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Abstract: This article presents a cooperative optimization approach (COA) for distributing service1

points for mobility applications, which generalizes and refines a previously proposed method.2

COA is an iterative framework for optimizing service point locations, combining an optimization3

component with user interaction on a large scale and a machine learning component that learns4

user needs and provides the objective function for the optimization. The previously proposed5

COA was designed for mobility applications in which single service points are sufficient for6

satisfying individual user demand. This framework is generalized here for applications in which7

the satisfaction of demand relies on the existence of two or more suitably located service stations,8

such as in the case of bike/car sharing systems. A new matrix factorization model is used as9

surrogate objective function for the optimization, allowing to learn and exploit similar preferences10

among users w.r.t. service point locations. Based on this surrogate objective function, a mixed11

integer linear program is solved to generate an optimized solution to the problem w.r.t. the12

currently known user information. User interaction, refinement of the matrix factorization, and13

optimization are iterated. An experimental evaluation analyzes the performance of COA with14

special consideration of the number of user interactions required to find near optimal solutions.15

The algorithm is tested on artificial instances as well as instances derived from real-world taxi data16

from Manhattan. Results show that the approach can effectively solve instances with hundreds17

of potential service point locations and thousands of users while keeping the user interactions18

reasonably low. A bound on the number of user interactions required to obtain full knowledge of19

user preferences is derived, and results show that with 50% of performed user interactions the20

solutions generated by COA feature optimality gaps of only 1.45% on average.21

Keywords: Heuristic optimization; Location planning; Cooperative optimization; Preference22

learning23

1. Introduction24

A fundamental ingredient for optimizing the locations of service points in mobility25

applications, such as charging stations for electric vehicles or pickup and drop-off26

stations for car/bike sharing systems, is the distribution of existing customer demand27

to be potentially fulfilled in the considered geographical area. While there exists a28

vast amount of literature regarding setting up service points for mobility applications,29

such as vehicle sharing systems ([1–4]) or charging stations for electric vehicles [5–30

8], estimations of the existing demand distribution are usually obtained upfront by31

performing customer surveys, considering demographic data, information on the street32

network and public transport, and not that seldom including human intuition and33

political motives. However, such estimations are frequently imprecise and a system built34

on such assumptions might not perform as effectively as it was originally hoped for. For35

example in [9] GPS-based travel survey data of fossil fueled cars is used for setting up36

charging stations for electric vehicles. However, as pointed out by Pagany et al. [10], it37

cannot be assumed that the driving behavior of customers remains unchanged when38
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switching from fossil fueled cars to electric vehicles. Furthermore, Pagany et al. [10]39

present a survey of 119 publications for locating charging stations for electric vehicles in40

which they also discuss further problems with the above mentioned demand estimation41

methods.42

A more frequent usage of a service system by a customer will in general depend43

not only on the construction of a single service point on a particular location but more44

globally on non-trivial relationships of the customer’s necessities and preferences in45

conjunction with larger parts of the whole service system. For example in the case of46

bike/car sharing systems, a well placed rental station close to the origin of a trip might be47

worthless if there does not also exist a suitable location near the destination for returning48

the vehicle. Furthermore, some customers might use multiple modes of transport for49

a single trip [11]. Consequently, some more distant service station for returning the50

vehicle might be acceptable if this place is well connected by public transport used for an51

additional last leg [12]. Thus, there also might be alternatives for fulfilling demand that52

cannot all be exactly specified by potential users. The example with an additional leg by53

public transport also illustrates that geographical closeness is not always the deciding54

factor.55

To address these issues Jatschka et al. [13] proposed the concept of a Cooperative56

Optimization Algorithm (COA) which, instead of estimating customer demand upfront,57

directly incorporates potential users in the location optimization process by iteratively58

confronting them with location scenarios and asking for evaluation. Based on the59

user feedback a machine learning model is trained which is then used as surrogate60

objective function to evaluate solutions in an optimization component. User interaction,61

a corresponding refinement of the surrogate objective function, and the optimization62

are iterated. Expected benefits of such a cooperative approach are a faster and easier63

data acquisition [14], the direct integration of users into the whole location planning64

process, a possibly stronger emotional link of the users to the product, and ultimately65

better understood [15] and more accepted optimization results [14]. Potential customers66

further know local conditions and their particular properties, including also special67

aspects that are not all easily foreseen in a classical demand acquisition approach. To68

the best of our knowledge such an approach has not yet been considered in the area of69

locating service points for mobility applications.70

As the initial proof-of-concept approach in [13] did not scale well to larger appli-71

cation scenarios, we described a more advanced cooperative optimization approach72

relying on matrix factorization in a preliminary conference paper [16]. The current article73

deepens and extends this work in particular in the following aspects.74

We now apply a more advanced matrix factorization originally introduced in [17],75

which allows to exploit that only a small fraction of locations is actually relevant for each76

user and that user data is not missing at random.77

Moreover, the COA in [16] considered only mobility applications in which single78

service points are sufficient for satisfying a particular demand of a user, such as the79

placement of charging stations for electric vehicles. The main contribution of this paper80

is to extend the solution approach towards applications in which the satisfaction of81

demand typically relies on the existence of suitable pairs or more generally tuples of82

service stations, such as in the case of bike or car sharing systems where a vehicle is first83

picked up at a rental station near the origin and returned at a station within easy reach84

of the destination.85

This extended framework is tested on different artificial benchmark scenarios using86

an idealized simulation of user interactions. The benchmark scenarios were hereby87

created in a controlled way so that optimal reference solutions could be obtained for88

comparison. One group of benchmark scenarios was derived from real world taxi trip89

data from Manhattan. To characterize the amount of user interaction COA requires, an90

upper bound on the number of necessary non-redundant user interactions for obtaining91

full knowledge of user preferences is derived as baseline. Results on our instances show92
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that solutions generated by COA feature optimality gaps of only 1.45% on average with93

50% of performed user interactions.94

The next Section discusses related work. In Section 3 we introduce our formal95

problem setting, the Generalized Service Point Distribution Problem (GSPDP), which reflects96

the essence of various location problems for mobility services. Afterwards, in Section97

4, we detail the cooperative optimization framework for solving the GSPDP. Section98

5 describes how benchmark scenarios for testing were generated, and in Section 6 we99

present and discuss experimental results. Section 7 concludes this work with an outlook100

on promising future work.101

2. Related Work102

The considered problem in general falls into the broad category of facility location103

problems, i.e., optimization problems where facilities should be set up on a subset of104

given potential locations as economically as possible in order to fulfill a certain level of105

customer demand. Similarly to a p-median or maximal covering location model, see106

[18], we limit the facilities to be opened. However, instead of imposing a direct limit on107

the number of facilities, in our formulation a maximum budget for setting up facilities108

is specified and each facility is associated with setup costs. In general our problem can109

be classified as an uncapacitated fixed charge Facility Location Problem (FLP), see [19],110

however, without explicitly given demands (see below). Moreover, our problem also111

has similarities to stochastic or robust FLPs [20] in which problem inputs, such as the112

demand, may be uncertain. For such problems uncertain inputs are usually modeled via113

random variables [21] or scenario-based approaches [22]. For a survey on FLPs see [23].114

In our problem formulation we have mobility applications in mind, such as the115

distribution of charging stations for electric vehicles or setting up rental stations for116

car/bike sharing. While there already exists a vast amount of literature for setting up117

such systems to the best of our knowledge all existing work essentially assumes customer118

demand to be estimated upfront. For example, [24] and [8] use parking information to119

identify promising locations for electric vehicle charging stations. [25] locate charging120

stations for an on-demand bus system using taxi probe data of Tokyo. Moreover, census121

data are commonly used for estimating demand for car sharing systems [26], bike sharing122

systems [27], or for setting up electric vehicle charging stations [28]. Data mining and123

other related techniques are also often employed to detect traffic patterns for bike sharing124

systems [29,30] as well as car sharing systems [31].125

Ciari et al. [32] recognize the difficulties in making demand predictions for new126

transport options based on estimated data and therefore propose to use an activity-based127

microsimulation technique for the modeling of car sharing demand. The simulation is128

done with help of the travel demand simulator MATSim [33].129

There also exist some works that take user preferences into account, e.g., in [34] a130

car sharing system is designed based on different assumptions on the behavior of users.131

The authors come to the conclusion that providing real-time information to customers132

can greatly improve the service level of a system if users are willing to visit a different133

station if their preferred one does not have a vehicle available.134

In our approach we substantially deviate from this traditional way of acquiring135

existing demand upfront and instead resort to an interactive approach. Potential future136

customers are directly incorporated in the optimization process as an integral part by137

iteratively providing feedback on meaningfully constructed location scenarios. In this138

way we learn user demands on-the-fly and may avoid errors due to unreliable a priori139

estimations. For a survey on interactive optimization algorithms in general see [14].140

The performance of interactive algorithms is strongly influenced by the quality of the141

feedback given by the interactors. Too many interactions with a user will eventually142

result in user exhaustion [35], negatively influencing the reliability of the obtained143

feedback. Additionally, interacting with users can be quite time consuming, even when144

dealing with a single user. Hence, in order to keep the interactions with users low one145
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can resort to surrogate-based optimization approaches [36,37]. Surrogate models are146

typically machine learning models serving as proxy of functions that are difficult to147

evaluate [38]. In [16] as well as in this contribution we make use of a matrix factorization148

[39] based surrogate model. Matrix factorization is a collaborative filtering technique149

which is frequently used in recommender systems, see e.g., [40].150

As already pointed out, the basic concept of COA was already presented in [13],151

where we made use of an adaptive surrogate model [41]. The underlying structure152

of this surrogate model is formed by a large set of individual smaller models, i.e.,153

one machine learning model for each combination of user and potential service point154

location, which are trained with the feedback of the respective users. While initially155

being instantiated by simple linear models, these machine learning models are step-wise156

upgraded as needed to more complex regressors during the course of the algorithm in157

order to cope with possibly encountered higher complexity. Specifically in [13], each158

linear model can be upgraded to a neural network. The number of neurons in the hidden159

layer is increased whenever the training error exceeds a certain threshold. Overfitting160

is effectively avoided by making the individual models not unnecessarily large. A161

Variable Neighborhood Search (VNS) [42] was used as optimization core to generate162

new solutions w.r.t. the current surrogate function. In [43] the performance of the VNS163

optimization core was compared to an optimization core using a population-based164

iterated greedy approach [44]. Unfortunately, this first realization of COA exhibits severe165

limitations in the scalability to larger numbers of potential service point locations and/or166

users, in particular as all users are considered independently of each other.167

The current work builds upon the observation that in a larger user base there are168

typically users sharing the same or similar needs or preferences. Identifying these shared169

demands and exploiting them to improve scalability as well as to reduce the required170

feedback per user is a main goal here. While the basic principles of COA remain the171

same, major changes are performed in the way the approach interacts with users, how172

the feedback of users is processed, as well as how new candidate solutions are generated.173

Moreover, the adaptive surrogate model from [13] realized by the large set of underlying174

simpler machine learning models is replaced by a single matrix factorization based175

model that is able to exploit said similarities between users. Besides our aforementioned176

preliminary conference paper already sketching the application of a matrix factorization177

within COA [16], to the best of our knowledge there exists no further work on interactive178

optimization approaches for location planning in mobility applications.179

3. The Generalized Service Point Distribution Problem180

The Generalized Service Point Distribution Problem (GSPDP) considered here is an181

extension of the Service Point Distribution Problem (SPDP) introduced in [16]. Given182

are a set of locations V = {1, . . . , n} at which service points may be set up and a set183

of potential users U = {1, . . . , m}. The fixed costs for establishing a service point at184

location v ∈ V are zfix
v ≥ 0, and this service point’s maintenance over a defined time185

period is supposed to induce variable costs zvar
v ≥ 0. The total setup costs of all stations186

must not exceed a maximum budget B > 0. Furthermore, it is assumed that opened187

service stations are able to satisfy an arbitrary amount of customer demand. For each188

unit of satisfied customer demand a prize q > 0 is earned.189

A solution to the GSPDP is a subset X ⊆ V of all locations where service points are
to be set up. A solution X is feasible if its total fixed costs do not exceed the maximum
budget B, i.e.,

zfix(X) = ∑
v∈X

zfix
v ≤ B. (1)

Given the set of users U, we assume that each user u ∈ U has a certain set of use190

cases Cu, such as going to work, to a recreational facility, or shopping. Each use case191

c ∈ Cu is associated with a demand Du,c > 0 expressing how often the use case is192

expected to be frequented by user u within some defined time period such as a week193
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or a month. For each unit of satisfied customer demand a prize q > 0 is earned. The194

demand of each use case can possibly be satisfied by different service points or subsets195

of service points to different degrees, depending on the concrete application and the196

customer’s preferences. Note that use cases are here just labels and are not directly197

associated with specific geographic locations. This separation is intentionally done in198

order to keep flexibility: some use cases like shopping or the visit of a fitness center may199

possibly be realized at different places, and as already mentioned occasionally a service200

station farther away from a specific target location may also be convenient if some other201

mode of transportation is used as additional leg.202

Depending on the actual application and characteristics of a use case, demand may203

be fulfilled by a single service station, e.g., when charging batteries of an electric vehicle,204

or a suitable combination of multiple service stations may be needed, such as when205

renting a vehicle at one place and returning it somewhere else. While [16] just considered206

the first case, we pursue here the general case of possibly requiring multiple service207

points to fulfill demand for a single use case.208

To model this aspect formally, we associate each use case c of a user u with a set209

of Service Point Requirements (SPR) Ru,c. Similar to use cases these SPRs are not directly210

associated with geographic locations but are an abstract entity like “place within easy211

reach of home to rent a vehicle” or “place close to a supermarket to return a vehicle” with212

which a user can express the dependency on multiple service points to fulfill the needs213

of one use case. Thus, the demand of such a use case can only be satisfied if a service214

point exists at a suitable location for each of the use case’s SPRs. Note that multiple use215

cases of a user may also share the same SPR(s). For example a use case referring to a trip216

from home to work and one from home to a supermarket may share the SPRs “place217

within easy reach of home to rent a vehicle”. The set of all different SPRs over all use218

cases of a user u is denoted by Ru =
⋃

c∈Cu Ru,c. Moreover, let R =
⋃

u∈U Ru be the set of219

all SPRs over all users. Note that in this notation, different users never share the same220

SPR labels, although labels may refer to similar SPRs.221

For indicating how suitable a location is w.r.t. to an SPR we define values wr,v ∈ [0, 1]222

indicating the suitability of a service point at location v ∈ V to satisfy the needs of user223

u ∈ U concerning SPR r ∈ Ru,c in the use case c ∈ Cu. A value of wr,v = 1 represents224

perfect suitability while a value of zero means that location v is unsuitable; values in225

between indicate partial suitability.226

With these suitability values in mind, the objective of the GSPDP is to maximize

f (X) = q · ∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

wr,v

)
− ∑

v∈X
zvar

v . (2)

In the first term of this objective function, the obtained prize for the expected total227

satisfied demand is determined by considering for each user u, each use case c, and each228

SPR r a most suitable location v ∈ V at which a service point is to be opened (v ∈ X).229

Over all SPRs of a use case, the minimum of the obtained suitability values is taken230

so that the full demand is only fulfilled when for each SPR an ideally suited service231

station is planned, and no demand is fulfilled as soon as one of the SPRs does not have232

an appropriate service point. The second term of the objective function represents the233

total maintenance costs for the service stations.234

By linearizing the above objective function, the GSPDP can be formulated as a mixed
integer linear program (MILP) with the following variables. Binary variables xv indicate
whether or not a service point is deployed at location v ∈ V, i.e., the binary vector
x = (xv)v∈V is the incidence vector of a corresponding solution X ⊂ V. Additional
variables hr,v are used to indicate the actually used location v ∈ V for each SPR r ∈ R.
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The degree to which a use case c ∈ Cu of a user u ∈ U can be satisfied is expressed by
continuous variables yu,c ∈ [0, 1]. The GSPDP is then stated as follows.

max q · ∑
u∈U

∑
c∈Cu

Du,c yu,c − ∑
v∈V

zvar
v xv (3)

∑
v∈V

zfix
v xv ≤ B (4)

∑
v∈V

hr,v ≤ 1 ∀r ∈ R (5)

∑
v∈V

wr,v · hr,v ≥ yu,c ∀u ∈ U, c ∈ Cu, r ∈ Ru,c (6)

hr,v ≤ xv ∀v ∈ V, r ∈ R (7)

xv ∈ {0, 1} ∀v ∈ V (8)

0 ≤ yu,c ≤ 1 ∀u ∈ U, c ∈ Cu (9)

0 ≤ hr,v ≤ 1 ∀r ∈ R, v ∈ V (10)

In correspondence to the definition of f , the objective value is calculated in (3) as the sum235

of the prizes earned for fulfilled demand minus the costs for opening service stations.236

Inequality (4) ensures that the budget is not exceeded. Inequalities (5) ensure that at237

most one location is selected for each SPR. As our objective is to maximize the revenue it238

is ensured that always a suitable service point location with the highest suitability value239

for each SPR is chosen. Inequalities (6) determine the degrees to which the use cases240

are satisfied, considering that the actually fulfilled demand of a use case is assumed to241

be proportional to the minimum suitability value of the locations selected for the SPRs242

of the use case. Last but not least, Inequalities (7) ensure that only locations at which243

service points are to be opened can be used for SPRs and, thus, to satisfy demand of use244

cases. The size of this model in terms of the number of variables as well as the number245

of constraints is in O(m n |R|).246

Theorem 1. The GSPDP is NP-hard.247

Proof. NP-hardness of the GSPDP is proven by providing a reduction from the well248

known NP-hard Maximal Covering Location Problem (MCLP) [45] in the variant stated249

by Farahani et al. [46]. Given are a set of possible facility locations J , a maximum250

number p of facilities to be opened, and a set of demand nodes D. Moreover, each251

demand node i ∈ D is associated with a demand ai ≥ 0 and a subset of facilities Fi ⊆ J252

of which each is able to cover the node’s full demand. The goal of the MCLP is to select253

up to p locations for opening facilities in order to maximize the total demand covered.254

Given an instance to the MCLP we construct a corresponding GSPDP instance in255

which the set of locations V corresponds to the set of facilities J and the set of users256

U corresponds to the set of demand nodes D. Moreover, each user u ∈ U only has a257

single use case with a single SPR and demand ai with u = i. Building costs zfix
v for a258

location v ∈ V are set to one while the maintenance costs zvar
v are zero. The budget of259

the GSPDP instance is set to p, and the prize for a unit of covered demand q is set to260

one. The suitability value wr,v is set to one for v ∈ V and r ∈ R if facility i can satisfy the261

demand of demand node j, i.e., j ∈ Fi, and zero otherwise.262

Let (x, y, h) be a feasible solution to this derived GSPDP instance. A corresponding263

feasible solution to the MCLP is obtained by opening facilities at all locations j ∈ J for264

which xv = 1. Due to the budget constraint (4), at most p facilities are opened in the265

MCLP instance, and thus, there is a bijective mapping of feasible GSPDP solutions to266

feasible MCLP solutions.267

Since each user in the GSPDP instance only has one use case and each use case268

only consists of one SPR, the sets U, C, and R all contain the same elements. By our269

definitions, variables yu,c indicating the covered SPRs therefore also indicate the covered270
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demand nodes of the MCLP instance. More generally, we also have a bijective mapping271

of covered SPRs in the GSPDP instance to covered demand nodes in the MCLP instance.272

Last but not least, due to our definitions of the suitability values wr,v, the fixed and273

variable costs for opened stations, and the prize per unit of fulfilled demand, the objective274

values of corresponding GSPDP and MCLP solutions also correspond. Since all applied275

transformations require polynomial time, it follows that the GSPDP is NP-hard.276

In the next section we present a cooperative algorithm for solving the GSPDP when277

no a priori information about the suitability values wr,v of potential locations is known278

but can only be obtained by querying the users in a limited fashion.279

4. The Cooperative Optimization Algorithm280

A crucial aspect for solving the GSPDP is that determining the suitability values281

wr,v is no trivial task. While a user may be able to list a small number of best suited282

service station locations for each of his/her SPRs, we have to consider it practically283

infeasible to obtain reasonably precise suitability values for all potential service station284

locations V of each SPR by directly asking the users. A complete direct questioning285

would not only be extremely time consuming but users would easily be overwhelmed286

by the large number of possibilities, resulting in incorrect information. For example,287

users easily tend to only rate their preferred options as suitable and might not consider288

certain alternatives as also feasible although they actually might be on second thought289

when no other options are available. The problem of user fatigue substantially impacting290

the quality of obtained feedback when too much information is asked from a user is, for291

example, discussed in [35].292

Hence, interaction with users needs to be kept to a minimum and should be done293

wisely to extract as much meaningful information as possible. Moreover, users must be294

confronted with easy questions whose answers at the same time provide strong guidance295

for the target system. Based on this philosophy, we present a Cooperative Optimization296

Algorithm (COA) for solving the GSPDP if no a priori information about the use cases297

of the users, their respective demands, or the suitability values is known. The general298

concept of COA was originally introduced in [13]. In this paper this framework is299

substantially adapted and extended towards better scalability and for solving instances300

of the more general GSPDP as specified in the previous section.301

In Section 4.3 we formally define how users can interact with COA. Note however302

that COA does not put a strict limit on the number of allowed interactions with each303

user. Instead, we will measure the effectivity of our COA framework by the number of304

user interactions the framework requires for generating a (close to) optimal solution.305

4.1. Methodology306

In this subsection a high level overview of COA is given before detailing the307

individual components in successive subsections. Figure 1 shows the basic methodology:308

In each iteration the algorithm first generates location scenarios for a subset of users309

to evaluate. Based on the users’ ratings of the scenarios, a surrogate objective function310

is continuously updated over the iterations. The GSPDP instance with the current311

surrogate objective function is then solved, yielding a solution. In the next iteration, this312

solution is a basis for deriving further meaningful location scenarios to be presented to313

users again. The surrogate objective function thus learns to represent the users’ needs,314

more specifically the suitability values wr,v, better and better, and the solutions obtained315

from the optimization will become more precise over time. Figure 2 exemplifies how the316

evaluation of a location scenario may look like from the perspective of a user.317

From a technical point-of-view, the COA framework consists of a Feedback Component318

(FC), an Evaluation Component (EC), an Optimization Component (OC), and a Solution319

Management Component (SMC).320

First, the FC is called starting an initialization phase by asking each user u ∈ U to321

specify the user’s use cases Cu, associated SPRs Ru,c, as well as corresponding demands322
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start

create location
scenarios for users

users evaluate
location scenarios

create/refine
surrogate objective

function

solve optimization
problem with

surrogate objective
function

terminate?

stop
yes

no

Figure 1. Basic methodology of the COA framework.

Figure 2. Exemplary evaluation of a location scenario by a user in the COA framework: A potential
solution in form of a map with highlighted locations is presented, and the user can than provide
suitability values for the highlighted locations in the form of ratings.

Du,c, c ∈ Cu. Afterwards, the FC is responsible for collecting information from the323

user, i.e., users can interact with the framework at this stage of the algorithm. User324

information is collected by generating individual location scenarios for each user which325

are presented to the user in order to obtain his/her feedback. A user u ∈ U then has to326

provide suitability values wr,v for locations v ∈ S of solution scenarios S presented to327

him in respect to a use case requirement r ∈ Ru.328

The feedback obtained from the users is processed in the EC. The EC maintains and
continuously updates a surrogate suitability function w̃Θ(r, v) approximating the suitability
values wr,v of service point locations v ∈ V w.r.t. SPR r ∈ R without interacting with the
respective user. This function is realized by a machine learning model with parameters
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Figure 3. Components of COA and their interaction. The framework consists of the feedback
component (FC), the evaluation component (EC), the optimization component (OC), and the
solution management component (SMC). Users interact with the framework via the FC.

(weights) Θ. Based on this surrogate function, the EC also provides the surrogate
objective function

f̃Θ(X) = q · ∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

w̃Θ(r, v)
)
− ∑

v∈X
zvar

v (11)

with which a candidate solution X can be approximately evaluated. This fast approxi-329

mate evaluation is in particular important for intermediate candidate solutions generated330

during the optimization process which are not evaluated by the users. The respective331

learning mechanism of the surrogate objective function is also part of the EC.332

A call of the OC is supposed to determine an optimal or close-to-optimal solution333

to the problem with respect to the EC’s current surrogate objective function f̃Θ. Note334

that the surrogate objective function never changes during a call of the OC, only in each335

major iteration of the framework after having obtained new user feedback. With the336

exception of the first call, the optimization procedure of the OC is warm-started with the337

current best solution X̃∗ as initial solution to possibly speed up the optimization process.338

Finally, the SMC efficiently stores and manages information on all candidate solu-339

tions that are relevant for more than one of the above components and in particular also340

the location scenario evaluations provided by the users so far as well as the solutions341

XOC returned by the OC.342

The whole process is repeated until some termination criterion is reached, e.g., the343

discrepancy of user feedback and the results of the EC is small enough or a maximum344

number of user interactions has been reached. In the end, COA returns a solution with345

the highest surrogate objective value of all of the so far generated solutions.346

Figure 3 and Algorithm 1 give a summary of the whole COA procedure and of the347

main tasks of each of the components of COA.348

In the next subsections we describe each component’s functionality in more detail.349

4.2. Solution Management Component350

The SMC stores and manages so far considered solutions and evaluations by the351

users. The set of solutions obtained from the OC in all major iterations is stored in a set352

we denote by X . For each solution X ∈ X the SMC keeps track of its current surrogate353
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Algorithm 1: Basic Framework
Input : an instance of the GSPDP
Output: best solution X̃∗ ⊆ V found

1: Feedback Component:
2: for u ∈ U do
3: obtain use cases Cu with associated demands Du,c and service point

requirements Ru,c, ∀c ∈ Cu, from user u;
4: end for
5: while no termination criterion satisfied do
6: Feedback Component:
7: for each scenario generation strategy Sr do
8: R′ ← random sample of R;
9: for r ∈ R′ do

10: Sr ← generate set of location scenarios according to strategy Sr;
11: present scenario to the corresponding user;
12: update SMC with ratings obtained from Sr;
13: end for
14: end for
15: Evaluation Component:
16: train surrogate model w̃Θ, yielding updated surrogate obj. function f̃Θ;
17: re-evaluate all solutions stored in the SMC with new f̃Θ;
18: Optimization Component:
19: XOC ← generate optimal solution w.r.t. the EC’s f̃Θ;
20: update SMC with XOC;
21: end while
22: return overall best found solution X̃∗;

objective value f̃Θ(X). Hence, the surrogate objective values of the solutions in X are354

updated in each major COA iteration whenever the EC updates the surrogate suitability355

function. The current best solution in X , i.e., the solution with the highest surrogate356

objective value, is denoted by X̃∗.357

All feedback obtained from the users via the presented location scenarios is collected358

and stored in the SMC in a hash map: Its set of keys, which we denote by K, is the set of359

pairs (r, v) with r ∈ R, v ∈ V for which suitability values wr,v have been obtained from360

the users, and the respective values are the wr,v.361

Last but not least, through the FC we are also able to obtain upper bounds on362

suitability values wr,v, with v ∈ V, r ∈ R, as will be explained in Section 4.3. These363

upper bounds are stored in the SMC as wUB
r,v ∈ [0, 1].364

4.3. Feedback Component365

The FC is responsible for extracting as much information as possible from the users366

with as few interactions as necessary in order to not to fatigue them.367

In the context of the COA framework, user interactions are understood as letting368

a user evaluate (a small number of) location scenarios. Similar to a solution, a location369

scenario is a subset of locations in V at which service stations are assumed to be opened.370

In contrast to a solution the budget constraint (1) does not need to be respected and a371

location scenario may therefore include an arbitrary number of service points. Recall372

2 for an example how an interaction with the COA framework may look like from the373

perspective of a user.374

Let S ⊆ V be such a location scenario provided to a user u in respect to one of375

the user’s SPRs r ∈ Ru. It is then assumed that the user returns as evaluation of the376

scenario S either a best suited location vr,S ∈ S and the corresponding suitability value377

w(r, vr,S) > 0 or the information that none of the locations of the scenario S is suitable.378
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The latter case implies that wr,v = 0 for all v ∈ S. In case multiple locations are equally379

well suited, we assume that the user selects one of them at random. It is assumed here380

that the suitability of a location w.r.t. an SPR can be specified by the user on a five-valued381

scale from zero, i.e., completely unsuitable, to one, i.e., perfectly suitable; a more fine382

grained evaluation would not make much practical sense.383

Clearly, this definition of user interaction is simplified and idealized, in particular384

as we assume here that all users always give precise answers. In a real application, the385

uncertainty of user feedback and the possibility of misbehaving users who intentionally386

give misleading answers also need to be considered among other aspects. Moreover, it387

would be meaningful to extend the possibilities of user feedback. For example, users388

could be allowed to optionally rate more than one suitable locations for an SPR in one389

scenario or to make suggestions which locations to additionally include in a scenario as390

we considered it in [13].391

In each iteration of COA, users get presented individual sets of location scenarios392

Sr for their service point requirements r ∈ R. These scenarios are compiled according to393

the following strategies.394

Remember that location suitability values obtained from the users are later used in395

the EC for training the surrogate function w̃Θ. Moreover, by enforcing that each user is396

required to select a best suited service point location in a presented location scenario for397

an SPR r, a suitability value indicated by the user for some location vr,S also serves as398

upper bound on the suitability values of all other locations in the location scenario S;399

thus, wr,vr,S ≥ wr,v, ∀v ∈ S. By wUB
r,v , the SMC maintains for each SPR r ∈ R, and each400

location v ∈ V the so far best obtained upper bound on each wr,v; initially, wUB
r,v = 1.401

Let Vw(r) = {v | w(r, v) > 0} be the initially unknown set of locations that are402

actually relevant to a user u ∈ U w.r.t. an SPR r ∈ Ru. A straight-forward strategy to403

identify this set is to iteratively present the user scenarios SV
r = {v ∈ V | (r, v) 6∈ K},404

containing all locations v ∈ V for which no entry (v, r) ∈ K exists yet, i.e., locations405

for which no suitability values are known yet w.r.t. r. Following this strategy, it can be406

ensured to identify a new location of Vw(r) in every iteration of COA. Note, however,407

that it can only be guaranteed that Vw(r) is completely known once the user returns that408

none of the locations in the last scenario SV
r are suitable for r. Consequently, Vw(r) will409

be completely known after |Vw(r)|+ 1 user interactions.410

Hence, an upper bound IUB
u on the total number of required interactions with user

u for completely identifying all relevant locations for all of his/her use cases is

IUB
u = ∑

r∈Ru

(|Vw(r)|+ 1). (12)

While this value is unknown in a real-world scenario, it allows us to establish a measure411

of quality on how well our strategy for presenting scenarios to users performs within412

our testing environments.413

The same combination of two strategies for generating scenarios w.r.t. an SPR r ∈ R414

as in [16] is used. The first strategy generates scenarios according to the approach415

described above, i.e, SV
r = {v ∈ V | (r, v) 6∈ K}. The second strategy generates scenarios416

S∗r = {v ∈ X̃∗ | (r, v) 6∈ K} containing all locations from the current best solution that417

have not been rated yet w.r.t. r.418

Note that for users generally only a fraction of the service point locations in V419

is actually relevant to one of their SPRs. Hence, when presenting a user u ∈ U two420

scenarios for each of the user’s SPRs every iteration the number of user interactions421

would quickly exceed IUB
u . Therefore, in the first COA iteration a scenario SV

r is generated422

for each r ∈ R, but in successive iterations, scenarios are only generated for subsets of423

R. More specifically from the second iteration onward, ςV and ς∗ percent of the SPRs424

RK = {r ∈ R | ∃v ∈ V : (r, v) 6∈ K} are randomly selected for generating scenarios425

according to SV
r and S∗r , respectively, with ςV and ς∗ being strategy parameters.426
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4.4. Evaluation Component427

The EC processes the user feedback obtained from the FC and provides the means
for evaluating candidate solutions without relying on users in particular within the OC.
The exact objective function f from (2), which is based on the mostly unknown suitability
values wr,v with r ∈ R, v ∈ V, is approximated by the surrogate objective function f̃Θ,
cf. (11), making use of the following surrogate suitability function

w̃Θ(r, v) =

{
wr,v if (r, v) ∈ K
max(0, min(wUB

r,v , gΘ(r, v))) else.
(13)

Generally speaking, gΘ is here a learnable function with weight parameters Θ approxi-428

mating wr,v for all unknown pairs (r, v) 6∈ K. The above definition thus ensures that w̃Θ429

always returns known values wr,v and otherwise respects lower bounds zero and upper430

bounds wUB
r,v , giving function g more freedom. Upper bounds wUB

r,v are initially set to one.431

In Section 4.3 it was discussed how tighter upper bounds are derived.432

Suitability values are approximated by exploiting similarities of SPRs among users.433

In general we cannot expect that there exist users having the same needs in all respects,434

i.e., the users have the very same use cases with the same demands. However, given435

a sufficiently large user base it is realistic that there are users having similar SPRs and436

associated preferences concerning suitable locations.437

A popular collaborative filtering technique for exploiting similarities among user438

preferences is matrix factorization [39], which we also apply here. Given an incomplete439

matrix containing ratings R = (wi,j)i∈U, j∈P for a set of users U over a set of products440

P, the idea behind matrix factorization is to decompose this matrix into two smaller441

matrices, a user/feature matrix ξ and a product/feature matrix ν, such that the product442

of these two matrices approximates the original matrix. An unknown rating, i.e., a rating443

not contained in the original matrixR, can then be estimated as the dot product of the444

corresponding feature vectors in matrix ξ and matrix ν, respectively.445

Moreover, we also want to exploit the fact that only a small fraction of the locations
in V is typically relevant for the SPR of a user and that unknown ratings are not missing
at random. In our problem users are always asked to rate the most suitable location of a
scenario. Therefore, known ratings tend to be biased towards more positive values while
unrated locations are likely to have a low suitability for a user w.r.t. an SPR. A matrix
factorization approach that takes such considerations into account has been suggested by
[17]. Traditionally, the rating matrixR is factorized by solving the optimization problem

min
ξ,ν

∑
i,j|wi,j∈R

E(wij, ξiν
T
j ) + ρ(ξ, ν) (14)

where E is a loss function for measuring the error between the actual and the predicted
ratings and ρ is a regularization term. In [17] this minimization problem is expanded by
adding a bias term for unknown ratings towards a certain value ŵ, i.e.,

min
ξ,ν

∑
i,j|wi,j∈R

E(wi,j, ξiν
T
j ) + α ∑

i,j|wi,j 6∈R
E(ŵ, ξiν

T
j ) + ρ(ξ, ν). (15)

Parameter α controls the impact of this new term in the optimization. The authors show446

for selected loss functions how this new optimization problem can be solved in the same447

time complexity as the traditional optimization problem.448

In order to apply matrix factorization for approximating suitability values wr,v449

in our case, we start from the sparsely filled matrix W = (wr,v)(r,v)∈K containing all450

so far known suitability values. By factorizing W along the r dimension and the v451

dimension on the basis of a feature set F = {1, . . . , φ}, we obtain an SPR/feature matrix452

ξ = (ξr,i)r∈R, i∈F with ξr,i ∈ R and a location/feature matrix ν = (νv,i)v∈V, i∈F with453

νv,i ∈ R. Feature vectors ξr describe the SPR r in terms of abstract features, while feature454
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vector νv reflect the characteristics of locations v. In general, it is expected that SPRs with455

similar needs will have similar feature vectors in ξ, and locations with similar suitability456

characteristics will have similar feature vectors in ν. The number of features φ is hereby457

a parameter that is chosen, e.g., in dependence of an estimation of the overall number of458

different service point requirements, and we assume it is considerably smaller than the459

overall number of SPRs as well as the number of locations n. As unknown suitability460

values are more likely zero than being greater than zero, we set the bias target ŵ = 0.461

Having obtained matrices ξ and ν, an unknown value of W is approximated by the
dot product of the respective feature vectors rounded to the nearest of the five discrete
suitability values we defined, i.e.,

gΘ(r, v) = b4 · ξrνT
v + 0.5c/4. (16)

The trainable parameters of gΘ are therefore Θ = (ξ, ν).462

Our loss function for the matrix factorization is

min ∑
(r,v)∈K

(
wr,v − ξrνT

v

)2
+ α ∑

(r,v) 6∈K
(ξrνT

v )
2 + λ(‖ξr‖2 + ‖νv‖2), (17)

and randomized block coordinate descent [47] is used to minimizing it.463

4.5. Optimization Component464

Recall that the OC is performed in each major iteration of the framework and makes465

use of the current surrogate objective function f̃Θ provided by the EC, whose weights466

Θ do not change during each individual call of the OC. The OC is thus supposed to467

return an optimal or close-to-optimal solution to our problem w.r.t. the current surrogate468

objective function.469

In our implementation of the OC, we apply a general purpose MILP solver to the470

MILP formulation already presented in Section 3, Equations (3)–(10), however suitability471

values are approximated by the surrogate suitability function w̃Θ. Note that for improved472

scalability, a metaheuristic approach might also be used as optimization core as it is not473

necessary to find an optimal solution in each iteration. However, due to the complexity474

of the objective function of the GSPDP, such a metaheuristic requires significant effort to475

be able to scale well to larger instances. As the development of such a heuristic would476

go beyond the scope of this paper, we therefore leave this task for future work.477

5. Test Cases478

In the following it is described how test instances for evaluating COA have been479

generated. Instead of testing with real users, user interaction is simulated in an idealized480

manner in certain test cases in order to analyze the strengths and weaknesses of the481

framework with a focus on the algorithmic aspects. The considered test instances are482

of three groups. The first two groups are purely artificial test instances inspired by483

the location planning of stations for electric vehicle charging, denoted by EVC, and484

for (station-based) car sharing systems, denoted by CSS, respectively. While in group485

EVC each use case has one SPR, there are always two SPRs per use case in CSS. The486

third group of test instances is designed similarly to group CSS, also addressing the487

car sharing scenario, but the instances are generated from real-world taxi trip data of488

Manhattan; this group is therefore called MAN. Note that COA intentionally does not489

make use of geographic information in any of its components. Therefore, modeling490

preferences of users for our instances in dependence of the proximity to service point491

locations does not provide COA any advantage for finding an optimized solution.492

All of our benchmark instances are available online at https://www.ac.tuwien.ac.493

at/research/problem-instances/#spdp.494
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5.1. Artificial Test Instance Groups EVC and CSS495

Test instances from the groups EVC and CSS are generated with the same approach.496

The n possible locations for service stations are randomly distributed in the Euclidean497

plane with coordinates coord(v), v ∈ V, chosen uniformly from the grid {0, . . . , L− 1}2,498

with L = d10
√

ne. The fixed costs zfix
v as well as the variable costs zvar

v for setting up a499

service station at each location v ∈ V are uniformly chosen at random from {50, . . . , 100}.500

The budget is assumed to be B = d7.5 · ne so that roughly 10% of the stations with501

average costs can be expected to be opened.502

The number of use cases for each user u ∈ U is chosen randomly according to503

a shifted Poisson distribution with offset one, expected value three, and a maximum504

value of five, i.e., the number of use cases never exceeds five. Each of these use cases505

c ∈ Cu is associated with an individual demand Du,c randomly chosen from {5,. . . ,50}506

and, depending on the benchmark group, with one (EVC) or two (CSS) SPRs.507

Each SPR r ∈ Ru,c of a use case c also is associated with a particular geographic
location qr ∈ {0, . . . , L− 1}2. In order to model similarities in the users’ SPRs, these
locations are selected in the following correlated way. First ten attraction points A with
uniform random coordinates are selected from {0, . . . , L − 1}2. Then, each use case
location is derived by randomly choosing one of these attraction points (ax, ay) ∈ A and
adding a small individual offset to the coordinates, i.e.,

qr = (bN (ax, σv)c, bN (ay, σv)c), (18)

where N (·, ·) denotes a random value sampled from a normal distribution with the508

respectively given mean value and standard deviation σv. If obtained coordinates are509

not in {0, . . . , L− 1}2 a new attraction point is chosen and the deviation is re-sampled.510

A service point location v ∈ V receives a rating w.r.t. an SPR r according to a
sigmoidal decay function applied to the Euclidean distance, and is also perturbed by a
Gaussian noise with a standard deviation of σr:

w′r,v = N
(

1
1 + 6e0.5||qr−coord(v)||−6

, σr

)
. (19)

The parameters of the sigmoid function are chosen so that w′r,v decreases as the dis-511

tance between v and qr increases and becomes approximately zero at a distance larger512

than twelve. Additionally, as motivated in Section 3, we discretize the rating w′r,v by513

rounding to the closest value in {0, 0.25, 0.5, 0.75, 1}, obtaining wr,v. Hence, wr,v =514

b4 ·min(1, max(0, w′r,v)) + 0.5c/4.515

Six sets of 30 benchmark instances were generated for EVC as well as CSS. As516

detailed in Table 1, these sets consider n ∈ {100, 200, 300} potential service point loca-517

tions in combination with different numbers of users and two different settings for the518

standard deviations of the Gaussian perturbations σv and σr. Note that parameters σv519

and σr control how similar suitability values for locations of SPRs generated from the520

same attraction point are. The larger σv and σr, the more different are the preferences of521

the users. Hence, we have chosen two different settings for σv and σr to show how COA522

behaves under conditions in which preferences of users towards locations for service523

points have a higher and lower similarity, respectively. Values for σv and σr have been524

determined experimentally in preliminary tests. In the following we will denote instance525

sets primarily by the pair (n, m).526

5.2. Manhattan Test Instances527

Next to the above described purely artificial benchmark instances we also derive528

benchmark instances from real-world yellow taxi trip data of Manhattan. As in CSS,529

MAN instances have two SPRs per use case. The underlying street network G of the530

instances corresponds to the street network graph of Manhattan provided by the Julia531
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Table 1: Main parameters of the EVC and CSS instance sets of groups EVC and CSS.
Each row represents a set of 30 instances.

(n, m) σv σr

(100, 500) 3.0 0.03
(100, 1000) 5.0 0.15
(200, 1000) 3.0 0.03
(200, 2000) 5.0 0.15
(300, 1500) 3.0 0.03
(300, 3000) 5.0 0.15

package LightOSM1. Taxi trips have been extracted from the 2016 Yellow Taxi Trip532

Data2. The taxi data set was first preprocessed by removing all trips with invalid data533

and trips made on a weekend. Furthermore, we have also removed all trips which534

do not start as well as end in Manhattan. For taxi trips within the months January to535

July geographic pickup and drop-off coordinates of customers are recorded in the data536

set. Each of these coordinates has been extracted and mapped to the geographically537

closest vertex in G, resulting in a list of pairs of vertices Q ⊆ V(G)× V(G). Next, as538

the similarity of users in our instances depends on their geographic proximity, we have539

reduced Q by considering only the ten taxi zones with the highest total number of540

pickups and drop-offs of customers, resulting in a total of approximately two million541

taxi trips. Geographic information of the taxi zones of Manhattan has been obtained542

from https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc. The543

left side of Figure 4 provides a visualization of the selected taxi zones.544

The set of potential service point locations V has been chosen randomly from545

vertices of G that are located in the considered taxi zones. The fixed costs zfix
v as well as546

the variable costs zvar
v for setting up a service station at each location v ∈ V are uniformly547

chosen at random from {50, . . . , 100}.548

The number of use cases for each user u ∈ U is again chosen randomly according
to a shifted Poisson distribution with offset one, expected value three, and a maximum
value of five. Each of these use cases c ∈ Cu is associated with an individual demand
Du,c randomly chosen from {5, . . . , 50} and the two SPRs representing the origin and
destination of a trip chosen from Q uniformly at random. A rating for an SPR r is
calculated for each v ∈ V via the sigmoidal decay function

w′r,v =
1

1 + 10e0.01sp(r,v)− 6
, (20)

where sp(r, v) refers to the length of the shortest path between location v and the SPR549

r in the street network graph G. The parameters of this function have been chosen in550

such a way that service point locations within a distance of approximately 600 meters to551

r are relevant for the SPR. Finally, the discretized suitability value wr,v is again obtained552

by wr,v = b4 ·min(1, max(0, w′r,v)) + 0.5c/4. The right side of Figure 4 shows the553

distribution of SPR locations as well as potential service point locations for an example554

instance.555

The MAN benchmark group consists of 30 instances in total with each instance556

having 100 potential service point locations and 2000 users. Additionally, each instance557

will be evaluated with different budget levels b [%] ∈ {30, 50, 70} such that about b558

percent of the stations considering average costs can be opened, i.e, the actual budget for559

each instance is calculated as B = db · 0.75 · ne.560

1 https://github.com/DeloitteDigitalAPAC/LightOSM.jl
2 https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
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Figure 4. Left: The considered ten taxi zones of Manhattan with the highest number of pickups
and drop-offs. Right: Exemplary distribution of SPR locations (black triangles) and potential
service point locations (white points).

6. Results561

The COA framework including the FC were implemented in Python 3.8. For the562

matrix factorization of the EC we adapted the C++ implementation of [17] provided on563

Github3. The parameterization of the COA components have been determined through564

preliminary tests on an independent set of instances. For all test runs the weighting for565

unknown suitability values α of the matrix factorization has been set to one. Moreover,566

the number of features considered in the matrix factorization is set to ten for all test runs.567

The parameters ςV and ς∗ for controlling the number of scenarios generated according568

to each strategy in the FC have been set to 0.5 and 0.1, respectively. Finally, Gurobi 9.14
569

was used to solve the MILP models in the OC. In each COA iteration a time limit of ten570

minutes has been set for solving the MILP. If the MILP was not solved to optimality571

within this time limit, the best found solution was used. All test runs have been executed572

on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded mode with a global573

time limit of four hours per run. Note however, that all runs terminated within this574

time limit once all relevant locations had been discovered. Since in contrast to COA575

we have full knowledge of our test instances, we are also able to calculate optimal576

reference solutions for each instance. Hence, by f (xopt) we denote the objective value of577

a respective optimal solution xopt.578

To characterize the amount of user interaction performed by COA, we consider579

the total number of scenarios evaluated by a user u ∈ U in relation to the upper bound580

of required interactions IUB
u , cf. Section 4.3. Let Iu be the number of user interactions581

of user u ∈ U performed within COA to generate some solution. Then, I = 100% ·582

(∑u∈U Iu/IUB
u )/m, refers to the relative average number of performed user interactions583

relative to IUB
u over all users. Note that since scenarios are presented only to a fraction584

of users in every iteration, the average number of user interactions at each iteration of585

COA varies even for instances within the same benchmark group. Hence, in order to586

reasonably study results for each of our benchmark groups, we aggregate respective587

results to our instances at various interaction levels ψ by selecting for each instance the588

COA iteration at which I is largest but does not exceed ψ. Note that for some instances589

smaller levels of ψ are already exceeded in the first iteration of COA. Hence, in the590

following we only consider interaction levels for an instance group for which results to591

all corresponding instances exist.592

Note further that the user interaction levels can also be interpreted as the average in-593

formation known about a user. This interpretation allows us to draw a direct comparison594

3 https://github.com/rdevooght/MF-with-prior-and-updates
4 https://www.gurobi.com/
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to traditional approaches for distributing service points in which information about the595

demands of the users is determined in advance. Each result at a certain interaction level596

can also be interpreted as the result of such a traditional approach with a certain level597

of knowledge about the users. However, to the best of our knowledge there exists no598

data about suitability values in other work. Additionally, for a fair comparison between599

COA and other approaches from literature one would have to also take into account600

the costs required for obtaining said information about the users. Therefore, comparing601

COA to other approaches from literature seems to be not possible without an extensive602

study on suitability values of users or a complex simulation of users based on various603

assumptions that can heavily influence the outcome of such a comparison.604

First, we want to show how the quality of incumbent solutions develops as the605

number of user interactions increases during a COA run. For this purpose, we calculate606

the optimality gap for a solution x obtained from COA as gap = 100% · ( f (xopt) −607

f (x))/ f (xopt). Figure 5 shows the average optimality gaps of solutions to each of our608

benchmark sets against the interaction levels ψ. The results are grouped by σv and σr to609

additionally compare instances groups with similar user behavior.
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Figure 5. Development of average optimality gaps with an increasing number of user interactions
for each benchmark instance set.

610

Recall that the number of attraction points is the same for all EVC and CSS instances.611

Therefore, for instances with a higher number of users it is generally easier to find better612

solutions as there are more users that prefer the same locations. The plots show that in613

all cases solutions generally improve quickly with an increasing interaction level and614

close to optimal solutions can be obtained well before identifying all the users’ relevant615

locations. Specifically, at a user interaction level of 50% the solutions generated by COA616

feature optimality gaps of 1.45% on average. An exception of this observation are the617

MAN instances with b = 30%. For these generated solutions do not reach an optimality618

gap below 1% before ψ = 80% on average. Moreover, the figure also shows that the619

solutions to MAN instances generally converge notably slower than the solutions to620

EVC and CSS instances. This behavior is likely caused by the weaker correlation of621
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user preferences in the MAN instances and the way how the FC generates scenarios622

presented to the users, specifically the aspect that locations important to the individual623

users are tried to be identified first. Locations important to individual users might not624

necessarily be the best locations to add to a solution, especially if there is a lower number625

of users with similar preferences. Consequently, the strategies based on which scenarios626

are generated may still have some room for improvement for such cases. Instead of627

primarily identifying locations important to users, targeting locations in relation to the628

current best solution with a higher emphasis might be a more expedient approach here.629

Note that an increased number of user interactions does not only imply a larger
trainings set for the surrogate function but also results in better upper bounds wUB

r,v for
locations v ∈ V w.r.t. to an SPR r ∈ R. Therefore, to gain a better understanding of how
much the surrogate function actually contributes to finding an optimized solution, we
study what happens when the learning surrogate suitability function w̃Θ is replaced by
the naive function with no learning capabilities

w̃bl(r, v) =

{
wr,v if (r, v) ∈ K
0 else.

(21)

In the following we refer to our original COA implementation with the surrogate function630

w̃Θ as COA[w̃Θ] and denote the implementation with the naive function w̃bl as COA[w̃bl].631

A comparison between COA[w̃Θ] and COA[w̃bl] is shown in Table 2. Each table cell632

shows the average optimality gaps of solutions to the respective instance group at the633

specified interaction levels ψ. The better results among COA[w̃Θ] and COA[w̃bl] are634

printed bold. Additionally, as the standard deviations w.r.t. the optimality gaps are635

quite large, see Figure 6, we have also applied a one-sided Wilcoxon signed-rank test to636

determine for each group whether the difference in optimality gaps is significant or not.637

Instance groups for which the Wilcoxon test has assessed at a 95% confidence interval638

that either COA[w̃Θ] or COA[w̃bl] has produced better optimality gaps are marked with639

an asterisk.640

The table shows that especially for the CSS and MAN instances COA[w̃Θ] generates641

significantly better results at almost all interaction levels ψ than COA[w̃bl]. While for the642

EVC instances the average optimality gaps w.r.t COA[w̃Θ] are lower than the average643

optimality gaps w.r.t. COA[w̃bl], there are instance groups for which no significant644

difference between the optimality gaps can be determined. However, there is no instance645

group for which COA[w̃bl] produced significantly better results than COA with w̃Θ646

over all user interaction thresholds. It can be observed that at very low levels of user647

interaction COA[w̃Θ] and COA[w̃bl] seem to be equally strong. However, as the amount648

of collected of user feedback increases, COA[w̃Θ] quite quickly outperforms COA[w̃bl].649

Figure 6 gives a visual comparison between COA[w̃Θ] and COA[w̃bl] for selected650

instance groups and not only shows average optimality gaps but also respective standard651

deviations around the mean values as shaded areas. The figure confirms that the average652

gaps produced by COA[w̃Θ] are generally lower than those of COA[w̃bl] but also shows653

that the standard deviations are quite large in general for both approaches. But as COA654

progresses and the quality of the solutions improves, the standard deviations decrease655

as well.656

To further investigate the learning capabilities of the surrogate function, we now657

look at the mean squared error (MSE) of w̃Θ in respect to the known exact values w. The658

left plots in Figure 7 show the development of this MSE calculated over all suitability659

values that are not known yet by COA for all instance groups. It can be seen that the660

MSE is generally small and approaches zero rather quickly. The reason for such small661

values can be found in the matrix factorization model used in the EC, which adds a bias662

for unknown suitability values towards zero as users typically only have a small number663

of locations with positive suitability values for each of their SPRs. Consequently, the664

MSE is distorted by the large number suitability values that are zero.665
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Table 2: Average optimality gaps obtained by COA using the surrogate suitability
functions with (w̃Θ) and without learning capabilities (w̃bl) at different interaction levels.

EVC

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 4.31 4.03 - - 0.99 0.99 - - 0.30 0.32 1.93 1.94
40% 1.71 2.00 4.42 4.95 0.57 0.62 1.84 2.06 0.23 0.23 1.17* 1.31
50% 0.73* 1.11 2.72 3.03 0.41 0.46 1.01* 1.44 0.16 0.16 0.68* 0.86
60% 0.31* 0.69 1.27* 1.66 0.23* 0.29 0.58* 0.91 0.10 0.09 0.36* 0.49
70% 0.12* 0.42 0.53* 0.90 0.11 0.14 0.33* 0.50 0.04* 0.06 0.16* 0.30
80% 0.11* 0.18 0.22* 0.53 0.04* 0.08 0.11* 0.21 0.02 0.04 0.05* 0.10
90% 0.05 0.11 0.03* 0.13 0.01 0.03 0.02* 0.06 0.00* 0.01 0.01* 0.02

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 8.02 7.60 20.92 19.11* 2.15 2.31 - - 0.81 0.82 - -
40% 2.98* 4.28 9.57 9.52 1.21* 1.63 2.81* 3.78 0.51 0.52 2.36* 2.64
50% 1.50* 2.41 4.72 4.41 0.62* 0.99 1.90* 2.77 0.31* 0.38 1.27* 1.80
60% 0.63* 1.51 2.29* 3.76 0.36* 0.63 1.20* 1.83 0.20* 0.26 0.72* 1.15
70% 0.27* 0.51 1.61* 2.36 0.12* 0.37 0.47* 1.09 0.11* 0.15 0.28* 0.59
80% 0.18* 0.43 0.92* 1.44 0.05* 0.12 0.18* 0.46 0.04* 0.07 0.15* 0.29
90% 0.01* 0.14 0.08* 0.65 0.02* 0.06 0.05* 0.15 0.01 0.02 0.03* 0.07

MAN

b 30% 50% 70%

ψ COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl] COA[w̃Θ] COA[w̃bl]

30% 15.61 14.93 7.02 7.28 2.13 2.13
40% 6.25* 7.53 3.01* 3.46 1.12 1.18
50% 3.34* 4.33 1.63* 2.14 0.67* 0.77
60% 2.10* 2.80 0.93* 1.32 0.39* 0.48
70% 1.20* 1.86 0.46* 0.80 0.22* 0.28
80% 0.52* 1.04 0.18* 0.33 0.07* 0.09
90% 0.24* 0.38 0.04* 0.10 0.01 0.01
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Figure 6. Average optimality gaps with standard deviations as shaded areas obtained by COA
using the surrogate suitability functions with learning capabilities (w̃Θ) and without (w̃bl) plotted
over the interaction level.

Therefore, the plots on the right side of Figure 7 show average mean squared errors666

calculated only over all positive suitability values that are not known yet; we denote667

this error by MSE+. This measure gives a clearer picture on how the surrogate function668

continuously improves in all cases with an increasing amount of gained knowledge. At669
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Figure 7. Development of average MSEs of w̃Θ over all so far unknown suitability values (left)
and all so far unknown positive suitability values (right) for all benchmark sets.

the start of the algorithm the MSEs of the benchmark groups are between 0.2 and 0.3 on670

average and go towards zero almost linearly with the interaction level. Note that neither671

the size of an instance nor the given budget seem to have a significant impact on the size672

of the errors. Additionally, the figure also highlights how the instance parameters σv and673

σr impact the similarity of user preferences as the MSEs for instances with σv = 5 and674

σr = 0.15 are generally larger than the MSEs for instances with σv = 3 and σr = 0.03.675

Finally, in Table 3 we also compare COA[w̃Θ] to the COA implementation using the676

surrogate function w̃′Θ introduced in [16], henceforth referred to as COA[w̃′Θ]. While w̃′Θ677

is also based on a matrix factorization model, this model does not take into account that678

user data is not missing at random.679

Each table cell shows the average optimality gaps of solutions to the respective680

instance set at the specified interaction level ψ. The better results among COA[w̃Θ]681

and COA[w̃′Θ] are printed bold. A one-sided Wilcoxon signed-rank test was used to682

determine for each instance set whether the difference in optimality gaps is significant683

or not. Entries for which the Wilcoxon test has assessed at a 95% confidence level that684

either COA[w̃Θ] or COA[w̃′Θ] has produced better optimality gaps are marked with an685

asterisk. It can be observed that for lower levels of user interaction, solutions generated686

by COA[w̃′Θ] exhibit extremely high optimality gaps. However, the higher the number687

of user interactions, the more COA[w̃′Θ] can catch up with COA[w̃Θ]. Though, most of688

the time COA[w̃Θ] still dominates COA[w̃′Θ]. Summarizing, it can be concluded that the689

new matrix factorization model is a significant improvement over our previous model690

w̃′Θ resulting in COA[w̃Θ] generating better solutions with fewer user interactions than691

COA[w̃′Θ] most of the time.692

7. Conclusion and Future Work693

In this paper the previously introduced Cooperative Optimization Algorithm was694

generalized to be applicable to more application scenarios and to larger instances with695
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Table 3: Average optimality gaps of solution from COA[w̃Θ] and COA[w̃′Θ], where the
latter utilizes the former surrogate function w̃′Θ from [16].

EVC

(n, m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 81.89 4.31* - - 85.20 0.99* - - 82.14 0.30* 95.53 1.93*
40% 16.07 1.71* 34.82 4.42* 3.22 0.57 32.79 1.84* 9.08 0.23 23.21 1.17*
50% 1.95 0.73* 3.91 2.72* 0.35* 0.41 1.51 1.01* 0.13* 0.16 0.87 0.68*
60% 0.62 0.31* 2.20 1.27* 0.24 0.23 0.76 0.58* 0.09 0.10 0.48 0.36*
70% 0.46 0.12* 0.70 0.52 0.13 0.11 0.45 0.33* 0.04 0.04 0.24 0.16*
80% 0.22 0.11* 0.31 0.22 0.06 0.04* 0.17 0.11* 0.02 0.02 0.11 0.05*
90% 0.09 0.05 0.09 0.03* 0.02 0.01 0.05 0.02* 0.01 0.00 0.02 0.01*

CSS

(n, m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 80.12 8.02* 98.68 20.92* 86.58 2.15* - - 69.78 0.81* - -
40% 13.80 2.98* 24.73 9.57* 1.38 1.21 13.93 2.81* 3.84 0.51 6.17 2.36*
50% 2.34 1.50 7.31 4.72* 0.77 0.62 2.66 1.90* 0.33 0.31 4.73 1.27
60% 1.83 0.63* 2.53 2.29 0.49 0.36* 1.56 1.20* 0.22 0.20 0.83 0.72
70% 0.66 0.27* 1.91 1.61 0.21 0.12 0.74 0.47* 0.12 0.11 0.59 0.28*
80% 0.12 0.18 0.99 0.92 0.10 0.05* 0.42 0.18* 0.04 0.04 0.23 0.15*
90% 0.08 0.01* 0.45 0.08* 0.04 0.02 0.20 0.05* 0.02 0.01 0.13 0.03*

MAN

b 30% 50% 70%

ψ COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ] COA[w̃′Θ] COA[w̃Θ]

30% 99.78 15.61* 99.83 7.02* 99.83 2.13*
40% 13.84 6.25* 3.97 3.01* 1.15 1.12
50% 8.46 3.34* 1.93 1.63* 0.63 0.67
60% 3.18 2.10* 0.89 0.93 0.35 0.39
70% 1.86 1.20* 0.64 0.46* 0.26 0.22
80% 1.15 0.53* 0.34 0.18* 0.12 0.07*
90% 0.47 0.24* 0.14 0.04* 0.03 0.01*

hundreds of potential service station locations and thousands of users. New application696

scenarios include in particular those in which the fulfillment of a single demand depends697

on more than one suitably located service points as it is the case in station-based bike698

and care sharing. Results on artificial and real world inspired instances show how the699

solution quality improves as the amount of user feedback increases and that a near700

optimal solution is reached for most instances with a reasonably low amount of user701

interactions. To characterize the amount of user interaction performed by COA, we702

have established an upper bound on the maximum number of non-redundant user703

interactions and introduced the notion of user interaction levels. Solutions generated704

by COA feature optimality gaps of 1.45% on average at an interaction level of 50%.705

Furthermore, we could clearly observe that the matrix factorization based surrogate706

model is able to learn preferences of individual users from users with similar interests.707

More specifically, we made use of an advanced matrix factorization model which takes708

into account that user data is not missing at random. In fact, users are always asked to709

rate the most suitable location of a scenario, if one exists. The experimental comparison710

indeed confirmed the benefits of this new model over the original one, especially when711

the interaction level is still low. Using the new matrix factorization model, COA is able712

to generate better solutions with fewer known user preferences than before. Also note713

that while we achieve our best results with the matrix factorization based surrogate714

model, the results also show that COA already works reasonable even without learning715

user preferences.716

However, there is still potential left for future improvements. In our COA imple-717

mentation, the strategies by which scenarios for users are generated favor the selection718

of unrated locations that may be important for individual users but not necessarily for a719

global optimal solution. In order to quickly find a good solution by the optimization it720

is important for our surrogate function to have higher accuracy for locations that have721

the potential to actually appear in a globally optimal solution. Otherwise, finding a near722

optimal solution requires a larger amount of user interactions as we have observed in723

our results on the Manhattan instances. In order to improve the scenario generation724

strategies, it seems natural to enrich the feedback component (FC) with knowledge not725

only from the evaluation component (EC) but also from the optimization component726

(OC). As the OC finds optimized solutions via a MILP, utilizing dual solution informa-727
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tion such as reduced costs or performing a sensitivity analysis might be a promising728

direction.729

It would also be interesting to further improve the scalability of COA. While a time730

limit of ten minutes per MILP was still sufficient for solving our benchmark instances,731

the OC is the main bottleneck of COA w.r.t. computation times. On the one hand, one can732

resort to heuristic optimization approaches in the OC. On the other hand, hierarchical733

clustering and multilevel refinement strategies as applied in the context of planning a734

bike sharing system in [2] appear promising.735

COA was applied for generating solutions to instances of the General Service Point736

Distribution Problem (GSPDP). While we have proven the GSPDP to be NP-hard, this737

problem is rather abstract and from a practical perspective still too simplistic. For738

a specific practical application the problem formulation needs to be tailored appro-739

priately. Diverse aspects like different configuration options of stations, capacities or740

time-dependent aspects may be needed to be considered. To a certain degree, the general741

framework of COA can stay the same or may need only smaller adaptions, like for742

example in the scenario generation of the FC.743

Finally, we want to emphasize that the focus of this contribution was on the algorith-744

mic and computational aspects of COA and its components. Clearly, further challenges745

concern a suitable user interface and a corresponding distributed implementation of at746

least the FC, in which also psychological aspects of users need to be considered. More-747

over, the performed experiments are based on the assumption of perfect user feedback,748

which does not hold in practice. The impacts of not entirely reliable evaluation results749

need to be studied, and robust variants of certain components of COA devised.750
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