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Abstract: The longest common subsequence (LCS) problem is a prominentNP–hard optimization1

problem where, given an arbitrary set of input string, the aim is to find a longest subsequence2

which is common to all input strings. This problem has a variety of applications in bioinformatics,3

molecular biology, file plagiarism checking, among others. All previous approaches from the4

literature are dedicated to solving LCS instances sampled from uniform or near-to-uniform5

probability distributions of letters in the input strings. In this paper we introduce an approach6

that is able to effectively deal with more general cases, where the occurrance of letters in the7

input strings follows a non-uniform distribution such as, for example, a multinomial distribution.8

Texts in any spoken language, for example, are well approximated by multinomial distributions.9

The proposed approach makes use of beam search, guided by a novel heuristic function named10

GMPSUM. This heuristic synthesizes two complementary scores in form of a convex combination:11

the first one performs well in the uniform case and the second one works well in the non-uniform12

case. Furthermore, we introduce a time-restricted beam search algorithm that is able to adapt13

the beam size during the algorithm execution in order to achieve a desired target runtime. Apart14

from benchmark sets from the related literature, in which the distribution of letters is close to15

uniform, we introduce three new benchmark sets that differ in terms of their statistical properties.16

One of these benchmark sets concerns a case-study in the context of text analysis. We provide17

a comprehensive empirical evaluation in two distinctive settings: (1) short-time execution with18

fixed beam size in order to evaluate the guidance abilities of the compared search heuristics, and19

(2) long-time executions with fixed target duration times in order to obtain high-quality solutions.20

In both settings, the newly proposed approach performs comparably to state-of-the-art techniques21

in the context of close-to-random instances, and outperforms state-of-the-art approaches for22

non-uniform instances.23

Keywords: Longest common subsequence problem; multi-nomial distribution; probability-based24

search guidance25

1. Introduction26

In the field of bioinformatics, strings are commonly used to model sequences such27

as DNA, RNA, and protein molecules or even time series. Strings represent fundamental28

data structures in many programming languages. Formally, a string s is a finite sequence29

of |s| letters over (usually) a finite alphabet Σ. A subsequence of a string s is any sequence30

obtained by removing arbitrary letters from s. Similarities among several strings can31
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be determined by considering common subsequences, which may serve for deriving32

relationships and possibly to destil different aspects of the of input strings, such as33

mutations. More specifically, one such measure of similarity can be defined as follows.34

Given a set of m input strings S = {s1, . . . , sm}, the longest common subsequence (LCS)35

problem [1] aims at finding a subsequence of maximum length that is common for all36

strings from the set of input strings S. The length of the LCS for two or more input37

strings is a widely used measure in computational biology [2], file plagiarism check,38

data compression [3,4], text editing [5], detecting road itersections from GPS traces [6],39

file comparison (e.g., in the Unix command diff) [7] and revision control systems such40

as GIT. For a fixed m, polynomial algorithms based on dynamic programming (DP)41

are known [8] in the literature. These dynamic programming approaches run in O(nm)42

time, where n denotes the length of the longest input string. Unfortunately, these43

approaches become quickly impractical when m and n get large. For an arbitrary44

large number of input strings, the LCS problem is NP-hard [1]. In practice, heuristic45

techniques are typically used for larger m and n. Constructive heuristics such as the46

Expansion algorithm and the Best-Next heuristic [9,10] appeared first in the literature to47

tackle the LCS problem. Significantly better solutions are obtained by more advanced48

metaheuristic approaches. Most of these are based on Beam Search (BS), see e.g., [11–49

15]. These approaches differ in various important aspects, which include the heuristic50

guidance, the branching scheme, and the filtering mechanisms.51

Djukanovic et al. (2019) [16] proposed a generalized BS framework for the LCS52

problem with the purpose of unifying all previous BS–based approaches from the53

literature. By respective parametrization, each of the previously introduced BS-based54

approaches from the literature could be expressed, which also enabled a more direct55

comparison of all of them. Moreover, a heuristic guidance that approximates the expected56

length of an LCS on uniform random strings was proposed. This way, a new state-of-the-57

art BS variant that leads on most of the existing random and quasi-random benchmark58

instances from the literature was obtained.59

Concerning exact approaches for the LCS problem, an integer linear programming60

model was considered in [17]. It turned out not to be competitive enough as it is was not61

applicable to most of the commonly used benchmark instances from the literature. This62

was primarily due to the model size – too many binary variables and a huge number of63

constraints are needed even for small-sized problem instances. Dynamic programming64

approaches also run out of memory already for small-to-middle sized benchmark in-65

stances or typically return only weak solutions, if any. Chen et al. (2016) [18] proposed a66

parallel FAST_LCS search algorithm that mightingated some of the runtime weaknesses.67

Wang et al. (2011) in [14] proposed another parallel algorithm called QUICK-DP, which68

is based on the dominant point approach and employs a quick divide-and-conquer tech-69

nique to compute the dominant points. Li et al. (2016) in [19] suggested the TOP_MLCS70

algorithm, which is based on a directed acyclic layered-graph model (called irredundant71

common subsequence graph) and parallel topological sorting strategies used to filter72

out paths representing suboptimal solutions. Another parallel and space efficient algo-73

rithm based on a graph model, called the LEVELED-DAG, was introduced by Peng and74

Wang [20]. Recently Djukanovic et al. proposed an A∗ search that is able to outperform75

TOP_MLCS and previous exact approaches in terms of memory usage and the number76

of instances solved to optimality. Nevertheless, the applicability of this exact A∗ search77

is still limited to small-sized instances. In the same work, the A∗ search served as a basis78

for a hybrid anytime algorithm, which can be stopped at almost any time and then be79

expected to yield a reasonable heuristic solution. In this approach, classical A∗ search80

iterations are intertwined with iterations of Anytime column search [21].81

The methods so-far proposed in the literature were primarily tested on independent82

random and quasi-random strings where the number or occurrences of letters in each83

string is similar for each letter. In fact, we are aware of just one benchmark set with84

different distributions (BB, see section 4), where the input strings are constructed in a85
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way so that they exhibit high similarity, but still the letters’ frequencies are similar. In86

practical applications this assumption of uniform or close-to-uniform distribution of87

letters does not need to hold. Some letters may occur substantially more frequently than88

others. For example, if we are concerned of finding motifs in sentences of any spoken89

language, each letter has its characteristic frequency [22]. Text in natural languages90

can be modeled by a multinomial distribution over the letters. The required level of91

model adaptation can vary depending on the distribution assumptions such as letter92

dependence of a particular language. Also, letter frequencies in a language can differ93

depending of text types (e.g., poetry, fiction, scientific documents, business documents).94

For example, it is interesting that the letter ‘E’ is the most frequent letter in English95

(12.702%) [22] and German (17.40%) [23], but only the second most common letter in96

Russian [24]. Moreover, letter ‘N’ is very frequent in German (9.78%), but not so common97

in English (6.749%) and Russian (6.8%).98

Motivated by this considerations, we develop in the following a new BS-based algo-99

rithm which is able to more effectively tackle instances with different string distributions.100

The novel guidance heuristic applied at the core of this BS can be used as a credible and101

simplified replacement of the so far leading approximate expected length calculation.102

Additional advantages are that the novel heuristic is easier to implement than the ap-103

proximate expected length calculation (which required a Taylor series expansion and104

a divide-and-conquer approach in an efficient implementation) and that there are no105

issues with numerical stability.106

The main contributions of this article are as follows.107

• We propose a novel search guidance for a BS which performs competitively on108

the standard LCS benchmark sets known from literature and in some cases even109

produces new state-of-the-art results.110

• We introduce two new LCS benchmark sets based on multinomial distributions,111

whose main property is that letters occur with different frequencies. The proposed112

new BS variant excels on these instances in comparison to previous solution ap-113

proaches.114

• A new time-restricted BS version is described. It automatically adapts the beam115

width over BS levels w.r.t. given time restrictions such that the overall running time116

of BS approximately fits a desired target time limit. A tuning of the beam width to117

achieve comparable running times among different algorithms is hereby avoided.118

In the following we introducing some commonly used notation before giving an overview119

on the remainder of this article.120

1.1. Preliminaries121

By S we always refer to the set of m input strings, i.e. S = {s1, . . . , sm}, m ≥ 1. The122

length of a string s is denoted by |s|, and its i-th letter, i ∈ {1, . . . , |s|}, is referred to by123

s[i]. Let n refers to the length of a longest string and nmin to the length of a shortest124

string in S. A continuous subsequence (substring) of string s that starts with the letter125

at index i and ends with the letter at index j is denoted by s[i, j]; if i > j, this refers to126

the empty string ε. The number of occurrences of a letter a ∈ Σ in string s is denoted127

by |s|a. For a subset of the alphabet A ⊆ Σ, the number of appearances of each letter128

from A in s is denoted by |s|A. For an m-dimensional integer vector~θ ∈ Nm and the set129

of strings S, we define the set of suffix-strings S[~θ] = {s1[θ1, |s1|], . . . , sm[θn, |sn|}, which130

induce a respective LCS subproblem. For each letter a ∈ Σ, the position of the first131

occurrence of a in si[~θi, |si|] is denoted by~θi,a, i = 1, . . . , m. Last but not least, if a string s132

is a subsequence of a given string r, we write s ≺ r.133

1.2. Overview134

This article is organized as follow. Section 2 provides theoretical aspects concerning135

the calculation of the probability that a given string is a subsequence of a random136

string chosen from a multinomial distribution. Section 3 describes the BS framework137
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for solving the LCS problem as well as the novel heuristic guidance. Moreover, the138

time-restricted BS variant is also proposed. In Section 4, a comprehensive experimental139

study and comparison is conducted. Section 5 extends the experiments by considering140

instances derived from a textual corpus. Finally, Section 6 draws conclusions and outlines141

interesting future work.142

2. Theoretical Aspects of Different String Distributions143

Most papers in literature are dedicated to the development and improvement of144

methods for finding an LCS of instances on strings that come from a uniform distribution.145

In our work, we propose new methods for the more general case where strings are146

assumed to come from a multinomial distribution MN(p1, . . . , pη) of strings. More147

precisely, for an alphabet Σ = {a1, . . . , aη}, η > 1, as sample space for the letter of the148

strings, a multinomial distribution MN(p1, . . . , pη) is determined by specifying a (real)149

number pi for each letter ai such that pi represents the probability of seeing letter ai150

and
η

∑
i=1

pi = 1. Note that the uniform distribution is a special case of the multinomial151

distribution MN(p1, . . . , pη), with p1 = . . . = pn =
1
η

.152

Assuming that the selection of each letter in a string is independent, each string can153

be considered a random vector composed of independent random variables, resulting154

that its probability distribution is being completely determined by a given multinomial155

distribution. By a random string in this paper, we refer to a string whose letters are156

chosen randomly in accordance with the given multinomial distribution.157

Let r be a given string. We now aim at determining the probability that a random158

string s, chosen from the same multinomial distribution MN(p1, . . . , pη) as string r, is a159

subsequence of the string r. We denote this probability by P(s ≺ r). In the next theorem,160

we propose a new recurrence relation to calculate this probability.161

Theorem 1. Let r be a given string and s be a random string chosen from the same multinomial
distribution. Then,

P(s ≺ r) =





1, if |s| = 0;
0, if |s| > |r|;
P
(
s[1] = r[1]

)
· P
(
s[2, |s|] ≺ r[2, |r|]

)
+

P
(
s[1] 6= r[1]

)
· P
(
s ≺ r[2, |r|]

)
, otherwise.

(1)

Proof. It is clear by the definition of a subsequence that the empty string is a subsequence
of every string and that a string cannot be a subsequence of a shorter one. Therefore, the
cases |s| = 0 and |s| > |r| are trivial. In the remaining case (1 6 |s| 6 |r|),

P(s ≺ r) = P
(
s[1] = r[1]

)
· P
(
s[2, |s|] ≺ r[2, |r|]

)
+ P

(
s[1] 6= r[1]

)
· P
(
s ≺ r[2, |r|]

)

follows from the law of total probability.162

The probability P(s ≺ r) in recurrence relation (1) is dependent not only on the163

length of string r, but also on the letter distribution of this string. Therefore, it is hard to164

come up with a closed-form expression for the general case of a multinomial distribution165

MN(p1, . . . , pη). One way to deal with this problem is to consider some special cases of166

the multinomial distribution, for which closed-form expressions may be obtained.167

2.1. Multinomial Distribution – Special Case 1: Uniform Distribution168

The most frequently used form of the multinomial distribution considered in the
literature is the uniform distribution. Since in this case every letter has the same occur-
rence probability, probability P(s ≺ r) in the recurrence relation (1) depends only on the
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lengths k = |s| and l = |r| and can be simpler written as P(k, l). This case is covered by
Mousavi and Tabataba in [12], where the recurrence relation (1) is reduced as follows:

P(k, l) =





1, if k = 0;
0, if k > l;
1
η · P(k− 1, l − 1) + η−1

η · P(k, l − 1), otherwise.
(2)

Probabilities P(k, l) can be calculated using dynamic programming as described by169

Mousavi and Tabataba in [12].170

2.2. Multinomial Distribution – Special Case 2: Single Letter Exception171

Let one letter aj ∈ Σ have occurrence probability p ∈ (0, 1), p 6= 1/η and each
other letter ai, i ∈ {1, . . . , η} \ {j} have occurrence probability (1− p)/(η − 1). For this
multinomial distribution, recurrence relation (1) reduces to:

P(s ≺ r) =





1, if |s| = 0;
0, if |s| > |r|;
q · P

(
s[2, |s|] ≺ r[2, |r|]

)
+ (1− q) · P

(
s ≺ r[2, |r|]

)
, otherwise.

(3)

where

q :=

{
p, if r[1] = aj;
1−p
η−1 , otherwise.

Note that, besides lengths |s| and |r|, (3) depends only on whether or not a letter in172

the string r is equal to aj.173

2.3. Multinomial Distribution – Special Case 3: Two Sets of Letters174

We now further generalize the previous case. Let {Σ1, Σ2} be a partitioning of the
alphabet Σ, i.e., let Σ1, Σ2 ⊆ Σ be nonempty sets such that Σ = Σ1 ∪ Σ2 and Σ1 ∩ Σ2 = ∅.
Let us assume that every letter in Σ1 has the same occurrence probability and also, that
every letter in Σ2 has the same occurrence probability. We define

pi :=

{ p
|Σ1| , if ai ∈ Σ1;

1−p
η−|Σ1| , if ai ∈ Σ2,

where p ∈ (0, 1) is the probability mass assigned to the set Σ1. For this multinomial
distribution, recurrence relation (1) reduces to

P(s ≺ r) =





1, if |s| = 0;
0, if |s| > |r|;
q · P

(
s[2, |s|] ≺ r[2, |r|]

)
+ (1− q) · P

(
s ≺ r[2, |r|]

)
, otherwise.

(4)

where

q :=

{ p
|Σ1| , if r[1] ∈ Σ1;

1−p
η−|Σ1| , if r[1] ∈ Σ2.

This probability therefore depends on whether or not a letter in r belongs to the set175

Σ1 or not.176

2.4. The Case of Independent Random Strings177

Another approach of calculating the probability that a string s is a subsequence of a178

string r is based on the assumption that both s and r are random strings chosen from179

the same multinomial distribution and are independent as a random vectors. Using this180

setup, we established a recurrence relation for calculating probability P(s ≺ r).181
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Theorem 2. Let r and s be random independent strings chosen from the same multinomial
distribution MN(p1, . . . , pη). Then

P(s ≺ r) =





1, if |s| = 0;
0, if |s| > |r|;(

∑
η
i=1 p2

i
)
· P
(
s[2, |s|] ≺ r[2, |r|]

)
+(

1−∑
η
i=1 p2

i
)
· P
(
s ≺ r[2, |r|]

)
, otherwise.

(5)

Proof. The first two cases are trivial, so it remains to show the last case. Using the law
of total probability, we obtain

P(s ≺ r) = P
(
s[1] = r[1]

)
· P
(
s[2, |s|] ≺ r[2, |r|]

)
+ P

(
s[1] 6= r[1]

)
· P
(
s ≺ r[2, |r|]

)
.

Probability P
(
s[1] = r[1]

)
can be calculated with another application of the law of total

probability, using the assumption that random strings s and r are mutually independent:

P
(
s[1] = r[1]

)
=

η

∑
i=1

P
(
r[1] = ai

)
· P
(
s[1] = r[1] | r[1] = ai

)

=
η

∑
i=1

P
(
r[1] = ai

)
· P
(
s[1] = ai

)
=

η

∑
i=1

p2
i .

Except for the obvious dependency on the multinomial distribution MN(p1, . . . , pη),182

probability P(s ≺ r) is determined by the lengths of strings s and r, only. Therefore, as183

in the case of the uniform distribution, we can abbreviate this probability with P(k, l),184

where k = |s| and l = |r|. This allows us to pre-compute a probability matrix for all185

relevant values of k and l by means of dynamic programming.186

3. Beam Search for Multinomially Distributed LCS Instances187

Beam search (BS) is a well-known search heuristic widely applied to many problems188

from various research fields, such as scheduling [25], speech recognition [26], machine189

learning tasks [27], packing problems [28], etc. It is a reduced version of breadth-first-190

search (BFS), where instead of expanding all not-yet-expanded nodes from the same191

level, only up to a specific number β > 0 of nodes appearing most promising are selected192

and considered for expansions. In this way, BS keeps the search tree polynomial in size.193

The selection of the up to β nodes for further expansion is made according to a problem-194

specific heuristic guidance function h. The effectivity of the search thus substantially195

depends on this function. More specifically, BS works as follows. First, an initial beam B196

is set up with a root node r representing an initial state, in case of the LCS problem the197

empty partial solution. At each major iteration, all nodes from beam B are expanded in198

all possible ways by considering all feasible actions. The so obtained child nodes are kept199

in the set of extensions Vext. Note that for some problems efficient filtering techniques200

can be applied to discard nodes from Vext that are dominated by other nodes, i.e., nodes201

that cannot yield better solutions. It is controlled by an internal parameter kfilter. This202

(possibly filtered) set of extensions is then sorted according to the nodes’ values obtained203

from the guidance heuristic h, and the top β nodes (or less if Vext is smaller) then form the204

beam B of the next level. The whole process is repeated level-by-level until B becomes205

empty. In general, to solve a combinatorial optimization problem, information about206

the longest (or shortest) path from the root node to a feasible goal node is kept to finally207

return a solution that maximizes or minimizes the problem’s objective function. The208

pseudocode of such a general BS is given in Algorithm 1.209
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Algorithm 1 Beam Search.

1: Input: A problem instance, heuristic h, β > 0, kfilter
2: Output: A heuristic solution
3: B← {r}
4: while B 6= ∅ do
5: Vext ← ∅
6: for v ∈ B do
7: if v is a goal node then
8: if node represents new best solution, store it
9: else

10: add not-yet-visited child nodes of v to Vext
11: end if
12: end for
13: if kfilter ≥ 0 then
14: Vext ← Filter(Vext, kfilter) // optionally filter dominated nodes
15: end if
16: B← SelectBetaBest(Vext, β, h)
17: end while
18: return best found solution

3.1. State Graph for the LCS Problem210

The state graph for the LCS problem that is used by all BS variants is already well211

known in the literature, see for example [16,29]. It is defined as a directed acyclic graph212

G = (V, A), where a node v = (~θv, lv) ∈ V represents the set of partial solutions which213

1. have the same length lv;214

2. induce the same subproblem denoted by S[~θv] w.r.t. the position vector~θv.215

We say that a partial solution s induces a subproblem S[~θv] iff si[1,~θv
i − 1] is the smallest216

prefix of si among all prefixes that has s as a subsequence.217

An arc a = (v1, v2) ∈ A exists between two nodes v1 6= v2 ∈ V and carries label218

`(a) ∈ Σ, iff219

1. lv2 = lv1 + 1;220

2. the partial solution that induces v2 is obtained by appending `(a) to the partial221

solution inducing v1.222

The root node r =
(
(1, . . . , 1), 0

)
of G refers to the original LCS problem on input string223

set S and can be said to be induced by the empty partial solution ε.224

For deriving the successor nodes of a node v ∈ V, we first determine the subset Σv ⊆
Σ of letter that feasibly extend the partial solutions represented by v. The candidates
for letter a ∈ Σv are therefore all letter a ∈ Σ that appear at least once in each string in
the subproblem given by strings S[~θv]. This set Σv may be reduced by determining and
discarding dominated letters. We say that letter a ∈ Σv dominates letter b ∈ Σv iff

~θv
i,a ≤ ~θv

i,b ∀i ∈ {1, . . . , m}. (6)

Dominated letters can be safely omitted since they lead to suboptimal solutions. Let225

Σnd
v ⊆ Σv be the set of feasible and non-dominated letters. For each letter a ∈ Σnd

v , graph226

G contains a successor node v′ = (~θv′ , lv + 1) of v, where ~θv′
i = ~θv′

i,a + 1, i ∈ {1, . . . , m}227

(remember that ~θv′
i,a denotes the position of the first appearance of letter a in string si228

from position~θv′
i onward). A node v that has no successor node, i.e., when Σnd

v = ∅, is229

called a non-extensible node, or goal node. Among all goal nodes v we are looking for230

one representing a longest solution string, i.e., a goal node with largest lv. Note that any231

path from the root node r to any node in v ∈ V represents the feasible partial solution232

obtained by collecting and concatenating the labels of the traversed arcs. Thus, it is not233

necessary to store actual partial solutions s in the nodes. In the graph G, any path from234
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Figure 1. State graph for the LCS problem instance on strings {s1 = bcaacbdba, s2 =

cbccadcbbd, s3 = bbccabcdbba} and alphabet Σ = {a, b, c, d}). Light-gray nodes are non-
extensible goal nodes. The longest path in this state graph is shown in blue, leads from the
root to node ((1, 10, 11), 6) and corresponds to the solution s = bcacbb, having length six.

root r to a non-extensible node represents a common, non-extensible subsequence of235

S. Any longest path from r to a goal node represents an optimal solution to problem236

instance S. As an example for a full state graph of an instance, see Figure 1.237

Still we have to explain the filtering of dominated nodes from the set Vext, i.e.,238

procedure Filter in Algorithm 1. We adopt the efficient restricted filtering proposed239

in [13], which is parameterized by a filter size kfilter > 0. The idea is to select only240

the (up to) kfilter best nodes from Vext and to check the dominance relation (6) for this241

subset of nodes in combination with all other nodes in Vext. If the relation is positively242

evaluated, the dominated node is removed from Vext. Note that parameter settings243

kfilter = 0 and kfilter = |Vext| represent the two extreme cases of no filtering and full244

filtering, respectively. A filter size of 0 < kfilter < |Vext| may be meaningful as full245

filtering may be to costly in terms of running time for larger beam widths.246

3.2. Novel Heuristic Guidance247

We now present a new heuristic for evaluating nodes in the BS in order to rank them248

and to select the beam of the next level. This heuristic, called GMPSUM, in particular249

aims at unbalanced instances and is a convex combination of the following two scores.250

• The GM score is based on the geometric mean and geometric standard deviation of251

the letters’ occurrences across all input strings of the respective subproblem. It is252

calculated on a per letter basis aggregated into a single numeric value;253

• The PSUM score is based on the previously introduced probability matrix P(k, l) for254

the arbitrary unbalanced multinomial distribution case, see recurrence relation (5),255

or in the special cases, any of recurrence relations (3)–(4) might be used instead.256

More specifically, for a given node v, the GM score is calculated as257
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GM(v) = GM(S[~θv]) = ∑
a∈Σ

µg(Ca(S[~θv])

σg(Ca(S[~θv]))
· mini=1,...,m Ca(S[~θv])i

UB1(v)
(7)

where
Ca(S[~θv]) = (s1[~θ

v
1 |s1|]a, . . . , sm[~θ

v
m|sm|]a)

is the vector indicating for each remaining string of the respective subproblem the
number of occurrences of letter a ∈ Σ, while µg(·) and σg(·) denote the geometric
mean and geometric standard deviation, respectively, which are calculated for ~x =
(x1, . . . , xm) ∈ Rm by

µg(~x) = m
√

x1 · . . . · xm,

σg(~x) = e

√√√√√√√

m

∑
i=1

(
ln

xi
µg(~x)

)2

m .

Function UB1(v) in expression (7) is the known upper bound on the length of an LCS
for the subproblem represented by node v from [30] and calculated as

UB1(v) = ∑
a∈Σ

min
i=1,...,m

Ca(S[~θv])i.

Overall, the GM score is thus a weighted average of the adjusted geometric means258

(µg(·)/σg(·)) of the number of letter occurrences, and the weight of each letter is deter-259

mined by normalizing the minimal number of the letter occurrences across all strings260

with the sum of minimal number occurrences across all letters. The motivation behind261

this calculation is three-fold:262

1. Letters with higher average numbers of occurrences across the strings will increase263

the chance of finding a longer common subsequence (composed of these letters).264

2. Higher deviations around the mean naturally reduce this chance.265

3. The minimal numbers of occurrences of a letter across all input strings is an upper266

bound on the length of common subsequences that can be formed by this single267

letter. Therefore, by normalizing it with the sum of all minimal letter occurrences,268

an impact of each letter in the overall summation is quantified.269

The GM score is relevant if its underlying sampling geometric mean and standard270

deviation are based on a sample of sufficient size. In all our experiments, the minimal271

number of input strings is therefore ten. Working on samples of smaller sizes would272

make the GM score likely not that useful.273

In addition to the GM score, we consider the PSUM score that is calculated by

PSUM(v) = PSUM(S[~θv]) =
lmax(v)

∑
k=1

m

∏
i=1

P(k, |si| −~θv
i + 1) (8)

where
lmax(v) = min

i=1,...,m
(|si| −~θv

i + 1).

Unlike the GM score that considers mostly general aspects of an underlying prob-274

ability distribution, PSUM better captures more specific relations among input strings.275

It represents the sum of probabilities that a string of length k will be a common subse-276

quence for all remaining input strings relevant for further extensions. Index k goes from277

one to lmax(v), i.e., the length of the shortest possible non-empty subsequence up to the278

length of the longest possible one, which corresponds to the size of the shortest input279

string residual. The motivation behind using a simple (non-weighted) summation across280

all potential subsequence lengths is three-fold:281
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1. It is not known in advance the exact length of the resulting subsequence. Note that282

in the case of the HP heuristic proposed in [12], the authors heuristically determine283

an appropriate value of k for each level in the BS.284

2. The summation across all k provides insight on the overall potential of node v285

– approximating the integral on the respective continuous function. Note that it286

is not required for this measure to have an interpretation in absolute terms since287

throughout the BS it is used strictly to compare different alternative extensions on288

the same level of the BS tree.289

3. A more sophisticated approach that assigns different weights to the different k290

values would impose the challenge of deciding these specific weights. This would291

bring us back to the difficult task of an expected length prediction – which would292

be particularly hard when considering now the arbitrary multinomial distribution.293

Finally, the total GMPSUM score is calculated by the linear combination

GMPSUM(v, λ) = λ · GM(v) + (1− λ) · PSUM(v), (9)

where λ ∈ [0, 1] is a strategy parameter. Based on an empirical study with different294

benchmark instances and values for parameter λ, we came up with the following rules295

of thumb to select λ.296

1. Since GM and PSUM have complementary focus, i.e., they capture and award (or297

implicitly penalize) different aspects of the extension potential, their combined298

usage is indeed meaningful in most cases, i.e., 0 < λ < 1.299

2. GM tends to be a better indicator when instances are more regular, i.e., when each300

input string better fits the overall string distribution.301

3. PSUM tends to perform better when instances are less regular, i.e., when input302

strings are more dispersed around the overall string distribution.303

Regarding the computational costs of the GMPSUM calculation, the GM score calcu-304

lation requires O(|Σ| ·m) time. This can be concluded from (7) where the most expensive305

part is the iteration through all letters from Σ and finding the minimal number of the306

letter occurrences across all m input strings (µg(·) and σg(·) have the same time complex-307

ity). Note that the number of occurrences of each letter across all possible suffixes of all308

m input strings positions is calculated in advance, before starting the beam search, and309

stored in an appropriate three-dimensional array, see [29]. The worst-case computational310

complexity of this step is O(|Σ| ·m · nmax). This is because the number of occurrences of311

a given letter across all positions inside the given input string can be determined in a312

single linear pass. Since this is done only at the start and the expected number of GM313

calls is much higher than nmax, this up-front calculation can be neglected in the overall314

computational complexity The PSUM score given by (8) takes O(nmin · m) time to be315

calculated due to a definition of lmax(·). Similarly as in GM, the calculation of matrix P is316

performed in pre-processing – its computational complexity corresponds to the number317

of entries, i.e., O(nmax · nmax), see (5).318

Finally, the total computational complexity of GMPSUM can be concluded to be319

O((|Σ|+ nmin) ·m). The total computational complexity of the beam search is therefore320

a product of the number of calls of GMPSUM O(nmin · β · |Σ|) and the time complexity of321

GMPSUM. Note that the number of GMPSUM calls equals the number of nodes created322

within a BS run. Since the LCS length, i.e. the number of BS levels, is unknown, we use323

here nmin as upper bound. In overall, the BS guided by GMPSUM runs in O(nmin · β ·324

|Σ| ·m · (|Σ|+ nmin)) time if no filtering is performed. In case of filtering, at each level of325

the BS, O(β · kfilter ·m) time is required, which gives O(nmin · β · kfilter ·m) total time for326

executing the filtering within the BS. According to this, the BS guided by GMPSUM and327

utilizing (restricted) filtering requires O(nmin · β ·m · (kfilter + |Σ|2 + |Σ| · nmin)) time.328
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3.3. A Time-Restricted BS329

In this section we extend the basic BS from Algorithm 1 to a time-restricted beam330

search (TRBS). This BS variant is motivated by the desire to compare different algorithms331

with the same time-limit. The core idea we apply is to dynamically adapt the beam332

width in dependence of the progress over the levels.333

Similarly to the standard BS from Algorithm 1, TRBS is parameterized with the334

problem instance to solve, the guidance heuristic h, and the filtering parameter kfilter.335

Moreover, what was previously the constant beam width β now becomes only the336

initial value. The goal is to achieve a runtime that comes close to a target time tmax337

now additionally specified as input. At the end of each major iteration, i.e., level, if338

tmax < +∞, i.e., the time limit is actually enabled, the beam width for the next level is339

determined as follows.340

1. Let titer be the time required for the current iteration.341

2. We estimate the remaining number of major iterations (levels) by taking the max-
imum of lower bounds for the subinstances induced by the nodes in Vext. More
specifically,

LBmax(Vext) = max
(v,a)∈Vext×Σ

min
i=1,...,m

Ca(S[~θv])i. (10)

Thus, for each node v ∈ Vext and each letter a we consider the minimal number342

of occurrences of the letter across all string suffixes S[~θv] and select the one that343

is maximal. In other words, this LCS lower bound is based on considering all344

common subsequences in which a single letter is repeated as often as possible. In345

the literature, this procedure is known under the name Long-run [31] and provides346

a |Σ|–approximation.347

3. Let trem be the actual time still remaining in order to finish at time tmax.348

4. Let trem = titer · LBmax(Vext) be the expected remaining time when we would349

continue with the current beam width and the time spent at each level would stay350

the same as it was measured for the current level.351

5. Depending on the discrepancy of the actual and expected remaining time, we
possibly increase or decrease the beam width for the next level:

β←





bβ · 1.2c if trem/trem > 1.1;
min(100, bβ/1.2c) if trem/trem < 0.9;
β otherwise.

(11)

In this adaptive scheme, the thresholds for the discrepancy to increase or decrease352

the beam width, as well as the factor by which the beam width is modified, were353

determined empirically. Note that there might be better estimates of the LCS length than354

LBmax, however, this estimate is inexpensive to obtain, and even if it underestimate or355

overestimate the LCS length in early phases, gradually, it converges toward the actual356

LCS length as the algorithm progresses. This allows TRBS to smoothly adapt its expected357

remaining runtime to the desired one. Note that we only adapt the beam width and not358

set it completely anew based on the runtime measured for the current level in order to359

avoid too erratic changes of the beam width in case of a larger variance of the level’s360

runtimes. Based on preliminary experiments, we conclude that the proposed approach in361

general works well in achieving the desired time limit, while changing β not dramatically362

up and down in the course of a whole run. But of course, how close the time limit is met,363

depends on the actual length of the LCS. For small solutions strings, the approach has364

less opportunities to adjust β and then tends to overestimate the remaining time, thus,365

utilizing less time than desired.366

4. Experimental Results367

In this section we evaluate our algorithms and compare them with the state-of-the-368

art algorithms from the literature. The proposed algorithms are implemented in C# and369
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executed on machines with Intel i9-9900KF CPUs with @ 3.6GHz and 64 Gb of RAM370

under Microsoft Windows 10 Pro OS. Each experiment was performed in single-threaded371

mode. We have conducted two types of experiments:372

• Short runs: these are limited-time scenarios—that is, BS configurations with β =373

600 are used—executed in order to evaluate the quality of the guidance of each of374

the heuristics towards promising regions of the search space.375

• Long runs: these are fixed-duration scenarios (900 seconds) in which we compare376

the time-restricted BS guided by the GMPSUM heuristic with the state-of-the-art377

results from the literature. The purpose of these experiments is the identification of378

new state-of-the-art solutions, if any.379

4.1. Benchmark sets380

All relevant benchmark sets from the literature were considered in our experiments:381

• Benchmark sets RAT, VIRUS and RANDOM, each one consisting of 20 single in-382

stances, are well known from the related literature [32]. The first two sets are383

biologically motivated, originating from the NCBI database. In the case of the third384

set, instances were randomly generated. The input strings in these sets are 600385

characters long. Moreover, they contain instances based on alphabets of size 4 and386

20.387

• Benchmark set ES, introduced in [33], consists of randomly distributed input strings388

whose length varies from 1000 to 5000, while alphabet sizes range from 2 to 100.389

This set consists of 12 groups of instances.390

• Benchmark set BB, introduced in [34], is different to the others, because the input391

strings of each instance are generated in a way that there is a high similarity between392

them. For this purpose, first, a randomly generated base string was generated.393

Second, all input strings were generated based on the base string by probabilistically394

introducing small mutations such as delete/update operations of each letter. This395

set consists of eight groups (each one containing 10 single instances).396

• Benchmark set BACTERIA, introduced in [35], is a real-world benchmark set used397

in the context of the constrained longest common subsequence problem. We make398

use of these instances by simply ignoring all pattern strings (constraints). This set399

consists of 35 single instances.400

• Finally, we introduce two new sets of instances:401

– The input strings of the instances of benchmark set POLY are generated in a way402

such that the number of occurrences of each letter in each input string are deter-403

mined by a multinomial distribution with known probabilities p1, . . . , pη > 0,404

such that ∑i pi = 1; see [36] for how to sample such distributions. More specif-405

ically, we used the multinominal distribution with pi =
1
2i , i = 1, . . . , |Σ| − 1406

and pη = 1−
|Σ|−1

∑
i=1

1
2i for generating the input strings. The number of the407

occurrences of different letters is very much unbalanced in the obtained input408

strings. This set consists 10 instances for each combination of the input string409

length n ∈ {100, 500, 1000} and the number of input strings m ∈ {10, 50},410

which makes a total of 60 problem instances.411

– Benchmark set ABSTRACT, which will be introduced in Section 5, is a real-world412

benchmark set whose input strings are characterized by close-to-polynomial413

distributions of the different letters. The input strings originate from abstracts414

of scientific papers written in English.415

4.2. Considered algorithms416

All considered algorithms make use of the state-of-the-art BS component. In order417

to test the quality of the newly proposed GMPSUM heuristic for the evaluation of the418

partial solutions at each step of BS, we compare to the other heuristic functions that were419
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Table 1: Short-run results summary.

Benchmark set BS-EX BS-POW BS-HP BS-GMPSUM

Name # |s| #b. t |s| #b. t |s| #b. t |s| #b. t
Random 20 108.9 16 2.7 108.1 6 1.4 108.15 6 1.1 108.95 16 6.7

RAT 20 102.8 13 2.6 101.6 4 1.2 100.95 2 0.9 102.9 14 5.5
VIRUS 20 115.85 11 2.6 114.1 6 1.5 115.35 6 1.1 116.3 17 7.4

BB 8 407.13 2 8.5 430.13 6 6.3 422.94 4 3.6 424.86 5 26.9
ES 12 242.18 8 23 241.51 0 15.6 241.14 0 13.8 242.12 4 118.8

Poly 6 232.67 0 5.6 232.27 0 3.3 231.53 0 2.7 233.02 6 6.7
Bacteria 35 809.97 12 14.7 814.86 15 8.2 830.69 22 7.9 832.09 18 29.3

All 121 62 37 40 80

proposed for this purpose in the literature: EX [16], POW [13], and HP [12]. The four420

resulting BS variants are labeled BS-GMPSUM, BS-EX, BS-POW, and BS-HP, respectively.421

These four BS variants were applied with the same parameter settings (β = 600 and422

kfilter = 100) in the short-run scenario in order to ensure that all of them use the same423

amount of resources.424

In the long-run scenario, we tested the proposed time-restricted BS (TRBS) guided425

by the novel GMPSUM heuristic, which is henceforth labeled as TRBS-GMPSUM. Our426

algorithm was compared to the current state-of-the-art approach from the literature:427

A∗+ACS [29]. These two algorithms were compared in the following way:428

• Concerning A∗+ACS, the results for benchmark sets RANDOM, VIRUS, RAT, ES and429

BB were taken from the original paper [29]. They were obtained with a computation430

time limit of 900 seconds per run. For the new benchmark sets—that is, POLY and431

BACTERIA—we applied the original implementation of A∗+ACS with a time limit432

of 900 seconds on the above-mentioned machine.433

• TRBS-GMPSUM was applied with a computation time limit of 600 seconds per run434

to all instances of benchmark sets RANDOM, VIRUS, RAT, ES and BB. Note that we435

reduced the computation time limit used in [29] by 50% because the CPU of our436

computer is faster than the one used in [29]. In contrast, the time limit for the new437

instances was set to 900 seconds. Regarding restricted-filtering, the same setting438

(kfilter = 100) as for the short-run experiments was used.439

Regarding GMPSUM parameter λ, we performed short-run evaluations across a440

discrete set of possible values: λ ∈ {0, 0.25, 0.5, 0.75, 1}. The conclusion was that the441

best performing values are λ = 0 for BB, λ = 0.5 for VIRUS and BACTERIA, λ = 0.75 for442

RANDOM, RAT and POLY, and λ = 1 for ES. The same settings for λ were used in the443

context of the long-run experiments.444

4.3. Summary of the results445

Before studying the results for each benchmark set in detail, we present a summary446

of the results in order to provide the reader with the broad picture of the comparison.447

More specifically, the results of the short-run scenarios are summarized in Table 1, while448

the ones for the long-run scenarios are given in Table 2. Table 1 displays the results449

in a way such that each line corresponds to a single benchmark set. The meaning of450

columns is as follows: the first column contains the name of the benchmark set, while451

the second column provides the number of instances—respectively, instance groups—in452

the set. Then there are four blocks of columns, one for each considered BS variant. The453

first column of each block shows the obtained average solution quality (|s|) over all454

instances of the benchmark set. The second column indicates the number of instances—455

respectively, instance groups—for which the respective BS variant achieves the best456

result (#b.). Finally, the third column provides the average running time (t) in seconds457

over all instances of the considered benchmark set.458

459

The following conclusions can be drawn:460
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Table 2: Long-run results summary.

Benchmark set A*+ACS TRBS-GMPSUM 600s/900s

Name # |s| #b. |s| #b.

Random 20 109.9 20 109.7 16
RAT 20 104.3 17 104.4 18

VIRUS 20 117.0 14 117.3 19
BB 8 412.81 3 430.28 6
ES 12 243.82 9 243.73 4

Poly 6 234.13 4 234.23 5
Bacteria 35 829.26 10 862.63 33

All 121 77 101

• Concerning the fully random benchmark sets RANDOM and ES in which input461

strings were generated uniformly at random and are independent, it was already462

well-known before that the heuristic guidance EX performs strongly. Nevertheless,463

it can be seen that BS-GMPSUM performs nearly as well as BS-EX, and clearly better464

than the remaining two BS variants.465

• In the case of the quasi-random instances of benchmark sets VIRUS and RAT, BS-466

GMPSUM starts to show its strength by delivering the best solution qualities in 31467

out of 40 cases. The second best variant is BS-EX, which is still performing very468

well, and is able to achieve the best solution qualities in 24 out of 40 cases.469

• For the special BB benchmark set, in which input strings were generated in order470

to be similar to each other, GMPSUM turns out to perform comparably to the best471

variant BS-POW.472

• Concerning the real-world benchmark set BACTERIA, BS-GMPSUM is able to deliver473

the best results for 18 out of 35 groups, which is slightly inferior to the BS-HP variant474

with 22 best-performances, and superior to variants BS-EX (12 cases) and BS-POW475

(15 cases). Concerning the average solution quality obtained for this benchmark set,476

BS-GMPSUM is able to deliver the best one among all considered approaches.477

• Concerning the multinominal non-uniformly distributed benchmark set POLY, BS-478

GMPSUM clearly outperforms all other considered BS variants. In fact, BS-GMPSUM479

is able to find the best solutions for all 6 instance groups. Moreover, it beats the480

other approaches in terms of the average solution quality.481

• Overall, BS-GMPSUM finds the best solutions in 80 (out of 121) instances or instance482

groups, respectively. The second best variant is BS-EX, which is able to achieve483

best-performance in 62 cases. In contrast, BS-Hp and BS-POW are clearly inferior484

to the other two approaches. We conclude that BS-GMPSUM performs well in the485

context of different letter distributions in the input strings, and it is worth to try486

this variant first when nothing is known about the distribution in the considered487

instance set.488

• Overall the running times of all four BS variants are comparable. The fastest one is489

BS-HP, while BS-GMPSUM requires somewhat more time compared to the others490

since it makes use of a heuristic function that combines two functions.491

Table 2 provides a summary concerning the long-run scenarios, i.e., it compares492

the current state-of-the-art algorithm A∗+ACS with TRBS-GMPSUM. As the benchmark493

instances are the same as in the short-run scenarios, the first two table columns are494

the same as in Table 2. Then there are two blocks of columns, presenting the results of495

A*+ACS and TRBS-GMPSUM in terms of the average solution quality over all instances496

of the respective benchmark set (|s|), and the number of instances (or instance groups)497

for which the respective algorithm archived the best result (#b.).498

The following can be concluded based on the results obtained for the long-run scenarios:499

• Concerning RANDOM and ES, A∗+ACS is—as expected—slightly better than TRBS-500

GMPSUM in terms of the number of best results achieved. However, when com-501

paring the average performance, there is hardly any difference between the two502
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approaches: 109.9 vs. 109.7 for the RANDOM benchmark set, and 243.82 vs. 243.73503

for the ES benchmark set.504

• In the context of benchmark sets RAT and VIRUS, TRBS-GMPSUM improves over505

the state-of-the-art results by a narrow margin. This holds both for the number of506

best results achieved and for the average algorithm performance.507

• Concerning benchmark set BB, TRBS-GMPSUM significantly outperforms A∗+ACS.508

In six out of eight groups it delivers the best average solution quality, while A∗+ACS509

does so only for three cases.510

• The same holds for the real-world benchmark set BACTERIA, that is, TRBS-GMPSUM511

achieves the best results for 33 out of 35 instances, in contrast to only 10 instances in512

the case of A*+ACS. Moreover, the average solution quality obtained is much better513

for TRBS-GMPSUM, namely 862.63 vs. 829.26.514

• Finally, the performances of both approaches for benchmark set POLY are very515

much comparable.516

• Overall, we can conclude that TRBS-GMPSUM is able to deliver the best results in517

101 out of 121 cases, while A∗+ACS does so only in 77 cases. This is because TRBS-518

GMPSUM provides a consistent solution quality across instances characterized by519

various kinds of letter distributions. It can therefore be stated that TRBS-GMPSUM520

is a new state-of-the-art algorithm for the LCS problem.521

In summary, for the 32 random instances—respectively, instance groups—from the522

literature (sets RANDOM and ES) A∗+ACS performs quite strong due to the presumed523

randomness of the instances. However, the new TRBS-GMPSUM approach is not far524

behind. A weak point of A∗+ACS becomes obvious when instances are not generated525

uniformly at random. In the 40 cases with quasi-random input strings (sets RAT and526

VIRUS) TRBS-GMPSUM performs best in 37 cases, while A∗+ACS does so in 31 case.527

When input strings are similar to each other—see the 8 instance groups of set BB—528

A∗+ACS performs weak compared to TRBS-GMPSUM. This tendency is reinforced in529

the context of the instances of set POLY (6 instance groups) for which TRBS-GMPSUM530

clearly outperforms A∗+ACS in all cases. The same holds for the real-world benchmark531

set BACTERIA. The overall conclusion yields that TRBS-GMPSUM works very well on a532

wide range of different instances. Moreover, concerning the instances from the previous533

literature (80 instances/groups) our TRBS-GMPSUM approach is able to obtain new534

state-of-the-art results in 13 cases. This will be shown in the next section.535

4.4. New state-of-the-art results for instances from the literature536

Due to space restrictions we provide the complete set of results, for each problem537

instance, in a document on supplementary material (https://github.com/milanagrbic/538

LCSonNuD/LCSonNuD_Supplementary_file.pdf). Instead of providing all results we539

decided to focus on those cases in which new state-of-the-art results are achieved. These540

cases are presented in Table 3 (short-run scenario) and Table 4 (long-run scenario).541

Table 3: New best results for the instances from literature in the short-run scenario.

Instance (group) Literature Best |s| BS-EX BS-POW BS-HP BS-GMPSUM

Benchmark set |Σ| m n |s| Alg. |s| t |s| t |s| t |s| t
RAT 4 20 600 172 BS-EX 172 2.3 170 0.9 168 0.5 173 2.5
RAT 4 40 600 152 BS-EX 152 1.8 150 1 145 0.5 154 3.4
RAT 4 200 600 123 BS-EX 123 2.7 123 0.7 122 0.8 124 9.9
RAT 20 20 600 54 BS-EX 54 2.5 54 1.7 54 1.2 55 3.5
RAT 20 40 600 49 BS-EX 49 3 49 1.1 49 1.2 50 4.6
VIRUS 4 25 600 194 BS-EX 194 2.2 192 1.2 194 0.7 195 3.1
VIRUS 4 40 600 170 BS-EX 170 2.2 170 1.2 169 0.9 172 3.8
VIRUS 4 60 600 166 BS-EX 166 2.4 165 0.8 166 0.7 168 5.1
VIRUS 4 100 600 158 BS-EX 158 2.3 155 1.2 158 0.9 160 7.8
VIRUS 4 150 600 156 BS-EX 156 2.4 147 1.2 156 0.7 157 11
VIRUS 4 200 600 155 BS-HP 154 2.6 148 1.4 155 1.2 156 14.8
VIRUS 20 40 600 50 BS-EX 50 2.9 49 1.9 50 0.9 51 5.5
BB 2 100 1000 560.7 BS-POW 536.6 6.1 560.7 5.7 558.9 1.9 560.8 23.7
ES 2 10 1000 615.06 BS-EX 615.06 4.4 614.2 1.4 612.5 0.9 615.1 5.1
ES 10 50 1000 136.32 BS-EX 136.32 3.9 135.52 2.1 135.22 1.4 136.34 9.9
ES 25 10 2500 235.22 BS-POW 231.12 19.1 235.22 10.5 233.34 8 235.58 29
ES 100 10 5000 144.9 BS-POW 144.18 91.9 144.9 75.9 143.62 71.6 145.1 185.4
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Table 4: New best results for the instances from literature in the long-run scenario.

Instance (group) Literature best |s| A*+ACS TRBS-GMPSUM

Benchmark set |Σ| m n |s| Alg. |s| |s|
RAT 4 20 600 174 A*+ACS 174 175
RAT 4 40 600 154 A*+ACS 154 156
RAT 20 25 600 52 A*+ACS 52 53
VIRUS 4 10 600 228 A*+ACS 228 229
VIRUS 4 15 600 206 A*+ACS 206 207
VIRUS 4 60 600 168 A*+ACS 168 169
VIRUS 4 80 600 163 A*+ACS 163 164
VIRUS 4 100 600 160 A*+ACS 160 162
VIRUS 4 150 600 157 A*+ACS 157 158
BB 2 100 1000 563.6 APS 547.1 571.1
BB 4 100 1000 390.2 APS 344.3 391.8
ES 2 10 1000 618.9 A*+ACS 618.9 619.1
ES 10 50 1000 137.5 A*+ACS 137.5 137.6
ES 25 10 2500 236.6 A*+ACS-DIST 235 238

The tables reporting on the new state-of-the-art results are organized as follows.542

The first column contains the name of the corresponding benchmark set, while the543

following three columns identify the respective instance (in the case of RAT and VIRUS),544

respectively the instance group (in the case of BB and ES). Afterwards, there are two545

columns that provide the best result known from the literature. The first of these columns546

provides the result, and the second column indicates the algorithm (together with the547

reference) that was the first one to achieve this result. Next, the tables provide the548

results of BS-EX, BS-POW, BS-HP and BS-GMPSUM in the case of the short-run scenario,549

respectively the results of A*+ACS and TRBS-GMPSUM in the case of the long-run550

scenario. Note that computation times are only given for the short-run scenario, because551

time served as a limit in the long-run scenario.552

Concerning the short-run scenario (Table 3), BS-GMPSUM was able to produce new553

best results in 17 cases. This includes even four cases of benchmark set ES, which was554

generated uniformly at random. Remarkable are the four cases of sets VIRUS and RAT in555

which the currently best-known solution was improved by two letters (see, for example,556

the case of set RAT and the instance |Σ| = 4, m = 40, and n = 600). Concerning the557

more important long-run scenario, the best-known results so far were improved in 14558

cases. Especially remarkable is the case concerning set BB for which an impressive559

improvement of around 24 letters was achieved.560

4.5. Results for benchmark sets POLY and BACTERIA561

The tables reporting on the results for benchmark set POLY are structured in the562

same way as those described before in the context of the other benchmark sets. The563

difference is that instances groups are identified by means of |Σ| (first column), m (sec-564

ond column), and n (third column). Best results per instance group—that is, per table565

row—are displayed in bold font.566

567

The results of the short-run scenario for benchmark set POLY are given in Table568

5. According to the obtained results, a clear winner is BS-GMPSUM which obtains the569

best average solution quality for all six instance groups. This indicates that GMPSUM570

is clearly better as a search guidance than the other three heuristic functions for this571

benchmark set. As previously motivated, this is due to the strongly non-uniform nature572

of the instances, i.e., the intentionally generated imbalance of the number of occurrences573

of different letters in the input strings. Nevertheless, the absolute differences between the574

results of BS-GMPSUM and BS-EX are not so high. The results of the long-run executions575

for benchmark set POLY are provided in Table 6. It can be observed that TRBS-GMPSUM576

and the state-of-the-art technique A*+ACS perform comparably.577

578

Remember that, as in the case of POLY, the instances of benchmark set BACTERIA579

are used for the first time in a study concerning the LCS problem. They were initially580
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Table 5: Short-run results for benchmark set POLY.

Instance group BS-EX BS-POW BS-HP BS-GMPSUM

|Σ| m n |s| t |s| t |s| t |s| t
4 10 100 43.2 0.5 43.2 0.3 43.1 0.3 43.3 0.1
4 10 500 232.5 4.1 232.7 2.6 231.3 2.1 233 2.5
4 10 1000 470.7 8.8 470.1 5.4 467.3 4.2 470.9 10.3
4 50 100 35.7 0.6 35.6 0.4 35.5 0.3 35.8 0.3
4 50 500 201.4 6.1 200.8 3.5 200.4 3 202.3 6.2
4 50 1000 412.5 13.2 411.2 7.4 411.6 6.3 412.8 20.9

Table 6: Long-run results for benchmark set POLY.

Instance group A*+ACS TRBS-GMPSUM

|Σ| m n |s| |s| t
4 10 100 43.4 43.4 580.7
4 10 500 234.3 234.3 890.5
4 10 1000 473.9 473.4 896.2
4 50 100 35.9 35.9 83.6
4 50 500 203 203.5 883.8
4 50 1000 414.3 414.9 892.3

proposed in a study concerning the constrained LCS problem [35]. The results are581

again presented in the same way as described before. This set consists of 35 instances.582

Therefore, each line in Table 7 (short-run scenario) and Table 8 (long-run scenario) deals583

with one single instance which is identified by |Σ| (always equal to 4), m (varying584

between 2 and 383), nmin (the length of the shortest input string) and nmax (the length of585

the longest input string). Best results are indicated in bold font. The results obtained586

for the short-run scenario allow to observe that BS-HP performs very well for this587

benchmark set. In fact, it obtains the best solution in 22 out of 35 cases. However,588

BS-GMPSUM is not far behind with 18 best solutions. Moreover, BS-GMPSUM obtains a589

slightly better average solution quality than BS-HP. Concerning the long-run scenario,590

as already observed before, TRBS-GMPSUM clearly outperforms A*+ACS. In fact, the591

differences are remarkable in some cases such as, for example, instance number 32592

(fourth but last line in Table 8) for which TRBS-GMPSUM obtains a solution of value593

1241, while A*+ACS finds—in the same computation time—a solution of value 1204.594

4.6. Statistical significance of the so-far reported results595

In this section we study the results of the short-run and long-run executions from a596

statistical point of view. In order to do so, Friedman’s tests was performed simultane-597

ously considering all four algorithms in the case of the short-run scenario, respectively598

the two considered algorithms in the case of the long-run scenario.1599

Given that in all cases the test rejected the hypothesis that the algorithms perform600

equally, pairwise comparisons were performed using the Nemenyi post-hoc test [38].601

The corresponding critical difference (CD) plots considering all benchmark sets together602

are shown in Figure 2, respectively Figure 3a. Each algorithm is positioned in the603

segment according to its average ranking w.r.t. average solution quality over all (121)604

considered instance groups. The critical difference was computed with a significance605

level of 0.05. The performances of those algorithms whose difference is below the CD606

are regarded as performing statistically in an equivalent way—that is, no difference of607

statistical significance can be detected. This is indicated in the figures by bold horizontal608

bars joining the respective algorithm markers.609

Concerning short-run executions, BS-GMPSUM is clearly the overall best-performaing610

algorithm, with statistical significance. BS-EX is in second position. Moreover, the differ-611

ence between BS-HP and BS-POW is not statistically significant. Concerning the long-run612

1 All these tests and the resulting plots were generated using R’s scmamp package [37].
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Table 7: Short-run results for benchmark set BACTERIA.

Instance BS-EX BS-POW BS-HP BS-GMPSUM

|Σ| m nmin nmax |s| t |s| t |s| t |s| t
4 383 610 1553 256 31.1 252 13.9 279 16.8 271 94.1
4 3 1458 1458 1365 2.1 1365 1 1365 1.8 1365 7.7
4 33 1349 1577 610 17.6 605 10.6 755 10.8 689 36.5
4 106 1252 1520 503 25.1 483 12 515 12.2 514 61.8
4 2 1502 1502 1499 0 1499 0 1499 0 1499 0.1
4 12 1274 1413 659 13.3 636 8.5 627 6.9 659 18.9
4 15 1302 1515 598 13.3 602 8.5 655 7.7 678 20.7
4 13 1479 1557 811 15.8 752 10.1 1061 10 883 21.7
4 13 1308 1507 1037 17.6 1039 11.1 862 8.6 882 25.9
4 44 873 1543 493 16.3 473 9.3 470 7.8 494 29.6
4 4 1408 1530 1204 9 1271 6.3 1271 5.8 1271 15.9
4 173 1234 1847 502 34.7 463 15 541 18.3 525 97.5
4 13 1446 1551 681 14.5 713 9.5 794 8.6 785 22.2
4 88 1360 1545 583 27.3 570 13.8 667 15.1 601 67
4 2 1540 1548 1522 0.2 1522 0.1 1522 0.1 1522 0.3
4 3 1395 1424 1141 11.2 1141 6.8 1141 6.1 1141 15
4 4 1410 1488 886 9.8 1123 8 1123 6.7 1123 17.4
4 51 1266 1522 681 25.2 552 12.3 667 12 641 48.7
4 2 1461 1539 1354 0.9 1354 0.5 1354 1.7 1354 8.6
4 13 1246 1411 687 13 662 7.4 609 6.7 699 19.6
4 4 1434 1478 876 9.6 1112 8 1112 6.9 1112 16.3
4 18 1023 1438 464 11.9 468 7.6 458 5.8 475 14.2
4 2 1454 1460 1431 0.2 1431 0.1 1431 0.1 1431 0.3
4 8 1401 1533 1024 15.9 1061 9.8 858 7.5 864 18.8
4 33 990 1483 410 12.1 492 8.8 467 6.9 456 16.4
4 29 1422 1549 587 16.3 581 9.8 634 8.9 590 26.3
4 20 571 1394 438 9.6 405 5.4 401 4.5 431 11.7
4 96 1270 1565 516 24 467 11 531 12.3 522 55.5
4 10 1322 1455 1026 16 1026 9.7 796 7.1 1026 19.5
4 26 1334 1596 617 16.7 584 9.4 640 8.6 631 26.2
4 195 1345 1547 503 38.2 448 15.3 537 19.2 524 100.9
4 8 1454 1532 1221 16.4 1241 10 1241 8.6 1241 25.5
4 8 1359 1612 555 18.9 555 11.2 600 10.3 627 38.4
4 89 455 1587 251 11.3 214 4.7 233 4.8 239 18.2
4 2 1465 1469 1358 0.7 1358 0.4 1358 0.5 1358 6.8

2 31

Figure 2. Critical difference (CD) plot over all considered benchmark sets (short-run executions).

1 2

(a) All instances

1 2

(b) Benchmark set BACTERIA.
Figure 3. Criticial difference (CD) plots concerning the long run scenario.

scenario, the best average rank is obtained by TRBS-GMPSUM. In the case of bench-613

mark set BACTERIA, the difference between TRBS-GMPSUM and A∗+ACS is significant,614

see Figure 3b. For the other benchmark sets the two approaches perform statistically615

equivalent.616
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Table 8: Long-run results for benchmark set BACTERIA.

Instance A*+ACS TRBS-GMPSUM

|Σ| m nmin nmax |s| |s| t
4 383 610 1553 265 273 887.2
4 3 1458 1458 1365 1365 810.9
4 33 1349 1577 670 723 899
4 106 1252 1520 518 532 897.1
4 2 1502 1502 1499 1499 0.1
4 12 1274 1413 665 694 899.7
4 15 1302 1515 680 708 899.6
4 13 1479 1557 842 883 899.5
4 13 1308 1507 870 1043 899.7
4 44 873 1543 514 501 897.3
4 4 1408 1530 1204 1271 898.4
4 173 1234 1847 520 528 895.6
4 13 1446 1551 732 816 899.6
4 88 1360 1545 557 634 897.9
4 2 1540 1548 1522 1522 0.3
4 3 1395 1424 1141 1141 899.7
4 4 1410 1488 1059 1123 899.4
4 51 1266 1522 659 871 898.9
4 2 1461 1539 1354 1354 851.9
4 13 1246 1411 716 727 899.6
4 4 1434 1478 1030 1112 899.2
4 18 1023 1438 481 488 898.4
4 2 1454 1460 1431 1431 0.3
4 8 1401 1533 1040 1063 899.2
4 33 990 1483 449 510 899.1
4 29 1422 1549 643 661 899
4 20 571 1394 439 432 899.7
4 96 1270 1565 529 546 897.2
4 10 1322 1455 1026 1026 899.7
4 26 1334 1596 654 676 899.3
4 195 1345 1547 514 544 894.2
4 8 1454 1532 1204 1241 898.3
4 8 1359 1612 624 644 897.9
4 89 455 1587 250 252 898.2
4 2 1465 1469 1358 1358 829.6

5. Textual Corpus Case Study617

In the previous section we showed that the proposed method is highly competitive618

with state-of-the art methods and generally outperforms them on instances sampled619

from non-uniform distributions. In order to further investigate the behavior of the620

proposed method on real-world instances with non-uniform distribution, we performed621

a case study on a corpus of textual instances originating from abstracts of scientific622

papers written in English. This set will henceforth be called ABSTRACT. It is known that623

letters in English language are polynomially distributed [22]. The most frequent letter624

is e, with a relative frequency of 12.702%. The next most common letter is t (9.056%),625

followed by a (8.167%), and o (7.507%), etc.626

In order to make a meaningful choice of texts we followed [39], where the authors627

measured the similarity between scientific papers, mainly from the field of artificial intel-628

ligence, by making use of various algorithms and metrics. By using tf-idf statistics with629

cosine similarity, their algorithm identified similar papers from a large paper collection.630

After that, the similarity between the papers proposed by their algorithm was manually631

checked and tagged by an expert as either similar (positive) or dissimilar (negative). The632

results of this research can be found at https://cwi.ugent.be/respapersim.633

Keeping in mind that the LCS problem is also a measure of text similarity, we634

decided to check whether the abstracts of similar papers have longer common subse-635

quences than abstracts of dissimilar papers. Therefore, the purpose of this case study is636

twofold: (1) to execute the LCS state-of-the art methods along with the method proposed637

in this paper and to compare their performances on this specific instance set, and (2) to638
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check whether the abstracts of similar papers have a higher LCS than those of dissimilar639

papers.640

Based on these considerations, we formed two groups of twelve papers each, named641

POS and NEG. Group POS contains twelve papers which have been identified as similar,642

while group NEG contains papers which are not similar to each other. We extracted643

abstracts from each paper and pre-processed them in order to remove all letters except644

for those letters from the English alphabet. In addition, each uppercase letter was645

replaced with its lowercase pair.646

For each if the two groups we created a set of test instances as follows. For each647

k ∈ {10, 11, 12} we generated
(

12
k

)
different instances containing k input strings (con-648

sidering all possible combinations). This resulted in the following set of instances for649

both POS and NEG:650

• One instance containing all 12 abstracts as input strings.651

• 12 instances containing 11 out of 12 abstracts as input strings.652

• 66 instances containing 10 out of 12 abstracts as input strings.653

Repeating our experimental setup presented in the previous section, we performed both654

short and long runs for the described instances. The obtained results for the short–run655

scenarios are shown in Table 9. The table is organized into five blocks of columns. The656

first block provides the general information on the instances: NEG vs. POS, number of657

input strings (column with heading m), and the total number of instances (column #).658

The remaining four blocks contain the results of BS-EX, BS-POW, BS-HP and BS-GMPSUM,659

respectively. For each considered group of instances and each method, the following660

information about the obtained results is shown:661

• |s|: solution quality of the obtained LCS for the considered group of instances.662

• #b.: number of cases in which the method reached the best result for the considered663

group of instances.664

• t: average execution time in seconds for the considered group of instances.665

Table 9: Short-run results for the textual corpus instances (ABSTRACT).

Instance set BS-EX BS-POW BS-HP BS-GMPSUM

Name m # |s| #b. t |s| #b. t |s| #b. t |s| #b. t
NEG 12 1 128 0 14.6 123 0 10.8 126 0 11.8 130 1 11.4
NEG 11 12 132.08 7 15 127 0 11.2 129.42 0 12.2 132.58 8 11.7
NEG 10 66 136.47 29 14.9 132.5 0 11.3 134.82 4 11.7 137.27 50 11.6
POS 12 1 134 1 15.2 128 0 11.9 131 0 11.8 133 0 7.4
POS 11 12 137.67 5 15 131.58 0 11.2 135.92 1 11.5 138.42 11 7.2
POS 10 66 143.33 42 14.5 135.85 0 10.7 141.53 10 11.5 143.14 39 7.2

All Negative 79 36 0 4 59
All Positive 79 48 0 11 50

All 158 84 0 15 109

The results from Table 9 clearly indicate that the best results for instances based on666

group NEG are obtained by BS-GMPSUM. More precisely, BS-GMPSUM works best for the667

instance with 12 input strings, for eight out of 12 instances with 11 input strings and for668

50 out of 66 instances with 10 input strings. In contrast, the second-best approach (BS-EX)669

reached the best result for 29 out of 66 instances with 10 input strings and seven out of 12670

instances with 11 input strings. The remaining two methods were less successful for this671

group of instances. For the instances derived from group POS, BS-GMPSUM also achieved672

very good results. More specifically, BS-GMPSUM obtained the best results in almost all673

instances with 11 input strings. For instances with ten input strings, BS-EX obtained the674

best results in 42 out of 66 cases, with BS-GMPSUM performing comparably (best result675

in 39 out of 66 cases). For the instance with twelve strings, the best solution was found676

by the BS-EX. Similarly to the instances from the NEG group, BS-HP and BS-POW are677

clearly less successful.678
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A summary of these results is provided in the last three rows of Table 9. Note679

that, in total, this table deals with 158 problem instances: 79 regarding group NEG, and680

another 79 regarding group POS. The summarized results show that the new GMPSUM681

guidance is, overall, more successful than its competitors. More precisely, BS-GMPSUM682

achieved the best results in 59 out of 79 cases concerning NEG, and in 50 out of 79 cases683

concerning POS. Moreover, it can be observed that the average LCS length regarding the684

POS instances is greater than the one regarding the NEG instances, across all m values.685

Table 10: Long-run results for the textual corpus instances (ABSTRACT).

Instance set A*+ACS TRBS-GMPSUM

Name m # |s| #best |s| #best t
NEG 12 1 129 0 130 1 895.7
NEG 11 12 133.25 2 134.33 11 897.2
NEG 10 66 138.32 31 139.12 60 897.8
POS 12 1 136 1 136 1 896.5
POS 11 12 140.17 6 140.42 9 896.8
POS 10 66 145.33 41 145.52 45 897.4

All Negative 79 33 72
All Positive 79 48 55

All 158 81 127

Table 10 contains information for the long-run executions. The results obtained686

by A∗+ACS and TRBS-GMPSUM are shown. The table is organized in a similar way as687

Table 9, with the exception that it does not contain information about execution times,688

since computation time served as the stopping criterion. As it can be seen from the689

overall results at the bottom of Table, TRBS-GMPSUM obtains more best results than690

A∗+ACS for both groups of instances (NEG and POS). More precisely, it obtained the best691

result for the instances with 12 input strings, both in the case of POS and NEG, while692

A*+ACS achieved the best result only in the case of the POS instance with 12 input strings.693

Concerning the results for the instances with 11 input strings, it can be noticed that—in694

the case of the NEG instances—TRBS-GMPSUM delivers 11 out of 12 best results, while695

A∗+ACS method does so only in two out of twelve cases. Regarding the POS instances696

with 11 input strings, the difference becomes smaller. More specifically, TRBS-GMPSUM697

achieves nine out of 12 best results, while A∗+ACS achieved six out of 12 best results. A698

corresponding comparison can be done for the instances with 10 input strings. For the699

instances concerning group NEG, TRBS-GMPSUM delivers the best results for 60 out of 66700

instances, while A∗+ACS can find the best results only in 31 cases. Finally, in the case of701

the POS instances, the best results were achieved in 45 out of 66 cases by TRBS-GMPSUM,702

and in 41 out of 66 cases by A∗+ACS. The long run results also indicate that abstracts of703

similar papers are characterized by generally longer LCS measures.704

6. Conclusions and Future Work705

In this paper we considered the prominent longest common subsequence problem706

with an arbitrary set of input strings. We proposed a novel search guidance, named707

GMPSUM, for tree search algorithms. This new guidance function was defined as a convex708

combination of two complementary heuristics: (1) the first one is suited for instances in709

which the distribution of letters is close to uniform-at-random, and (2) the second one is710

convenient for all cases in which letters are non-uniformly distributed. The combined711

score produced by these two heuristics provides a guidance function which navigates the712

search towards promising regions of the search space, on a wide range of instances with713

different distributions. We ran short-run experiments in which beam search makes use of714

a comparable number of iterations under different guidance heuristics. The conclusion715

was that the novel guidance heuristic performs statistically equivalent to the best-so-far716

heuristic from the literature on close-to-random instances. Moreover, it was shown that717

it significantly outperforms the known search guidance functions on instances with a718

non-uniform letter frequency per input string. This capability of the proposed heuristic719

to deal with a non-uniform scenario was validated on two newly introduced benchmark720
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sets: (1) POLY, whose input strings are generated from a multinomial distribution, and721

(2) ABTRACT, which are real-world instances whose input strings follow a multinomial722

distribution and originate from abstracts of scientific papers written in English. In a723

second part of the experimentation we performed long-run executions. For this purpose724

we combined the GMPSUM guidance function with a time-restricted BS that dynamically725

adapts its beam width during execution such that the overall running time is very close726

to the desired time limit. This algorithm was able to outperform the best approach from727

the literature (A∗+ACS) significantly. More specifically, the best-known results from the728

literature were at least matched for 63 out of 80 considered instance groups. Moreover,729

regarding the two new benchmark sets (POLY and BACTERIA), the time-restricted BS730

guided by GMPSUM was able to deliver equally good, and in most cases better, solutions731

than A∗+ACS in 38 out of 41 instance groups.732

In future work we plan to adapt GMPSUM to other LCS-related problems such as733

the constrained longest common subsequence problem [40], the repetition-free longest734

common sunsequene problem [41], the LCS problem with a substring exclusion con-735

straint [42], and the longest common palindromic subsequence problem [43]. Also, it736

would be interesting to incorporate this new guidance function into the leading hybrid737

approach A∗+ACS to possibly further boost the obtained solution quality.738
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