PCNF).
A DQBF in PCNF is denoted by Φ = Q.ϕ, where (a) the quantifier prefix Q is
given by Q = ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm). Here u1, . . . , un and e1, . . . , em
shall be pairwise different variables. We denote the set {u1, . . . , un} by UΦ and
the set {e1, . . . , em} by EΦ. Additionally, D1, . . . , Dm shall be subsets of UΦ.
(b) the matrix ϕ shall be a CNF with var(ϕ) ⊆ UΦ ∪EΦ. For 1 ≤ i ≤ m we call
the set Di the dependencies of ei. We refer to the variables in UΦ as universal
variables and to the variables in EΦ as existential variables. For an existential
variable e we denote its dependencies by DΦ(e). If the underlying DQBF is clear
from the context we omit the subscript.

Let Φ be a DQBF and F be a set of functions {fe1 , . . . , fem} such that for
1 ≤ i ≤ m, fei : [Di] → {true, false}. For an assignment σ to the universal
variables we denote the existential assignment {fe1(σ|D1

), . . . , fem(σ|Dm)} by
F (σ). F is a model (or a winning ∃-strategy) for Φ if for each assignment σ to
the universal variables, the assignment σ∪F (σ) satisfies the matrix ϕ. A DQBF
is true if it has a model and false otherwise.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

4 F. Reichl et al.

∀Exp+Res The DQBF-∀Exp+Res [6] calculus is a proof system for DQBF, which
is based on the ∀Exp+Res calculus for QBF. It instantiates the matrix of a DQBF
with a universal assignment and uses propositional resolution on the instantiated
clauses. This proof system is sound and refutationally complete [6]. Since we are
interested in DQBF, we refer to DQBF-∀Exp+Res simply as ∀Exp+Res. The
rules for the system are given in Fig. 1.

(axiom)
{`σ|D(var(`)) | ` ∈ C, var(`) ∈ E}

Where C is a clause in the matrix of the DQBF and σ is an assignment to the
universal variables that falsifies each universal literal in C. Note that variables
with a different annotation denote different variables.
The second rule is the propositional resolution rule.

C1 ∪ {xτ} C2 ∪ {¬xτ}
(resolution)

C1 ∪ C2

Where x is an existential variable, τ an assignment for the universal variables in
D(e) and where C1 and C2 are clauses.

Fig. 1: The rules of DQBF-∀Exp+Res

3 Solving DQBF by Definition Extraction

In this section, we describe two decision procedures for DQBF that leverage defi-
nition extraction. We start with an algorithm (Algorithm 1) that is fairly simple
but introduces some important concepts. Because this algorithm leads to the
equivalent of exhaustive expansion of universal variables on trivial examples, we
then introduce a more sophisticated algorithm based on CEGIS (Algorithm 2).
We also sketch correctness proofs for both algorithms.

Throughout this section, we consider a fixed DQBF Φ ..= Q. ϕ with quantifier
prefix Q ..= ∀u1 . . . ∀un∃e1(D1) . . . ∃em(Dm).

3.1 A Two-Phase Algorithm

The algorithm proceeds in two phases. In the first phase (GenerateDefini-
tions), it finds definitions ψDef for all existential variables. It maintains a set A
of auxiliary arbiter variables whose semantics are encoded in a set ϕA of arbiter
clauses, both of which are empty initially. If a variable ei is defined in terms
of its dependency set, the definition is computed using a SAT solver (line 15)
capable of generating interpolants [40]. Otherwise, the SAT solver returns an
assignment ξ of the dependency set Di and the arbiter variables A for which
the variable is not defined. In particular, ei is not defined under the restric-
tion σ = ξ|Di to its dependency set. The algorithm then introduces an arbiter
variable eσi that determines the value of the Skolem function for ei under σ. In

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 5

subsequent iterations, we include these arbiter variables in the set of variables
that can be used in a definition of ei. The newly introduced clauses ensure that
ei and eσi take the same value under the assignment σ (line 13), so that ei is
defined by eσi and Di. Since the number of assignments σ of the dependency set
is bounded, we will eventually find a definition of ei in terms of its dependency
set Di and the arbiter variables A.

In the second phase (FindArbiterAssignment), a SAT solver (line 21) is
used to find an assignment of the arbiter variables under which the definitions
obtained in the first phase are a model. Starting with an initial assignment τ ,
we use a SAT solver to check whether the formula ψDef ∧ ¬ϕ consisting of the
definitions from the first phase and the negated matrix of the input DQBF is
unsatisfiable under τ (line 23). If that is the case, Algorithm 1 returns true.
Otherwise, the SAT solver returns an assignment σ as a counterexample. Since
the existential variables are defined in ϕ ∧ ϕA by the universal and arbiter vari-
ables, the formula ϕ ∧ ϕA must be unsatisfiable under the assignment τ ∧ σ|U
consisting of the arbiter assignment and counterexample restricted to universal
variables. A core ρ of failed assumptions τ ∧ σU such that ρ |= ¬(ϕ ∧ ϕA) is ex-
tracted using another SAT call. The assignment ρ|A represents a concise reason
for the failure of the arbiter assignment τ , and its negation ¬ρ|A is added as
a new clause to the SAT solver used to generate arbiter assignments, which is
subsequently invoked to find a new arbiter assignment.

This process continues until a model is found or the SAT solver cannot find
a new arbiter assignment, in which case the algorithm returns false.

We now argue that Algorithm 1 is a decision procedure for DQBF. In the
following, A shall denote a set of arbiter variables and ϕA shall denote the
associated set of arbiter clauses. We will first give two auxiliary properties of
definitions, which we will use in subsequent proofs.

Lemma 1. Let ϕ and ξ be two propositional formulas, let e ∈ var(ϕ) and S ⊆
var(ϕ). Moreover, let ψDef be a definition for e by S in ϕ. Then ψDef is also a
definition for e by S in ϕ ∧ ξ.

Proof. Obviously any satisfying assignment σ of ϕ ∧ ξ also satisfies ϕ. By the
premise of the lemma we know that for every satisfying assignment σ of ϕ we
have σ(e) = ψDef [σ]. By combining the above two properties we get that σ(e) =
ψDef [σ] holds for every satisfying assignment for ϕ ∧ ξ. This proves the lemma.

ut
Remark 1. The above Lemma implies that if we once find a definition in Algo-
rithm 1 then we do not destroy it by adding additional clauses.

Lemma 2. Let ψ be a formula and let S ⊆ var(ψ) such that each s ∈ S has a
definition ψs by a set Ds ⊆ var(ψ) in ψ. Then ψ and ψ ∧ ∧

v∈S(v ↔ ψs) are
equivalent.

Proof. First assume that ψ is satisfied by an assignment σ. By the nature of
definition we have σ(v) = ψv[σ] for each v ∈ S. Thus, σ satisfies ψ ∧∧

v∈S(v ↔
ψs). The other direction of the equivalence is obvious. ut

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

6 F. Reichl et al.

Algorithm 1 Solving DQBF by Definition Extraction

1: procedure SolveByDefinitionExtraction(Φ)
2: (ϕA, A, ψDef)← GenerateDefinitions(Φ)
3: return FindArbiterAssignment(Φ,ϕA, A, ψDef)

4: procedure GenerateDefinitions(Φ)
5: . Φ = ∀u1 . . .∀un∃e1(D1) . . .∃em(Dm).ϕ
6: A← ∅, ψDef ← ∅, ϕA ← ∅
7: . A: arbiter variables, ψDef : definitions, ϕA: arbiter clauses
8: for i = 1, . . . ,m do
9: isDefined , ξ ← isDefined(ei, A ∪Di, ϕ ∧ ϕA)

10: while not isDefined do
11: σ ← ξ|Di . ei is not defined under ξ ∈ [Di ∪A]
12: A← A ∪ {eσi }
13: ϕA ← ϕA ∧ (eσi ∨ ¬σ ∨ ¬ei) ∧ (¬eσi ∨ ¬σ ∨ ei)
14: isDefined , ξ ← isDefined(ei, A ∪Di, ϕ ∧ ϕA)

15: ψiDef ← getDefinition(ei, A ∪Di, ϕ ∧ ϕA)
16: ψDef ← ψDef ∧ (ei ↔ ψiDef)

17: return (ϕA, A, ψDef)

18: procedure FindArbiterAssignment(Φ,ϕA, A, ψDef)
19: τ ← ∧

a∈A a . initial assignment to the arbiter variables
20: validitySolver ← SatSolver(ψDef ∧ ¬ϕ)
21: arbiterSolver ← SatSolver(∅)
22: loop
23: if validitySolver .solve(τ) then
24: σ ← validitySolver .getModel()
25: ρ← getCore(ϕ ∧ ϕA, τ ∧ σ|U)
26: arbiterSolver .addClause(¬ρ|A)
27: if arbiterSolver .solve() then
28: τ ← arbiterSolver .getModel()
29: else
30: return false
31: else
32: return true

A DQBF has a model if, and only if, there is a propositional formula for each
existential variable that defines its Skolem functions using only variables from
the dependency set. This can be slightly generalized by allowing the definition
to contain existential variables whose dependency sets are a subset.

Lemma 3. Let Φ be a DQBF and <E a linear ordering of its existential vari-
ables. Then Φ is true if, and only if, for each e ∈ E there is a formula ψe with
var(ψe) ⊆ D(e)∪ {x ∈ E | D(x) ⊆ D(e), x <E e} such that ¬ϕ∧∧e∈E(e↔ ψe)
is unsatisfiable.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 7

Proof. First we assume that Φ is true. This means that there is a model F =
{f1, . . . fm}. We can encode these functions by formulas ψe. Obviously we have
for each e ∈ E that var(ψe) ⊆ D(e)—as the model function for e may only
depend on D(e). Now assume that ¬ϕ ∧∧

e∈E(e↔ ψe) is satisfiable, i.e., there
is an assignment σ that satisfies the formula. But this implies that there is an
assignment to the universal variables such that the matrix is falsified under the
model. As this contradicts our initial assumption, we know that the formula is
unsatisfiable.

Next we assume the other side of the equivalence and show how we can
construct a model for Φ. For this purpose we distinguish between two cases.
First let e be an existential variable such that var(ψe) ⊆ D(e) and let σ be an
assignment to D(e). Then we define fe(σ) ..= ψe[σ]. Now let e be the smallest
variable (with respect to <E) in E such that var(ψe) * D(e). By using the
assumption it follows that for each variable x ∈ var(ψe) \D(e) we have x <E e.
Because of the minimality of e, this means that for each x in var(ψe) \D(e) we
have already defined a function fx. Now we define for σ ∈ [D(e)] the assignment
ρ(σ) ..= {(x, fx(σ|D(x))) | x ∈ var(ψe) \ D(e)}. Finally, we define fe(σ) ..=

ψe[ρ(σ)]—the construction guarantees that var(ψe[ρ(σ)]) ⊆ D(e).
For the remaining variables we proceed inductively. We denote the resulting

set of functions by F . It remains to show that F is actually a model. We assume
the opposite, i.e., there is a universal assignment σ such that ϕ is falsified by
σ ∪ F (σ). It can be proven that σ ∪ F (σ) satisfies

∧
e∈E(e ↔ ψe). As σ ∪ F (σ)

falsifies the matrix ϕ we get a contradiction to our initial assumption.
ut

Theorem 1. If Algorithm 1 returns true for the DQBF Φ then Φ is true.

Proof. Let Φ′ ..= Q∃A(∅).ϕ, and let <E be any ordering of existential variables
in Φ′ in which the variables in A come before the remaining variables. If Al-
gorithm 1 returns true, we know that there is an arbiter assignment τ such
that ¬ϕ ∧ ψDef ∧ τ is unsatisfiable. For each arbiter variable eσ, we obtain a
definition ψσe as ψσe

..= τ(eσ). We can now replace the arbiter assignment τ with
these definitions and apply Lemma 3 to conclude that Φ′ is true. But if Φ′ is
true, then necessarily also Φ is true. ut
To show that the algorithm returns false only if the input DQBF is false, one
can prove that clauses on arbiter variables introduced by FindArbiterAssign-
ment can be derived (as clauses on annotated literals) in ∀Exp+Res.

Definition 1. Let τ be a (partial) assignment to the arbiter variables and let ρ
be an assignment to the universal variables. We define the term τρ ..= {`σ ∈ τ |
ρ � σ}

Definition 2. Let σ be an assignment to the universal variables. We denote the
formula that is the result of instantiating ϕ by σ in the sense of the ∀Exp+Res
calculus by ϕρ. This means:

ϕσ ..= {{xσ|D(var(x)) | x ∈ C, var(x) ∈ E} | C ∈ ϕ,∀` ∈ C : var(`) ∈ U ⇒ σ 2 `}

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

8 F. Reichl et al.

Remark 2. Subsequently, we say that an arbiter clause C = `σ∨¬σ∨¬` is active
with respect to an assignment ρ if ρ falsifies `σ and ρ satisfies σ.

Lemma 4. Let τ be a (partial) arbiter assignment and ρ a universal assignment.
Then ϕ ∧ ϕA ∧ τ ∧ ρ and ϕρ ∧ τρ are equisatisfiable.

Proof. First we assume that ϕ ∧ ϕA ∧ τ ∧ ρ is satisfied by an assignment λ. We
now construct a satisfying assignment for ϕρ ∧ τρ. We define an assignment µ as
µ(eρ|D(e)) ..= λ(e) for e ∈ E. It follows by the definition of ϕρ, respectively of µ
that µ satisfies ϕρ. Now let `σ ∈ τρ be arbitrary but fixed. We can conclude that
there is an arbiter clause ¬`σ ∨ ¬σ ∨ ` that is active with respect to τ ∪ ρ. As
the clause is active, we know that λ � `. This means that µ � `σ. As the literal
was arbitrary, µ satisfies τρ

Now assume that ϕ ∧ ϕA ∧ τ ∧ ρ is unsatisfiable and show that ϕρ ∧ τρ
is unsatisfiable. For this purpose we assume that ϕρ ∧ τρ is satisfied by an
assignment λ and show that this implies that we can construct a satisfying
assignment µ for ϕ ∧ ϕA ∧ τ ∧ ρ. We define µ as:

µ(x) =

ρ(x) x ∈ U
λ(xσ) x ∈ E ∧ xσ ∈ var(ϕρ ∧ τρ)
τ(x) x ∈ dom(τ)

true otherwise

This assignment is well-defined as for each e ∈ E there is maximally one an-
notation. Obviously µ satisfies ϕ - any clause containing a universal literal in
the same polarity as in ρ is trivially satisfied, the remaining clauses are sat-
isfied as λ satisfies ϕρ. We now show that µ also satisfies ϕA. For this pur-
pose let `σ ∨ ¬σ ∨ ¬` be a clause in ϕA. If µ satisfies `σ or ¬σ the clause
is satisfied, so assume the opposite—i.e. µ � ¬`σ and µ � σ. This means
that we have ρ � σ. Now we have to differentiate between three cases: If
var(`σ) ∈ dom(τ) then we have τ � `σ, which implies τσ � `σ. Thus, as λ sat-
isfies τσ we know that µ � ¬`. If var(`σ) /∈ dom(τ) and var(`σ) ∈ var(ϕρ ∧ τρ)
then µ(`) = µ(`σ). If var(`σ) /∈ dom(τ) and var(`σ) /∈ var(ϕρ ∧ τρ) we have
µ(var(`)) = µ(var(`σ)) = true. To sum up this means that µ satisfies the ar-
biter clause. As the arbiter clause was arbitrary we thus know that µ satisfies
ϕ∧ϕA ∧ τ ∧ ρ. But this is a contradiction. Thus, we have shown that ϕρ ∧ τρ is
unsatisfiable. ut

Remark 3. Let π be a refutation of a formula ϕ. Additionally, let C1, C2 and C
be clauses in π such that C is the result of resolving C1 and C2 with respect to
a pivot x. We denote the clause C by Rx(C1, C2).

Lemma 5. Let ϕ be a formula and L = {`1, · · · , `n} be a set of literals with
pairwise different variables. If ϕ ∧ L is unsatisfiable and for each L̂ (L the
formula ϕ ∧ L̂ is satisfiable then the clause ¬`1 ∨ . . . ∨ ¬`n can be derived from
ϕ by resolution.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 9

Proof. Let ϕ̂ be the clause which is the result of removing all clauses from
ϕ which are subsumed by a literal in L. Now we can conclude the following
properties:

– ϕ̂ ∧ L is unsatifiable.
– For each L̂ (L the formula ϕ̂ ∧ L̂ is satisfiable.
– Let ` ∈ L then ` does not occur in ϕ̂.

As resolution is refutationally complete we can conclude with the above prop-
erties that there is a refutation π = π1, . . . , πm for ϕ̂ ∧ L. Next we define the
relation →. For this purpose let a ∈ π and b ∈ π then we define a → b if
there is a clause c ∈ π and a variable x such that b = Rx(a, c). We denote the
transitive closure of → by →∗. Now we can see that for each ` ∈ L we have
`→∗ πm—otherwise we would get a contradiction to the minimality of L.

Subsequently, we construct a derivation π′ from π. For 1 ≤ i ≤ m we define
π′i as:

π′i
..= πi ∪ {¬` | ` ∈ L, `→∗ πi}

As the only possibility for a resolution with a pivot in L are resolutions with unit
clauses from L we can see that each clause in π′ is either a clause in ϕ̂ ∧ L, the
result of resolving on previous elements of π′ or the copy of a previous element
of π′—note to simplify the work with indices we use copies of clauses. Finally,
we can see that π′m = ¬`1 ∨ . . . ∨ ¬`m. ut

Lemma 6. Let τ be an arbiter assignment and ρ a universal assignment. If ϕρ∧
τρ is unsatisfiable then a subclause of ¬τρ is derivable from Φ in the ∀Exp+Res
calculus.

Proof. As ϕρ ∧ τρ is unsatisfiable there is a term τ̂ ⊆ τ such that ϕρ ∧ τ̂ρ is
unsatisfiable and such that for each term t ⊂ τ̂ the formula ϕρ∧ tρ is satisfiable.
This means we can apply Lemma 5, which shows that ¬τ̂ is derivable by resolu-
tion from ϕρ. As ϕρ is obtained by instantiating the matrix ϕ by the universal
assignment ρ, we can derive ¬τ̂ in ∀Exp+Res from Φ. ut

Before we now use the above results to show that for each clause that is
added to the arbiter solver we can derive a subclause, we will show that this
clause is well-defined,

Lemma 7. If ¬ϕ ∧ ψDef ∧ τ is satisfied by an assignment σ then the formula
ϕ ∧ ϕA ∧ τ ∧ σ|U is unsatisfiable.

Proof. If ¬ϕ∧ψDef ∧ τ is satisfied by an assignment σ, then ϕ∧ψDef ∧ τ ∧ σ is
unsatisfiable. As τ uniquely determines the assignment for the arbiter variables
and τ , σ|U and ψDef unquietly determine the assignment for the existential
variables also the formula ϕ ∧ ψDef ∧ τ ∧ σ|U is unsatisfiable. This implies that
the formula ϕ∧ϕA∧ψDef ∧ τ ∧σ|U is unsatisfiable. We can now apply Lemma 2
and conclude that ϕ ∧ ϕA ∧ τ ∧ σ|U is unsatisfiable. ut

The above lemma implies that the core extraction (line 25) is well-defined.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

10 F. Reichl et al.

Proposition 1. For each clause C added to the arbiter solver by Algorithm 1
(line 26), a clause C ′ ⊆ C can be derived from Φ in ∀Exp+Res.

Proof. By applying the Lemmata 4 and 6 we can conclude that a subclause of
¬τσ|U is derivable from Φ. As ¬τσ|U is a subclause of ¬τ we have proven the
lemma. ut

Theorem 2. If Algorithm 1 returns false for the DQBF Φ then Φ is false.

Proof. If the algorithm returns false then the set C of clauses in the arbiter
solver is unsatisfiable. By Proposition 1 for each C ∈ C we can derive a clause
C ′ ⊆ C subsuming C in ∀Exp+Res, so there is a ∀Exp+Res refutation of Φ. As
∀Exp+Res is sound [6], this shows that Φ is false. ut
Finally, Algorithm 1 terminates since at most one arbiter variable is introduced
for each existential variable and assignment of its dependency set in the first
phase, and there is a limited number of clauses on arbiter variables that can be
introduced in the second phase. In combination with Theorem 1 and Theorem 2,
we obtain the following result.

Corollary 1. Algorithm 1 is a decision procedure for DQBF.

3.2 Combining Definition Extraction with CEGIS

Discounting SAT calls, the running time of Algorithm 1 is essentially determined
by the number of assignments of a dependency set for which the corresponding
existential variable is not defined: it introduces an arbiter variable for each such
assignment in the first phase, and the number of iterations in the second phase
is bounded by the number of arbiter assignments. As a result, even a single
existential variable that is unconstrained and has a large dependency set causes
the algorithm to get stuck enumerating universal assignments.

A key insight underlying the success of counter-example guided solvers for
QBF [26, 25, 46] is that it is typically overkill to perform complete expansion
of universal variables. Instead, they incrementally refine Skolem functions by
taking into account universal assignments that pose a problem for the current
solution candidate.2

Following this idea, we now present an improved algorithm (Algorithm 2)
in the style of Counter-Example Guided Inductive Synthesis (CEGIS) [28]. It
integrates the two phases of Algorithm 1 into a single loop. In each iteration,
it first tries to find definitions for existential variables in terms of their depen-
dency sets and the arbiter variables (FindDefinitions). The algorithm then
proceeds to a validity check of the definitions under the current arbiter assign-
ment (CheckArbiterAssignment). A key difference to Algorithm 1 is that
we may not have a definition for each variable at this point. In this case, we
can simply leave the existential variable unconstrained in the SAT call except

2 In these QBF solvers, Skolem functions are typically only indirectly represented by
trees of formulas (abstractions) that encode viable assignments.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 11

for arbiter clauses ϕA (and forcing clauses ϕF , which we discuss later). In the
implementation, we limit the SAT solver’s freedom to generate counterexamples
by substituting a default value or a heuristically obtained “guess” for the Skolem
function. Here, any function on variables from the dependency set can be used
without affecting correctness, one only has to make sure that counterexamples
are not repeated to guarantee termination.

If a counterexample σ is found, procedure CheckArbiterAssignment re-
turns it to the main loop. Otherwise, (line 25), we have to check whether the
SAT call in line 20 returned UNSAT because a model has been found, or whether
there is an inconsistency in the formula ϕA∧ϕF comprised of arbiter and forcing
clauses under the current arbiter assignment τ . The procedure CheckConsis-
tency either finds that the model is consistent, in which case Algorithm 2
returns true, or else computes an assignment σ of the universal variables as a
counterexample. If CheckArbiterAssignment returns false, the main loop
resumes in line 14 with a call to AnalyzeConflict.

To see what this procedure does, let us first consider the simple case in which
the counterexample σ only contains an assignment of universal variables that
was returned by the consistency check. Then, the existential assignment ρ∃ = ∅
is empty, the for-loop is skipped and no new arbiter variables are introduced
(line 55), and the procedure only tries to further simplify the failed arbiter
assignment ρA in line 58, before adding its negation to the arbiter solver.

Now assume ρ∃ is nonempty but the case distinction in the body of the for-
loop between lines 43 and 54 always leads to line 51. Then notforced = ρ∃ and
the procedure NewArbiters creates new arbiter variables A′ and clauses ϕ′A
for each existential variable e ∈ dom(ρ∃) and the universal counterexample σ∀
(restricted to the dependency set D(e) in each case). Since these arbiter variables
determine the assignment of the existential variables in dom(ρ∃) under σ∀, we
can replace ρ∃ with the assignment ρ′A

..= {eξ ∈ A′ |e ∈ ρ∃}∪{¬eξ ∈ A′ |¬e ∈ ρ∃}
(line 57) and conclude that ϕ ∧ ϕA ∧ ϕF is unsatisfiable under the assignment
ρA ∪ ρ′A ∪ σ∀, which only assigns arbiter variables and universal variables. A
clause forbidding the arbiter assignment ρA ∪ ρ′A can now be added as before.

Finally, let us turn to the general case, which includes entailment checks for
each existential literal ` ∈ ρ∃ in the minimized counterexample. These checks
are added to reduce the number of new arbiter variables created. If the literal `
is entailed by the assignment σ∀ ∧ τ , we add further literals from τ to the failed
arbiter assignment ρA (if necessary) to ensure that ` is entailed by σ∀ ∧ ρA. No
arbiter variable has to be introduced for var(`) in this case. Otherwise, if ¬` is
entailed by σ∀ ∧ τ , then the counterexample is spurious since e = var(`) must
be assigned the opposite way under σ∀ ∧ τ by any Skolem function. To enforce
this in the next iteration, the algorithm adds a forcing clause C encoding the
implication σ∀ ∧ τ → ¬` (which can be further strengthened by restricting σ∀ to
the dependency set of e) to ϕF . It also sets a flag oppositeForced , which causes
AnalyzeConflict to exit with true instead of adding new arbiter variables.

If AnalyzeConflict returns true, Algorithm 2 proceeds to the next iter-
ation of its main loop with the same arbiter assignment τ but additional forcing

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

12 F. Reichl et al.

clauses. Otherwise, AnalyzeConflict returns false after adding a clause to
the SAT solver arbiterSolver , and FindNewArbiterAssignment is called to
determine a new arbiter assignment τ that satisfies all previously added clauses.
Algorithm 2 terminates either when it discovers a model or when it cannot find
a new arbiter assignment.

Algorithm 2 Solving DQBF by Definition Extraction (CEGIS Version)

1: procedure SolveByDefinitionExtractionCEGIS(Φ)
2: . Φ = ∀u1 . . .∀un∃e1(D1) . . .∃em(Dm).ϕ
3: . A: arbiter variables, ψDef : definitions, ϕA: arbiter clauses
4: A← ∅, ψDef ← ∅, ϕA ← ∅
5: ϕF ← ∅ . forcing clauses
6: τ ← ∅ . arbiter assignment
7: arbiterSolver ← SatSolver(∅)
8: loop
9: ψDef ← FindDefinitions({e ∈ E | e undefined}, ϕ ∧ ϕA ∧ ϕF)

10: modelValid , σ ← CheckArbiterAssignment(τ)
11: if modelValid then
12: return true
13: . σ is a counterexample
14: if AnalyzeConflict(σ) then
15: . forcing clauses have been added to ϕF
16: continue
17: if not FindNewArbiterAssignment() then
18: return false

19: procedure CheckArbiterAssignment(τ)
20: checker ← SatSolver(¬ϕ ∧ ψDef ∧ ϕF ∧ ϕA)
21: if checker .solve(τ) then
22: σ ← checker .values(E ∪ U)
23: return false, σ
24: else
25: isConsistent , σ ← CheckConsistency(ϕA ∧ ϕF , τ)
26: if isConsistent then
27: return true, ∅
28: else
29: . σ ∈ [U] is such that ϕA ∧ ϕF ∧ τ ∧ σ is unsatisfiable
30: return false, σ

31: procedure FindNewArbiterAssignment()
32: if arbiterSolver .Solve() then
33: τ ← arbiterSolver .getModel() |A
34: return true
35: return false

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 13

36: procedure AnalyzeConflict(σ)
37: σ∀ ← σ|U . σ∀ assigns all universal variables
38: ρ← getCore(ϕ ∧ ϕA ∧ ϕF , σ ∧ τ)
39: ρ∃ ← ρ|E , ρA ← ρ|A
40: notForced ← ∅ . collect literals ` ∈ ρ∃ that are not implied
41: oppositeForced ← false
42: ψ ← ϕ ∧ ϕA ∧ ϕF
43: for ` ∈ ρ∃ do
44: if ψ ∧ σ∀ ∧ τ |= ` then
45: ρ← getCore(ψ, σ∀ ∧ τ ∧ ¬`)
46: ρA ← ρA ∪ ρ|A . add reason for ` to failed arbiter assignment ρA
47: else if ψ ∧ σ∀ ∧ τ |= ¬` then
48: ϕF ← ϕF ∧ getForcingClause(ψ, σ∀ ∧ τ,¬`)
49: oppositeForced ← true
50: else
51: notForced ← notForced ∪ {`}
52: if oppositeForced then
53: return true
54: . no literal was forced to the opposite polarity
55: ϕ′A, A

′ ← newArbiters(notForced , σ∀)
56: ϕA ← ϕA ∧ ϕ′A
57: ρA ← ρA ∧ setAssignment(A′, ρ∃)
58: ρA ← getCore(ψ, ρA ∧ σ∀)|A
59: arbiterSolver .addClause(¬ρA)
60: return false

We now prove that Algorithm 2 is a decision procedure for DQBF. As some
of the required proofs are similar to related proofs in the previous section we
will not give all the details.

As in Section 3.1, A denotes a set of arbiter variables and ϕA denotes the
associated set of arbiter clauses. Additionally, ψ denotes some formula with
variables in U ∪ E ∪A.

Several proofs given in this section build on related proofs given in Section 3.1.
As several properties can be proven similarly as related properties in Section 3.1
we will sometimes give no proof, respectively only a sketch of a proof.

Definition 3 (Forcing Clause). Let ` be an existential literal, ψ a formula
with var(ψ) ⊆ U ∪E ∪A and let σ be a (partial) assignment for U ∪A. We say
that ` is forced by σ in ψ if ψ ∧ σ ∧ ¬` is unsatisfiable. If ` is forced by σ then
¬σ|D(var(`))∪A ∨ l is a forcing clause.

In particular, if a literal ` is forced by an assignment σ in a formula ϕ then
ϕ ∧ σ � ` holds.

Remark 4. We can see that if a literal is forced then it keeps being forced after
the addition of a clause.

Lemma 8. Let ¬p ∨ ` be a forcing clause for ` in ψ. Then there is no model F
for Q∃A(∅).ψ such that:

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

14 F. Reichl et al.

– For every arbiter literal a ∈ p the model function Fvar(a) satisfies a.
– For some assignment σ ∈ [D(var(`))] with σ � p|U the assignment Fvar(`)(σ)

satisfies ¬`.
Proof. As ¬p∨ ` is a forcing clause we know that there is a partial assignment ρ
for U ∪A such that p = ρ|D(var(`))∪A and ψ∧ρ∧¬` is unsatisfiable. Now let F be
a model with the above properties and σ as in the second property. Furthermore,
let σ′ ∈ [U] such that σ ⊆ σ′ and such that for each x ∈ dom(ρ)∩(U \D(var(`)))
we have σ′(x) = ρ(x). As σ′∪F (σ′) satisfies ρ∧¬` we can conclude that σ′∪F (σ′)
falsifies ψ. This means that F is not a model. ut
Lemma 9. Let Ψ be a DQBF with Ψ ..= Q∃A(∅).ψ and let ¬p ∨ ` be a forcing
clause in ψ. Moreover, let Ψ ′ ..= Q∃A.ψ ∧ (¬p ∨ `). Then F is a model for Ψ if
and only if F is a model for Ψ ′.

Proof. If F is a model for Ψ ′ then it is necessarily also a model for Ψ . Thus, it
suffices to only consider the other direction of the proof. Now assume that F is
a model for Ψ but not for Ψ ′ and show a contradiction. As F is not a model for
Ψ ′ there must be an assignment σ for the universal variables such that σ ∪F (σ)
falsifies ¬p∨ `. Now we can see that F satisfies the properties given in Lemma 8.
This means that F is not a model for Ψ . This proofs the lemma. ut
An immediate consequence of the above lemma is the following corollary.

Corollary 2. Let C = ¬p∨ ` be a forcing clause in ψ. Then Q∃A.ψ ∧C is true
if and only if Q∃A.ψ is true.

The above results imply that forcing clauses can be added to the matrix of a
DQBF without changing its models. In particular, the resulting DQBF has the
same truth value.

Lemma 10. Let Φ′ be the DQBF Φ′ ..= Q∃A(∅).ϕ ∧ ϕA. Then, Φ is true if and
only if Φ′ is true.

Proof. We assume that Φ is true. This means that there is a model function fe
in Φ for each existential variable e. We now construct model functions f ′e for Φ′

by:

f ′x
..=

{
fx for x ∈ E
fe(σ) for x = eσ

Obviously the model given above satisfies ϕ for all assignments to the universal
variables. Now assume that there is a universal assignment ρ such that a clause
`σ ∨ ¬σ ∨ ¬` in ϕA is falsified under the above model. Let e = var(`) then it
suffices to consider the case ρ|D(e) = σ. Moreover, we can assume that fe satisfies
` under σ—otherwise the clause would be satisfied. The above assumptions imply
that feσ � `σ. But this yields a contradiction to the initial assumption. As the
above clauses were arbitrary we can conclude that ϕ ∧ ϕA is satisfied by the
model under each universal assignment.

Now assume that Φ′ is true. We can see that by restricting a model of Φ′ to
the variables in E we get a model for Φ. This proves the equivalence. ut

By combining the above results we can derive the following corollary.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 15

Corollary 3. Let C1, . . . , Ck be clauses such that for each index i, the clause
Ci is a forcing clause in ϕ∧ϕA ∧

∧
1≤j<i Cj. Then the DQBF Q∃A(∅).ϕ∧ϕA ∧∧

1≤i≤k Ci is true if and only if Φ is true.

Subsequently, we will give a mild generalization of Lemma 3. As this Lemma
can be proven similarly as Lemma 3 we do not give a proof.

Lemma 11. Assume there is a linear ordering for E, denoted by <E. If there
is a set E′ ⊆ E such that there is a formula ψe with var(ψe) ⊆ D(e) ∪ {x ∈ E |
D(x) ⊆ D(e), x <E e} such that ¬ϕ ∧ ∧

e∈E(e ↔ ψe) is unsatisfiable then the
DQBF Φ is true.

Theorem 3. If Algorithm 2 returns true for a DQBF Φ then Φ is true.

Proof. We assume that the algorithm returns true and show that the DQBF Φ
is true. We know that we have a set A of arbiter variables, a set ϕA of arbiter
clauses, a set ϕF of forcing clauses and a set E′ ⊆ E such that each e ∈ E′ has
a definition ψe in ϕ ∧ ϕA ∧ ϕF by D(e) ∪ A. Let ψDef

..=
∧
e∈E′(e ↔ ψe) and

Φ′ ..= Q∃A(∅).ϕ ∧ ϕA ∧ ϕF . By Corollary 3, we know that Φ is true if and only
if Φ′ is true. As the algorithm returns true, we know that ¬ϕ∧ϕA ∧ϕF ∧ψDef

is unsatisfiable. By Lemma 11 and the above property we know that Φ′ is true.
Thus, Φ is true as well. ut

Lemma 12. Let ϕF be a set of forcing clauses, σ be an assignment for universal
variables and τ ∈ [A]. If ϕ∧ ϕA ∧ ϕF ∧ τ ∧ σ is unsatisfiable then we can derive
a subclause of ¬τσ from Φ in ∀Exp+Res.

Proof. If ϕ∧ϕA ∧ τ ∧ σ is unsatisfiable then the result follows by Lemma 4 and
Lemma 6. We can now assume that ϕ∧ϕA ∧ τ ∧ σ is satisfied by an assignment
ρ. Now there has to be a forcing clause (¬p ∨ `) that is falsified by ρ such that
the set of forcing clauses ϕ̂F that were introduced before (¬p∨ `), is satisfied by
σ—note (¬p∨ `) is a forcing clause for ϕ∧ϕA ∧ ϕ̂F . As ρ falsifies ¬p it satisfies
p, as ρ additionally satisfies τ we can conclude that the arbiter literals in p are
contained in τ Subsequently, vi, . . . , vk shall denote the universal literals in p
and `σ1

1 , . . . , `σll the arbiter literals in p. Moreover, Φ′ shall denote the DQBF
Φ′ ..= Q∃A(∅).ϕ ∧ ϕA ∧ ϕ̂F . Because, of the above property Φ′ cannot have a
model F with F �

∧
`σii and F (ρ|U) � `. On the other hand because of Lemma 8

there can also be no model with F �
∧
`σii and F (ρ|U) � ¬`. This means that if

Φ′ has a model than it has to falsify
∧
`σii . We know that adding forcing clause

to a matrix does not change models. Thus, if Φ′′ ..= Q∃A(∅).ϕ∧ϕA has a model
F than it has to falsify

∧
`σii . This means that there is some minimal subset S of

{`σ1
1 , . . . , `σll } such that Q∃A(∅).ϕ∧ϕA ∧

∧
S is false. Now let ϕSA be the subset

of ϕA with arbiters in S. We show that Φ̂ ..= Q∃A(∅).ϕ ∧ ϕSA ∧
∧
S is false. We

assume the opposite. In this case there is a model for the formula. But such a
model can easily be extended to a model for Φ′′, which yields a contradiction.

Next we argue that Φ̃ ..= Q.ϕ ∧∧{¬σ ∨ ` | `σ ∈ S} is false. Again, assume
the opposite, i.e. there is a model F . We now show that that this model can be
extended to a model F ′ for Φ̂. Now let `σ ∈ S, we set Fvar(`σ) = Fvar(`)(σ). We

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

16 F. Reichl et al.

can see that F ′ is a model for Φ̂, but this is a contradiction. Moreover, by using
similar arguments as above we can show that for any subset S′ of S the formula
Q.ϕ ∧∧{¬σ ∨ ` | `σ ∈ S′} is true.

Now let C denote the set of clause that represent the full expansion of Φ̃—in
the sense of ∀Exp+Res. As Φ̃ is false, there is a ∀Exp+Res proof. This means
there is a refutation by resolution for C. We can now on the one hand see that
S ⊆ C and on the other hand, because of the minimality of S that removing
any element from S from C would make C satisfiable. By Lemma 6 we can now
conclude that we can derive S ..= {¬x | x ∈ S} by resolution from C. From this
we can conclude that S is derivable from Φ in ∀Exp+Res. As S is a subset of
¬τ this proves the lemma. ut

As in the case of Algorithm 1, the correctness of false answers for Algo-
rithm 2 follows from a correspondence with ∀Exp+Res derivations. Before we
prove that each clause that is added to the arbiter solver correponds to a clause
that can be derived by ∀Exp+Res we show that the clauses that are added to
the arbiter solver are well-defined.

Lemma 13. The core extraction in line 38 is well defined.

Proof. We have to show that ψ ∧ ρA ∧ σ∀ is indeed unsatisfiable. There are two
cases to consider. First assume that ϕA ∧ ϕF was inconsistent under τ and σ∀.
The inconsistency means that ϕA∧ϕF ∧ τ ∧σ∀ is unsatisfiable. This means that
the core extraction is well-defined. In the second case the formula ¬ϕ ∧ ψDef ∧
ϕF∧ϕA∧τ was satisfied by σ∪τ . This means that ϕ∧ψDef ∧ϕF∧ϕA∧ϕ′A∧σ∧ρ|A
is unsatisfiable—where ϕ′A denotes the arbiter clauses that were introduces in
this step. By Lemma 2 the formula ϕ ∧ ϕF ∧ ϕA ∧ ϕ′A ∧ σ ∧ ρ|A is unsatisfiable.
Moreover, we can argue that ϕ∧ψDef ∧ϕF ∧ϕA∧ϕ′A∧σ|U is unsatisfiable—the
existential assignments in σ are either forced or ruled out by the new arbiter
clauses. Finally, by similar arguments as in previous proofs, also removing ψDef

does preserve unsatisfiability. This shows that also in this case the core extraction
is well-defined. ut

Proposition 2. For each clause C added to the arbiter solver by Algorithm 2
(line 59), a clause C ′ ⊆ C can be derived from Φ in ∀Exp+Res.

Proof. Let ¬ρA be a clause that is added to the arbiter solver. Then we know
that ϕ ∧ ϕA ∧ ϕF ∧ ρA ∧ σ for some universal assignment σ is unsatisfiable. By
applying Lemma 12 we can conclude that we can derive a subset of ¬ρA. ut

Theorem 4. If Algorithm 2 returns false for a DQBF Φ then Φ is false.

Proof. If the algorithm returns false then the clauses in the arbiterSolver are
unsatisfiable. Subsequently, we denote those clauses by C. By Proposition 2, we
know that we can derive for each clause C ∈ C a subclause. This means that those
derivable clauses are unsatisfiable. As propositional resolution is refutationally
complete we can derive the empty clause from those derivable clauses. This
means that there is a ∀Exp+Res proof for Φ. As ∀Exp+Res is sound, this means
that Φ is false. ut

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 17

Each iteration of Algorithm 2 introduces new forcing clauses or forbids an-
other arbiter assignment. Because there is a bound on the number of arbiter
variables that can be introduced, the number of such clauses can be bounded
as well, and the algorithm eventually terminates. Together with Theorem 3 and
Theorem 4, this gives rise to the following corollary.

Corollary 4. Algorithm 2 is a decision procedure for DQBF.

4 Experiments

We implemented Algorithm 2 as described in the previous section in a pro-
totype named Pedant.3 For definition extraction, it uses a subroutine from
Unique [40] that in turn relies on an interpolating version of MiniSat [12] bun-
dled with the ExtAvy model checker [22, 48]. Further, CaDiCaL is used as a
SAT solver [8] (we also tested with CryptoMiniSAT [44] and Glucose [2] but
saw no significant differences in overall performance). Pedant can read DQBF
in the standard DQDIMACS format and output models in the DIMACS format.

The implementation incorporates a few techniques not explicitly mentioned
in the above pseudocode. We identify unate existential literals (a generalization
of pure literals) [1], which can be used in any model of a DQBF. Moreover, we
set a (configurable) default value for existential variables that applies when there
is no forcing clause propagating a different value. This is to limit the freedom of
the SAT solver used in the validity check in coming up with counterexamples.
Moreover, when checking for definability of an existential variable, we use ex-
tended dependencies that include existential variables with dependency sets that
are contained in the dependencies of the variable that is checked.

For all experiments described below we use a cluster with Intel Xeon E5649
processors at 2.53 GHz running 64-bit Linux.

4.1 Performance on Standard Benchmark Sets

We compare Pedant with other DQBF solvers on standard benchmark sets in
terms of instances solved within the timeout and their PAR2 score.4 Specifically,
we choose the solvers dCAQE [47], iDQ [16], HQS [20], and the recently in-
troduced DQBDD [39]. Both HQS and DQBDD internally use HQSPre [51]
as a preprocessor. For dCAQE and iDQ, we call HQSPre with a time limit of
300 seconds (the time for preprocessing is included in the total running time).
By default, Pedant is run without preprocessing.

The results are based on a single run with a time and memory limit of 1800
seconds and 8 GB, respectively, which are enforced using RunSolver [36].5

3 Available at https://github.com/perebor/pedant-solver.
4 The Penalized Average Runtime (PAR) is the average runtime, with the time for

each unsolved instance calculated as a constant multiple of the timeout.
5 Due to the heavy-tailed runtime distribution of DQBF solvers, run-to-run variance

rarely affects the number of solved instances. However, PAR2 scores should be taken
with a grain of salt and only used to compare orders of magnitude.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

18 F. Reichl et al.

We report results for two benchmark sets. The first—which we refer to as the
“Compound” set—has been used in recent papers on HQS [18]. It is comprised
of instances encoding partial equivalence checking (PEC) [37, 16, 19, 14] and con-
troller synthesis [10], as well as succinct DQBF representations of propositional
satisfiability [4]. Results are summarized in Table 1. Pedant solved the most
instances overall and for 4 out of 5 families (the “Balabanov” family being the ex-
ception), with DQBDD coming in a close second. The performance of Pedant
on the PEC instances in the “Finkbeiner” family is particularly encouraging.

Table 1: Results for the “Compound” benchmark set.

dCAQE DQBDD HQS iDQ Pedant

Family(Total) Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2

Balabanov(34) 21/1.5·103 13/2.3·103 19/1.8·103 21/1.5·103 13/2.3·103

Biere(1200) 1200/1.6·10−1 1197/9.0·100 1200/6.4·10−2 1184/6.6·101 1200/1.0·10−1

Bloem(461) 85/2.9·103 82/3.0·103 82/3.0·103 50/3.2·103 98/2.9·103

Finkbeiner(2000) 32/3.5·103 1999/1.1·101 1799/3.9·102 6/3.6·103 2000/1.7·100

Scholl(1116) 568/1.8·103 793/1.1·103 676/1.4·103 345/2.5·103 854/8.7·102

All(4811) 1906/2.2·103 4084/5.5·102 3776/7.9·102 1606/2.4·103 4165/4.9·102

Next, we consider the instances from the DQBF track of QBFEVAL’20 [33].
Results are shown in Table 2. Here, Pedant falls behind the other solvers,
with the exception of iDQ. In particular, significantly fewer instances from the
“Kullmann” and “Tentrup” families are solved.

For the autarky finding benchmarks in the “Kullmann” family [30], we no-
ticed that most dependencies can be removed by preprocessing with the reflexive
resolution-path dependency scheme [41, 52]. The resulting instances are much
easier to solve for Pedant, and models can still be validated against the orig-
inal DQBFs. In general, we found that preprocessing with HQSPre can have
both positive and negative effects on Pedant. The rightmost columns of Table 2
show results when preprocessing is enabled.6 Overall, performance is clearly im-
proved, but fewer instances from the “Bloem” and “Scholl” families are solved.
In prior work, it was observed that preprocessing can destroy definitions [40],
and this appears to be the case here as well.

For the instances from the “Tentrup” family, we discovered that the per-
formance of Pedant is sensitive to which counterexamples are generated by
CaDiCaL. With the right sequence of counterexamples, false instances can be
refuted quickly, while otherwise the solver is busy introducing arbiter variables
for minor variations of previously encountered cases. Curiously, this also ap-
pears to be the case for true instances. We believe that the algorithm can be
made more robust against such “adversarial” sequences of counterexamples by
achieving better generalization (see Section 6).

6 With options --resolution 1 --univ exp 0 --substitute 0.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 19

Table 2: Results for the QBFEVAL’20 DQBF benchmark set.

dCAQE DQBDD HQS iDQ Pedant PedantHQ

Family(Total) Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2 Sol/PAR2

Balabanov(34) 21/1.5·103 13/2.3·103 19/1.8·103 21/1.5·103 14/2.3·103 13/2.4·103

Bloem(90) 31/2.4·103 32/2.3·103 33/2.3·103 14/3.1·103 37/2.2·103 25/2.7·103

Kullmann(50) 35/1.1·103 50/1.5·101 41/6.9·102 50/3.4·100 34/1.3·103 40/7.3·102

Scholl(90) 52/1.5·103 78/4.9·102 77/5.3·102 15/3.0·103 82/3.3·102 65/1.2·103

Tentrup(90) 77/5.5·102 84/2.8·102 78/5.1·102 17/2.9·103 15/3.0·103 84/2.9·102

All(354) 216/1.4·103 257/1.0·103 248/1.1·103 117/2.4·103 182/1.8·103 227/1.4·103

4.2 Distribution of Defined Existential Variables

The main design goal for Pedant was to create a solver that benefits from unique
Skolem functions given by propositional definitions. We thus expect Pedant
to do well on instances where a large proportion of existential variables is de-
fined. Figure 2 shows the distribution of defined existential variables (i.e., unique
Skolem functions) as computed by Unique [40]. These definitions are also found

Compound QBFEval'20

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

0%

25%

50%

75%

100% Family

Balabanov

Biere

Bloem

Finkbeiner

Kullmann

Scholl

Tentrup

Fig. 2: Distribution of defined variables by benchmark set and family. For a given
percentage x0 on the x-axis, the y-axis shows the fraction of instances from each
benchmark family for which x0 percent of existential variables are defined. For
example, the instances in the “Balabanov” family have no defined variables,
while the fraction of defined variables for instances in the “Finkbeiner” family
ranges from 75% to 100%.

by Pedant without the introduction of arbiter variables. Comparing Table 1
and Table 2 with Figure 2, we see that Pedant performed better for instance
families with a larger fraction of defined variables. This makes sense: the fewer
variables are undefined, the fewer arbiter variables need to be introduced.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

20 F. Reichl et al.

4.3 Solution Validation

When running Pedant without preprocessing (the default), we had it trace
and output models in DIMACS format. We implemented a simple workflow for
validating these models in Python 3 using the PySAT library [24]. First, a
simple syntactic check is performed to make sure the encoding of each Skolem
function only mentions variables in the dependency set of the corresponding
variable. Then, a SAT solver is used to verify that substituting the model ψ for
existential variables in the matrix ϕ of the input DQBF is valid, by testing for
each clause C ∈ ϕ whether ψ∧¬C is unsatisfiable (cf. Lemma 3). In this manner,
we are able to validate models for all 648 true DQBFs in the two benchmark sets
that were solved by Pedant without preprocessing. The maximum validation
time was 237 seconds, with a mean of 4.3 seconds and a median of 0.5 seconds.

The current validation process is intended as a proof of concept. Since models
constructed by Pedant are circuits, we plan to support the AIGER format [9]
in the near future, and provide a workflow along the lines of QBFCert [32].

5 Related Work

The DQDPLL algorithm lifts the CDCL algorithm to DQBF [15]. While CDCL
solvers are free to assign variables in any order, in DQBF a variable may be as-
signed only after the variables in its dependency set have been assigned. More-
over, its assignment must not differ between branches in the search tree that
agree on the assignment of the dependency set. In DQDPLL, this is enforced by
temporary Skolem clauses that fix the truth value of a variable for a given as-
signment of its dependencies. The solver dCAQE lifts clausal abstraction from
QBF to DQBF [47]. QBF solvers based on abstraction maintain a propositional
formula for each quantifier level that characterizes eligible moves in the evalua-
tion game. These abstractions are refined by forbidding moves that are known to
result in a loss. Abstractions are linked to each other through auxiliary variables
that indicate which clauses are satisfied at different levels. dCAQE organizes
variables in a dependency lattice that determines the order in which their ab-
stractions may be solved. This can lead to variables being assigned after variables
that do not appear in their dependency sets, and additional consistency checks
have to be applied to ensure that Skolem functions do not exploit such spurious
dependencies. dCAQE uses fork resolution as its underlying proof system [34].

Expansion of universal variables can be successively applied to transform a
DQBF into a propositional formula that can be passed to a SAT solver [11].
In practice, the space requirements of fully expanding a DQBF are prohibitive.
This can be addressed by only expanding some universal variables, as well as con-
sidering only a subset of the clauses generated by expansion. Even though such
approaches degenerate into full expansion in the worst case, they can be quite ef-
fective. The solver iDQ [16] successively expands a DQBF in a counterexample-
guided abstraction refinement (CEGAR) loop. Initially, universal variables in
each clause are expanded separately. Satisfiability of the resulting propositional
formula is checked by a SAT solver. If it is unsatisfiable, so is the original DQBF.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 21

Otherwise, iDQ checks whether any pair of literals with consistent annotations
are assigned different truth values in the satisfying assignment. If there are no
such literals, a model of the DQBF has been found. Otherwise, clauses containing
the corresponding clashing literals are further expanded. The system is inspired
by the Inst-Gen calculus, the proof system underpinning the First-Order solver
iProver [29]. Originally designed for the effectively propositional fragment of
first-order logic (EPR), iProver also accepts DQBF as input.

The solver HQS seeks to keep the memory requirements of expansion in
check by operating on And-Inverter Graph (AIG) representations of input for-
mulas [20]. It uses expansion alongside several other techniques to transform
a DQBF into an equivalent QBF and leverage advances in QBF solving [50,
18]. HQS is paired with a powerful preprocessor named HQSPre that provides
an arsenal of additional simplification techniques [51], including an incomplete
but efficient method for refuting DQBF by reduction to a QBF encoding [14].
HQSpre is also used in the recently developed solver DQBDD [39], which is
similar to HQS but relies on Binary Decision Diagrams (BDDs) instead of AIGs
to represent formulas and perform quantifier elimination.

Evaluating DQBF is NEXPTIME complete [3] in general, but some tractable
subclasses have been identified in recent work [38, 17].

6 Conclusion

We presented a decision algorithm for DQBF that relies on definition extraction
to compute Skolem functions inside a CEGIS loop, and evaluated it in terms of
the prototype implementation Pedant. While the initial results are very promis-
ing, we see significant room for improvement and various directions to pursue in
future research. Generally, the approach works well when Skolem functions can
be computed by definition extraction for a large fraction of existential variables
without introducing too many arbiter variables. During testing, we encountered
multiple instances for which conflict analysis was occupied dealing with minor
variations of a small number of counterexamples. We believe that this is partly
due to arbiter variables being introduced for complete assignments of dependency
sets. Even if the assignment of some universal variables in the dependency set
is irrelevant for a given counterexample, the newly introduced arbiter variables
only deal with the counterexample as represented by the complete assignment,
and each counterexample obtained by varying the assignment of irrelevant uni-
versal variables requires a new set of arbiter variables. To avoid this, we plan to
experiment with a variant of the algorithm that introduces arbiter variables for
partial assignments [29, 16].

A different approach to generalizing from counterexamples—one that does
not require changes in the underlying proof system—is the use of machine learn-
ing. By predicting the pattern common to a sequence of counterexamples, it
is possible to deal with it wholesale and avoid an exhaustive enumeration [25].
Moreover, recent work on Boolean Synthesis demonstrates the viability of learn-
ing Skolem functions by sampling satisfying assignments [21].

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

22 F. Reichl et al.

Finally, we plan to explore further applications of interpolation-based defini-
tion extraction within our algorithm. Currently, its use is limited to existential
variables that are defined by their dependency sets in the input DQBF, or are
undefined only in a small number of cases. In addition to that, one could search
for “partial” definitions under assignments of the dependency set characterized
by formulas, or introduce definitions that are valid under assumptions [35].

Acknowledgements Supported by the Vienna Science and Technology Fund
(WWTF) under the grants ICT19-060 and ICT19-065, and the Austrian Science
Fund (FWF) under grant W1255.

References

1. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
boolean functional synthesis? In: CAV (1). Lecture Notes in Computer Science,
vol. 10981, pp. 251–269. Springer (2018)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence. pp. 399–404 (2009)

3. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Journal of Computers and Mathematics with
Applications 41, 957 – 992 (2001)

4. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and boolean formulae:
A certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)

5. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

6. Beyersdorff, O., Blinkhorn, J., Chew, L., Schmidt, R.A., Suda, M.: Reinterpret-
ing dependency schemes: Soundness meets incompleteness in DQBF. J. Autom.
Reason. 63(3), 597–623 (2019)

7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, R. (ed.) Tools and Algorithms for Construction and Analysis
of Systems, 5th International Conference, TACAS ’99, Proceedings. Lecture Notes
in Computer Science, vol. 1579, pp. 193–207. Springer (1999)

8. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

9. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (2011)

10. Bloem, R., Könighofer, R., Seidl, M.: Sat-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) Verification, Model Checking, and Abstract
Interpretation - 15th International Conference, VMCAI 2014. Lecture Notes in
Computer Science, vol. 8318, pp. 1–20. Springer (2014)

11. Bubeck, U., Kleine Büning, H.: Dependency quantified Horn formulas: Models and
complexity. In: Biere, A., Gomes, C.P. (eds.) Theory and Applications of Satis-
fiability Testing - SAT 2006. Lecture Notes in Computer Science, vol. 4121, pp.
198–211. Springer (2006)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 23

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. Lecture Notes in Computer Science, vol. 2919, pp. 502–518.
Springer (2003)

13. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 23rd International Conference, TACAS 2017.
Lecture Notes in Computer Science, vol. 10205, pp. 354–370 (2017)

14. Finkbeiner, B., Tentrup, L.: Fast DQBF refutation. In: Sinz, C., Egly, U. (eds.)
Theory and Applications of Satisfiability Testing - SAT 2014. Lecture Notes in
Computer Science, vol. 8561, pp. 243–251. Springer (2014)

15. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF
(2012), http://fmv.jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf, presented
at Workshop on Pragmatics of SAT (POS)

16. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: idq: Instantiation-based DQBF
solving. In: Berre, D.L. (ed.) POS-14. Fifth Pragmatics of SAT workshop, a work-
shop of the SAT 2014 conference, part of FLoC 2014 during the Vienna Summer
of Logic, July 13, 2014, Vienna, Austria. EPiC Series in Computing, vol. 27, pp.
103–116. EasyChair (2014)

17. Ganian, R., Peitl, T., Slivovsky, F., Szeider, S.: Fixed-parameter tractability
of dependency QBF with structural parameters. In: Calvanese, D., Erdem, E.,
Thielscher, M. (eds.) Proceedings of the 17th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2020. pp. 392–402 (2020)

18. Ge-Ernst, A., Scholl, C., Wimmer, R.: Localizing quantifiers for DQBF. In: Barrett,
C.W., Yang, J. (eds.) Formal Methods in Computer Aided Design, FMCAD 2019.
pp. 184–192. IEEE (2019)

19. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified boolean formulae. In: IEEE
31st International Conference on Computer Design, ICCD 2013,. pp. 396–403.
IEEE Computer Society (2013)

20. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Proceed-
ings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2015. pp. 1617–1622. ACM (2015)

21. Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for boolean func-
tion synthesis. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verification -
32nd International Conference, CAV 2020. Lecture Notes in Computer Science,
vol. 12225, pp. 611–633. Springer (2020)

22. Gurfinkel, A., Vizel, Y.: Druping for interpolates. In: FMCAD 2014. pp. 99–106.
IEEE (2014)

23. Heule, M.J.H., Järvisalo, M., Suda, M.: SAT competition 2018. J. Satisf. Boolean
Model. Comput. 11(1), 133–154 (2019)

24. Ignatiev, A., Morgado, A., Marques-Silva, J.: PySAT: A Python toolkit for proto-
typing with SAT oracles. In: SAT. pp. 428–437 (2018)

25. Janota, M.: Towards generalization in QBF solving via machine learning. In: McIl-
raith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18). pp. 6607–6614. AAAI Press (2018)

26. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

27. Janota, M., Marques-Silva, J.: On propositional QBF expansions and q-resolution.
In: Järvisalo, M., Gelder, A.V. (eds.) Theory and Applications of Satisfiability

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

24 F. Reichl et al.

Testing - SAT 2013. Lecture Notes in Computer Science, vol. 7962, pp. 67–82.
Springer (2013)

28. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica 54(7), 693–726 (2017)

29. Korovin, K.: iProver - an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Auto-
mated Reasoning, 4th International Joint Conference, IJCAR 2008. Lecture Notes
in Computer Science, vol. 5195, pp. 292–298. Springer (2008)

30. Kullmann, O., Shukla, A.: Autarkies for DQCNF. In: Barrett, C.W., Yang, J.
(eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019. pp. 179–
183. IEEE (2019)

31. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D.,
Ivrii, A., Malik, S.: Constrained sampling and counting: Universal hashing meets
SAT solving. In: Darwiche, A. (ed.) Beyond NP, Papers from the 2016 AAAI
Workshop. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)

32. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based cer-
tificate extraction for QBF - (tool presentation). In: Cimatti, A., Sebastiani, R.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2012. Lecture Notes
in Computer Science, vol. 7317, pp. 430–435. Springer (2012)

33. Pulina, L., Seidl, M.: The 2016 and 2017 QBF solvers evaluations (qbfeval’16 and
qbfeval’17). Artif. Intell. 274, 224–248 (2019)

34. Rabe, M.N.: A resolution-style proof system for DQBF. In: Gaspers, S., Walsh, T.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2017. Lecture Notes
in Computer Science, vol. 10491, pp. 314–325. Springer (2017)

35. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Berre,
D.L. (eds.) Theory and Applications of Satisfiability Testing - SAT 2016. Lecture
Notes in Computer Science, vol. 9710, pp. 375–392. Springer (2016)

36. Roussel, O.: Controlling a solver execution with the runsolver tool. J. Satisf.
Boolean Model. Comput. 7(4), 139–144 (2011)

37. Scholl, C., Becker, B.: Checking equivalence for partial implementations. In: Pro-
ceedings of the 38th Design Automation Conference, DAC 2001. pp. 238–243. ACM
(2001)

38. Scholl, C., Jiang, J.R., Wimmer, R., Ge-Ernst, A.: A PSPACE subclass of depen-
dency quantified boolean formulas and its effective solving. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019. pp. 1584–1591. AAAI
Press (2019)

39. Śıč, J.: Satisfiability of DQBF using binary decision diagrams. Master’s thesis,
Masaryk University, Brno, Czech Republic (2020)

40. Slivovsky, F.: Interpolation-based semantic gate extraction and its applications to
QBF preprocessing. In: CAV (1). Lecture Notes in Computer Science, vol. 12224,
pp. 508–528. Springer (2020)

41. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

42. Solar-Lezama, A., Jones, C.G., Bod́ık, R.: Sketching concurrent data structures.
In: Gupta, R., Amarasinghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation. pp. 136–148.
ACM (2008)

43. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006. pp. 404–415. ACM (2006)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

Certified DQBF Solving by Definition Extraction 25

44. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009. Lecture Notes in Computer
Science, vol. 5584, pp. 244–257. Springer (2009)

45. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelim-
inary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison,
M.A., Karp, R.M., Strong, H.R. (eds.) Proceedings of the 5th Annual ACM Sym-
posium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA.
pp. 1–9. ACM (1973)

46. Tentrup, L.: CAQE and quabs: Abstraction based QBF solvers. J. Satisf. Boolean
Model. Comput. 11(1), 155–210 (2019)

47. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2019. Lecture Notes
in Computer Science, vol. 11628, pp. 388–405. Springer (2019)

48. Vizel, Y., Gurfinkel, A., Malik, S.: Fast interpolating BMC. In: Kroening, D.,
Pasareanu, C.S. (eds.) CAV 2015. Lecture Notes in Computer Science, vol. 9206,
pp. 641–657. Springer (2015)

49. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)

50. Wimmer, R., Karrenbauer, A., Becker, R., Scholl, C., Becker, B.: From DQBF
to QBF by dependency elimination. In: Gaspers, S., Walsh, T. (eds.) Theory and
Applications of Satisfiability Testing - SAT 2017, Proceedings. Lecture Notes in
Computer Science, vol. 10491, pp. 326–343. Springer (2017)

51. Wimmer, R., Scholl, C., Becker, B.: The (D)QBF preprocessor hqspre - underlying
theory and its implementation. J. Satisf. Boolean Model. Comput. 11(1), 3–52
(2019)

52. Wimmer, R., Scholl, C., Wimmer, K., Becker, B.: Dependency schemes for DQBF.
In: Creignou, N., Berre, D.L. (eds.) Theory and Applications of Satisfiability Test-
ing - SAT 2016. Lecture Notes in Computer Science, vol. 9710, pp. 473–489.
Springer (2016)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

0

