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Chapter 17

Fixed-Parameter Tractability
Marko Samer† and Stefan Szeider

17.1. Introduction

The propositional satisfiability problem (SAT) is famous for being the first prob-
lem shown to be NP-complete—we cannot expect to find a polynomial-time al-
gorithm for SAT. However, over the last two decades, SAT-solvers have become
amazingly successful in solving formulas with thousands of variables that encode
problems arising from various application areas. Theoretical performance guar-
antees, however, are far from explaining this empirically observed efficiency. The-
orists believe that the trivial 2n time bound for solving SAT instances with n vari-
ables cannot be significantly improved, say to 2o(n) (see the end of Section 17.2.1).
This enormous discrepancy between theoretical performance guarantees and the
empirically observed performance of SAT solvers can be explained by the presence
of a certain “hidden structure” in instances that come from applications. This
hidden structure greatly facilitates the propagation and simplification mechanisms
of SAT solvers. Thus, for deriving theoretical performance guarantees that are
closer to the actual performance of solvers, one needs to take this hidden structure
of instances into account. The literature contains several suggestions for making
the vague term of a hidden structure explicit. For example, the hidden structure
can be considered as the “tree-likeness” or “Horn-likeness” of the instance (be-
low we will discuss how these notions can be made precise). All such concepts
have in common that one associates with a CNF formula F a non-negative in-
teger k = π(F ); the smaller the integer, the more structured the instance from
a certain perspective. We call such a mapping π a satisfiability parameter or a
parameterization of the satisfiability problem. We will also write π(F ) = ∞ to
express that ϕ is not defined for F . Consider a satisfiability parameter π. For
each integer k one can consider the class Cπ

k of formulas F such that π(F ) ≤ k.
This gives rise to an infinite hierarchy Cπ

0 ⊆ Cπ
1 ⊆ Cπ

2 ⊆ · · · Cπ
∞ of classes. Every

CNF formula F belongs to some Cπ
k for k sufficiently large (namely, k = π(F )).

We are interested in satisfiability parameters π such that satisfiability of
instances in Cπ

k and membership in Cπ
k can be decided in polynomial time (the

latter property can be relaxed). The larger we make k (thus, the more general the

†1977–2010

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

4

693



class Cπ
k ), the worse we expect the performance guarantee for the polynomial-time

algorithm for solving instances in Cπ
k —in other words, we expect an inevitable

tradeoff between generality and performance.

Assume our SAT algorithm for Cπ
k runs in time O(nk) on instances with n

variables, then we have an example for a non-uniform polynomial-time algorithm,
since the degree of the polynomial depends on k. On the other hand, a running
time such as O(2kn3) establishes uniform polynomial time. For a non-uniform
polynomial-time algorithm even relatively small values for k render classes Cπ

k

practically infeasible—take the above example of time complexity O(nk) and
consider an instance F ∈ Cπ

10 with n = 1000 variables. On the other hand, a
uniform polynomial-time algorithm with running time such as O(2kn3) makes the
satisfiability problem practically feasible for classes Cπ

k as long as k remains small.

It is an intriguing research objective to design and study satisfiability param-
eters and to find out whether they admit uniform polynomial-time algorithms or
not. Classical complexity theory does not provide the means and tools for this
purpose, as the computational complexity of a problem is considered exclusively
in terms of the input size; structural properties of instances are not represented.
In the late 1980s, Rod Downey and Mike Fellows initiated the framework of Pa-
rameterized Complexity which resolves this shortcoming of classical theory. Their
point of departure was the following observation: uniform polynomial-time al-
gorithms exist for finding a vertex cover of size k in a graph, but apparently,
no uniform polynomial-time algorithm exists for finding an independent set of
size k (in both cases k is considered as the parameter). Downey, Fellows, and
their collaborators have developed a rich theoretical framework for studying the
computational complexity of parameterized problems. Over recent years, pa-
rameterized complexity has become an essential branch of algorithm design and
analysis in both applied and theoretical areas of computer science; hundreds of
research papers and several monographs have been published so far on the sub-
ject [DF99, FG06, Nie06, CFK+13, DF13]. Parameterized complexity consid-
ers problem instances in a two-dimensional setting: the first dimension is the
usual input size n, the second dimension is a non-negative integer k, the pa-
rameter . An algorithm that solves an instance in time O(f(k)nc) is called a
fixed-parameter algorithm; here f denotes an arbitrary computable function and
c denotes a constant that is independent of n and k. Thus fixed-parameter algo-
rithms are algorithms with a uniform polynomial-time complexity as considered
in the above discussion. A parameterized problem is fixed-parameter tractable
if a fixed-parameter algorithm can solve it. Once a problem has been found to
be fixed-parameter tractable, one can try to find better and better algorithms,
making the function f to grow slower, and obtaining a smaller constant c. In
many cases, one can observe a trajectory of steadily improved running times for
parameterized problems [Fel03]. Therefore we will mainly focus on the classifi-
cation of satisfiability parameters on whether or not they admit fixed-parameter
tractable satisfiability decision, and not on concrete running times.

Parameterized complexity also offers a completeness theory which is similar to
the theory of NP-completeness in the classical setting. This completeness theory
provides strong evidence that certain parameterized problems (such as the param-
eterized independent set problem as mentioned above) are not fixed-parameter
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tractable. We will briefly discuss some fundamental notions of this completeness
theory in Section 17.2.1. In this survey, however, we will mainly focus on pos-
itive results, describing key concepts that lead to satisfiability parameters that
admit fixed-parameter algorithms. The presented negative results (i.e., hardness
results) have merely the purpose of carving out territories that are very likely to
be inaccessible to fixed-parameter algorithms.

The majority of combinatorial problems studied in the framework of parame-
terized complexity offers a “natural parameter,” e.g., it is natural to parameterize
the vertex cover problem by the size of the vertex cover. However, the satisfi-
ability problem lacks a single obvious natural parameter—there are numerous
possibilities for parameters. This variety, however, makes parameterized SAT a
rich and exciting research area; one of its fundamental objectives is to identify sat-
isfiability parameters that are as general as possible (i.e., for as many instances as
possible one can expect that the parameter is small), and which are still accessible
to fixed-parameter algorithms.

Although our main focus is satisfiability decision, we will come across sev-
eral satisfiability parameters that even render the propositional model counting
problem #SAT to be fixed-parameter tractable.

Next, in Section 17.2, we will provide some preliminaries: we will introduce
basic notions of parameterized complexity, our terminology on CNF formulas and
truth assignments, and graphs and hypergraphs associated with CNF formulas.
In Section 17.3 we will introduce a general framework for parameterizing the
satisfiability problem in terms satisfiability parameters, and will discuss parame-
terized optimization problems related to SAT. The next three sections are devoted
to satisfiability parameters of different flavors: in Section 17.4 we will consider
parameters based on backdoor sets relative to a polynomial-time base class; in
Section 17.5 we will consider parameters that measure the “tree-likeness” of in-
stances; in Section 17.6 we will consider further parameters including one that is
based on graph matchings and one that is based on the community structure of
formulas. We will conclude with final remarks in Section 17.7.

17.2. Preliminaries

17.2.1. Fixed-Parameter Algorithms

In this section, we provide a brief (and rather informal) review of some funda-
mental concepts of parameterized complexity. For an in-depth treatment of the
subject, we refer the reader to other sources [DF99, FG06, Nie06, CFK+13, DF13].

An instance of a parameterized problem is a pair (I, k) where I is the main
part and k is the parameter ; the latter is usually a non-negative integer. A
parameterized problem is fixed-parameter tractable if a fixed-parameter algorithm
can solve it, i.e., if instances (I, k) can be solved in time O(f(k)∥I∥c) where f is a
computable function, c is a constant, and ∥I∥ denotes the size of I with respect to
some reasonable encoding. FPT denotes the class of all fixed-parameter tractable
decision problems.

Let us illustrate the idea of a fixed-parameter algorithm trough the vertex
cover problem parameterized by the solution size. This is the best-studied prob-
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lem in parameterized complexity with a long history of improvements [CKJ01].
Let us state the parameterized vertex cover problem:

VC
Instance: A graph G = (V, E) and a non-negative integer k.
Parameter: k.
Task: Decide whether there is a subset S ⊆ V of size at most k such
that every edge of G has at least one of its incident vertices in S (S is
a vertex cover of G).

Note that if we consider k not as a parameter but simply as a part of the input,
then we get an NP-complete problem [GJ79]. A simple fixed-parameter algorithm
for VC can be constructed as follows. Given an instance (G, k) of VC, we
construct a binary search tree. The root of the tree is labeled with (G, k). We
choose an arbitrary edge uv of G and observe that every vertex cover of G must
contain u or v. Hence we can branch into these two cases. That is, we add two
children to the root, labeled with (G − u, k − 1) and (G − v, k − 1), respectively
(k gets decremented as we have spent one unit for taking u or v into the vertex
cover). We recursively extend this branching. We stop a branch of the tree if we
reach a node labeled with (G′, k′) such that either k′ = 0 (we have used up the
budget k) or G′ has no edges (we have found a vertex cover of size k − k′). Note
that in the second case we can find the vertex cover of size k−k′ by collecting the
vertices that have been removed from G along the path from the root to the leaf.
It is easy to see the outlined algorithm is correct and decides VC in time O(2kn)
for graphs with n vertices. Using the O∗-notation [Woe03] which suppresses
polynomial factors, we can state the running time of the above algorithm by the
expression O∗(2k).

The above algorithm for VC illustrates the method of bounded search trees
for the design of fixed-parameter algorithms. Kernelization is another essential
technique, which shrinks the size of the given problem instance by employing
(polynomial-time) data reduction rules until the size is bounded by a function of
the parameter k. The reduced instance is called a problem kernel . Once a problem
kernel is obtained for a decidable problem, we know that the problem is fixed-
parameter tractable, since the running time of any brute force algorithm depends
on the parameter k only. The converse is also true: whenever a parameterized
problem is fixed-parameter tractable, then the problem admits a polynomial-time
kernelization [CCDF97]. Consider the VC problem again as an example. It is
easy to see that a vertex v of degree greater than k must belong to every vertex
cover of size at most k; hence if we have such a vertex v, we can reduce the instance
(G, k) to (G − v, k − 1). Assume that we are left with the instance (G′, k′) after
we have applied the reduction rule as long as possible (if k′ < 0, then we reject
the instance). Observe that each vertex of G′ can cover at most k edges. Hence,
if G′ has more than k2 edges, we know that G has no vertex cover of size at most
k. On the other hand, if G′ has at most k2 edges, we have a problem kernel that
can be solved by brute force.

The current best worst-case time complexity for VC is due to Chen, Kanj,
and Xia [CKX10]. The algorithm is based on more sophisticated kernelization
rules and achieves a running time of O∗(1.2738k). Further information on ker-
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nelization can be found in Guo and Niedermeier’s survey [GN07]. Gaspers and
Szeider [GS14] gave several kernelization results that are specifically relevant for
parameterized satisfiability.

Next, we turn our attention to fixed-parameter intractability, to problems that are
believed to be not fixed-parameter tractable. Consider for example the following
parameterized independent set problem.

IS
Instance: A graph G = (V E) and a non-negative integer k.
Parameter: k.
Task: Decide whether there is a subset S ⊆ V of size at least k such
that no edge of G joins two vertices in S (S is an independent set
of G).

No fixed-parameter algorithm for this problem is known, and there is strong evi-
dence to believe that no such algorithm exists [DF99]. For example, fixed-param-
eter tractability of IS would imply the existence of an O∗(2o(n))-time algorithm
for the n-variable 3-SAT problem [FG06]. The assumption that the latter is not
the case is known as the Exponential Time Hypothesis (ETH) [IPZ01]; see also
Chapter 12 for more information on the ETH.

Thus, VC is fixed-parameter tractable, whereas IS is believed to be not.
Note, however, that under classical polynomial-time many-to-one reductions, VC
and IS are equivalent for trivial reasons: a graph with n vertices has a vertex
cover of size k if and only if it has an independent set of size k′ = n − k. Hence,
to distinguish between fixed-parameter tractable and fixed-parameter intractable
problems, one needs a notion of reduction that restricts the way of how param-
eters are mapped to each other. An fpt-reduction from a parameterized decision
problem L to a parameterized decision problem L′ is an algorithm that transforms
an instance (I, k) of L into an instance (I ′, g(k)) of L′ in time O(f(k)∥I∥c) (f ,g
are arbitrary computable functions, c is an arbitrary constant), such that (I, k)
is a yes-instance of L if and only if (I ′, g(k)) is a yes-instance of L′. It is easy to
see that indeed, if L′ is fixed-parameter tractable and there is an fpt-reduction
from L to L′, then L is fixed-parameter tractable as well. Note that the reduction
from VC to IS as sketched above is not an fpt-reduction since k′ = n − k and so
k′ is not a function of k alone.

The class of problems that can be reduced to IS under fpt-reductions is de-
noted by W[1]. A problem is called W[1]-hard if IS (and so every problem in W[1])
can be reduced to it by an fpt-reduction. A problem is called W[1]-complete if it
is W[1]-hard and belongs to W[1]. Thus, a problem is W[1]-complete if and only
if it is equivalent to IS under fpt-reductions. A similar terminology applies to
other parameterized complexity classes.

Consider the following parameterized hitting set problem (it is the basis for
several hardness results that we will consider in the remainder of this chapter).

HS
Instance: A family S of finite sets S1, . . . , Sm and a non-negative
integer k.
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Parameter: k.
Task: Decide if there is a subset R ⊆ ∪m

i=1 Si of size at most k such
that R ∩ Si ̸= ∅ for all i = 1, . . . , m (R is a hitting set of S).

Observe that, indeed, a search tree algorithm as outlined above for VC does
not yield fixed-parameter tractability for HS: since the size of the sets Si is
unbounded, a search tree algorithm would entail an unbounded branching factor.
If, however, the size of the sets Si is bounded by some constant q, then the problem
(known as q-HS) becomes fixed-parameter tractable. The obvious search tree
algorithm has time complexity O∗(qk). For q = 3, Wahlström [Wah17] developed
a fixed-parameter algorithm with running time O∗(2.076k).

HS is W[1]-hard, but no fpt-reduction from HS to IS is known, and it is
believed that such a reduction does not exist. In other words, HS appears to be
harder than the problems in W[1]. The class of problems that can be reduced
to HS under fpt-reductions is denoted by W[2]. In fact, W[1] and W[2] form the
first two levels of an infinite chain of classes W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[P],
the so-called “weft hierarchy.” All inclusions are believed to be proper. There are
several sources of theoretical evidence for assuming that the classes of the weft
hierarchy are distinct from FPT: accumulating evidence [Ces06], evidence based
on parameterized analogs of Cook’s Theorem [DF99], and evidence obtained by
proof complexity methods [DMS11].

We say that a parameterized problem is XP-tractable if instances (I, k) can
be solved in time O(∥I∥f(k)) for a computable function f . The class XP consists
of all XP-tractable parameterized decision problems. FPT ̸= XP is provably
true [DF99, FG06]. Together with the classes of the weft hierarchy, we have the
following chain of inclusions:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP.

17.2.2. CNF Formulas and Truth Assignments

Before discussing parameterizations of SAT, let us introduce some notation and
basic notions related to SAT. We consider propositional formulas in conjunctive
normal form (CNF), short CNF formulas or just formulas, represented as a finite
set of clauses. A clause is a finite set of literals, and a literal is a negated or
un-negated propositional variable. For a literal ℓ we denote by ℓ the literal of
opposite polarity, i.e., x = ¬x and ¬x = x. We also write x1 = x and x0 = ¬x.
Similarly, for a set L of literals, we put L = { ℓ : ℓ ∈ L }. We say that two
clauses C, D overlap if C ∩ D ̸= ∅, and we say that C and D clash if C and D
overlap. For a clause C we denote by var(C) the set of variables that occur
(negated or un-negated) in C; for a formula F we put var(F ) =

∪
C∈F var(C).

We measure the size ∥F∥ of a formula F by its length
∑

C∈F |C|.
CNF formulas F and F ′ are isomorphic if they differ only in the name of

variables. That is, if F = {C1, . . . , Cm}, F ′ = {C ′
1, . . . , C

′
m}, and there is a

one-to-one mapping f : var(F ) → var(F ′) such that C ′
i = { (f(x))ε : xε ∈ Ci,

x ∈ var(F ), ε ∈ {0, 1} } holds for all 1 ≤ i ≤ m.
CNF formulas F and F ′ are renamings of each other if there exists a

set X ⊆ var(F ) such that F ′ can be obtained from F by flipping the polarity
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Figure 17.1. Graphs associated with the CNF formula F = {C1, . . . , C5} with

C1 = {u, ¬v, ¬y}, C2 = {¬u, z}, C3 = {v, ¬w}, C4 = {w, ¬x}, C5 = {x, y, ¬z}; the primal

graph G(F ), the incidence graph G∗(F ), and the dual graph Gd(F ).

of all literals ℓ ∈ X ∪ X. That is, if F = {C1, . . . , Cm}, F ′ = {C ′
1, . . . , C

′
m}, and

C ′
i = { ℓ : ℓ ∈ Ci \ (X ∪ X) } ∪ { ℓ : ℓ ∈ Ci ∩ (X ∪ X) }.

A truth assignment is a mapping τ : X → {0, 1} defined on some set X of
variables. If X = {x} we denote τ simply by “x = 1” or “x = 0”. We extend τ
to literals by setting τ(¬x) = 1 − τ(x) for x ∈ X. F [τ ] denotes the formula
obtained from F by removing all clauses that contain a literal ℓ with τ(ℓ) = 1
and by removing from the remaining clauses all literals ℓ′ with τ(ℓ′) = 0. F [τ ]
is the restriction of F to τ . Note that var(F [τ ]) ∩ X = ∅ holds for every truth
assignment τ : X → {0, 1} and every formula F . A truth assignment τ : X →
{0, 1} satisfies a clause C if τ(ℓ) = 1 for at least one literal ℓ ∈ C; τ satisfies
a formula F if it satisfies all clauses of F . Note that τ satisfies F if and only
if F [τ ] = ∅. A formula F is satisfiable if there exists a truth assignment that
satisfies F ; otherwise, F is unsatisfiable. A truth assignment τ : var(F ) → {0, 1}
is called total for the formula F . A satisfying total truth assignment of F is called
a model of F . We denote the number of models of a formula F by #(F ). Two
formulas are equisatisfiable if either both are satisfiable or both are unsatisfiable.
SAT is the problem of deciding whether a given formula is satisfiable. #SAT is
the problem of determining the number of models of a given formula.

Let x ∈ var(F ) and ε ∈ {0, 1}. If {xε} ∈ F , then F and F [x = ε] are
equisatisfiable; F [x = ε] is said to be obtained from F by unit propagation. If
some clause of F contains xε but none contains x1−ε, then xε is called a pure
literal of F . If xε is a pure literal of F , then obviously F and F [x = ε] are
equisatisfiable. In that case, we say that F [x = ε] is obtained from F by pure
literal elimination.

17.2.3. Graphs and Hypergraphs Associated with CNF Formulas

In this section, we will discuss several graphs and hypergraphs that can be used
to represent the structure of a CNF formula.

Perhaps the most prominent graph representation of a CNF formula F is the
primal graph G(F ). The vertices of G(F ) are the variables of F ; two variables x, y
are joined by an edge if they occur in the same clause, that is, if x, y ∈ var(C)
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Hd(F )

Figure 17.2. The hypergraph H(F ) and the dual hypergraph Hd(F ) associated with the CNF

formula F of Figure 17.1.

for some C ∈ F . Another important graph is the incidence graph G∗(F ). The
vertices of G∗(F ) are the variables and clauses of F ; a variable x and a clause C
are joined by an edge if x ∈ var(C). If we orient the edges of the incidence graph
according to the polarity of the literals, then we obtain the directed incidence
graph D∗(F ): an edge is directed from C to x if x ∈ C, and directed from x
to C if ¬x ∈ C. In analogy to the primal graph, one can also define the dual
graph Gd(F ). The vertices of Gd(F ) are the clauses of F ; two clauses C1, C2

are joined by an edge if there is a variable occurring in both of them, that is, if
x ∈ var(C1) ∩ var(C2) for some x ∈ var(F ). We also consider the following two
graphs, the conflict graph G�(F ) and the consensus graph G☼(F ), both having
as vertices the clauses of F , where in G�(F ) two clauses C1, C2 are joined by an
edge if they clash (C1 ∩ C2 ̸= ∅), and in G☼(F ) two clauses C1, C2 are joined by
an edge if they do not clash (C1 ∩ C2 = ∅).

Figure 17.1 shows the primal graph, the incidence graph, and the dual graph
of a CNF formula.

Hypergraphs generalize graphs in the sense that each edge may connect more
than just two vertices, i.e., the edges (called hyperedges) of a hypergraph are non-
empty sets of vertices. We associate to each CNF formula F its hypergraph H(F ).
The vertices of H(F ) are the variables of F and for each C ∈ F the set var(C)
represents a hyperedge of H(F ). The dual hypergraph Hd(F ) is defined symmet-
rically: the vertices of Hd(F ) are the clauses of F ; for each variable x, the set of
clauses C with x ∈ var(C) forms a hyperedge. See Figure 17.2 for examples.

17.3. Parameterized SAT

In the first part of this section we will develop the framework for parameterized
SAT decision and model counting, where the parameter represents structural in-
formation of the instances. This framework will be used throughout the remainder
of this chapter. In the second part of this section we will discuss parameterized
optimization problems that are related to satisfiability.
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17.3.1. Satisfiability Parameters

A satisfiability parameter is a computable function π that assigns to every for-
mula F a non-negative integer π(F ). We assume that π(F ) = π(F ′) if two
formulas F, F ′ are isomorphic (see Section 17.2.2), i.e., π is invariant with respect
to isomorphisms.

We are interested in satisfiability parameters that allow fixed-parameter trac-
tability of satisfiability decision for instances F with respect to the parameter k =
π(F ). Accordingly, for a satisfiability parameter π we consider the following
generic parameterized problem.

SAT(π)
Instance: A formula F and a non-negative integer k.
Parameter: k.
Task: Decide whether F is satisfiable, or determine that π(F ) > k.

This way of parameterizing the satisfiability problem was suggested by Szei-
der [Sze04b]. It avoids the requirement of exactly recognizing formulas F with
π(F ) ≤ k and is related to the concept of a “robust algorithm” introduced by
Spinrad [Spi03]. Marx and Schlotter [MS10, MS11] used the predicate “permis-
sive” to describe parameterized problems of this form, in contrast to “strict”
problems, which entail the exact determination of the parameter value. We can,
as well, formulate model counting as a permissive problem:

#SAT(π)
Instance: A formula F and a non-negative integer k.
Parameter: k.
Task: Compute #(F ) or determine that π(F ) > k.

If we solve a parameterized satisfiability problem in the strict sense, we have to
solve the parameterized verification problem:

VER(π)
Instance: A formula F and a non-negative integer k.
Parameter: k.
Task: Decide whether π(F ) ≤ k.

We assume that an affirmative solution to the verification problem is backed up
with a certain witness for “π(F ) ≤ k” in form of an auxiliary structure, which can
subsequently be used for deciding the satisfiability of F or counting the models
of F .

In some cases, VER(π) is W[1]-hard or just not known to be fixed-parameter
tractable, but we can still use π for fixed-parameter tractability of SAT(π) or
#SAT(π) if VER(π) is fixed-parameter approximable. That is, if there is a
computable function g and a fixed-parameter algorithm that, given F and k,
either outputs a witness for π(F ) ≤ g(k), or correctly decides that π(F ) > k. We
can use the witness for π(F ) ≤ g(k) as an input for a parameterized algorithm
that decides the satisfiability of F or computes #(F ), albeit the running time is
worse than if we had a witness for π(F ) ≤ k.

Usually it is very difficult to establish parameterized hardness results for the
permissive problems SAT(π) and #SAT(π), or to provide theoretical evidence
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that VER(π) is not fixed-parameter approximable. We have only very few ex-
amples for such hardness results (see, e.g., Theorems 17.4.5, 17.4.8, and 17.4.5).
Although a parameterized hardness result for VER(π) does not rule out the
fixed-parameter tractability of SAT(π), it still provides the valuable insight that
the fixed-parameter tractability of SAT(π) in the strict sense is unlikely.

The notion of dominance allows us to compare two satisfiability parameters π
and π′ with respect to their generality. We say that π dominates π′ if there exists
a computable function f such that for every formula F we have

π(F ) ≤ f(π′(F )).

Furthermore, π strictly dominates π′ if π dominates π′ but not vice versa. Fi-
nally, π and π′ are domination incomparable if neither dominates the other, and
domination equivalent if they dominate each other. If π strictly dominates π′

we also say that π is more general than π′. Dominance, strict dominance, and
domination equivalence are transitive relations between satisfiability parameters.
Furthermore, since strict dominance is antisymmetric, it gives rise to a partial
ordering of satisfiability parameters. The next result follows directly from the
definitions.

Lemma 17.3.1. If π dominates π′, then there is an fpt-reduction from SAT(π′)
to SAT(π).

Thus, if SAT(π) is fixed-parameter tractable and π dominates π′, then
SAT(π′) is also fixed-parameter tractable. It is an important goal to find satis-
fiability parameters π that are as general as possible and for which both prob-
lems SAT(π) and VER(π) are fixed-parameter tractable. We conclude this sec-
tion with three trivial examples of satisfiability parameters.

Example 17.3.1. Let n(F ) denote the number of variables of a formula F . The
verification problem VER(n) is trivial. The obvious algorithm that considers
all possible truth assignments of F runs in time O∗(2n(I)) and is, therefore, a
fixed-parameter algorithm with respect to n. Hence SAT(n) is fixed-parameter
tractable.

A satisfiability parameter π becomes an interesting one if every class Cπ
k

contains formulas with an arbitrarily large number of variables; i.e., if π is more
general than the satisfiability parameter n considered in the example above.

Example 17.3.2. Let ml(F ) denote the maximum length of clauses in a SAT
instance F (with ml(F ) = 0 if F = ∅). From the NP-completeness of 3SAT
if follows that SAT(ml) is not fixed-parameter tractable unless P = NP. So
SAT(ml) is probably not even in XP.

Example 17.3.3. Let A be a deterministic polynomial-time algorithm that ap-
plies polynomial-time simplification and propagation rules to a formula without
changing its satisfiability. Say, the algorithm applies unit propagation and pure
literal elimination as long as possible (see Section 17.2.2 above), plus possibly
some further rules. For more powerful preprocessing rules see, e.g., the work of
Bacchus and Winter [BW04]. Let A(I) denote the instance obtained from I by
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applying algorithm A, and let nA(I) denote the number of variables of A(I) (if
A(I) depends on a particular ordering of variables and clauses, let nA(I) denote
the largest number over all such orderings).

It is easy to see that the problem SAT(nA) is fixed-parameter tractable since
after the polynomial-time preprocessing we are left with an instance A(I) whose
number of variables is bounded in terms of the parameter k, and therefore any
brute-force algorithm applied to A(I) is a fixed-parameter algorithm. In other
words, SAT(nA) is fixed-parameter tractable since the preprocessing provides a
kernelization. VER(nA) is easy, as we just need to count the number of variables
left after applying the polynomial-time preprocessing algorithm A. Clearly nA is
more general than n (Example 17.3.1) since one can easily find formulas where,
say, unit propagation eliminates an arbitrarily large number of variables.

17.3.2. Optimization Problems

Max-SAT is the optimization version of the satisfiability problem, where, given a
CNF formula F and an integer k, one asks whether there is a truth assignment
that satisfies at least k clauses of F . In the classical setting, Max-SAT is NP-
complete even if all clauses contain at most two literals (Max-2-SAT). What
happens if we consider k as the parameter?

Under this parameterization, Max-SAT is easily seen to be fixed-parameter
tractable (we roughly follow [MR99]). Let (F, k) be an instance of Max-SAT.
For a truth assignment τ we write s(τ) for the number of clauses of F that
are satisfied by τ . Moreover, let τ∗ denote the extension of τ that includes all
variable assignments obtained by (iterated and exhaustive) application of pure
literal elimination. For example, if F = {{w, x}, {x, y, z}, {y, z}, {w, z}} and
τ = {(w, 1)}, then τ∗ = {(w, 1), (x, 1), (y, 0), (z, 0)}. We construct a binary search
tree T whose nodes are truth assignments. We start with the empty assignment
as the root and extend the tree downwards as follows. Consider a node τ of T .
If s(τ∗) ≥ k or if s(τ∗) < k and F [τ∗] = {∅}, then we do not add any children
to τ ; in the first case we label τ as “success leaf,” in the second case as “failure
leaf.” Otherwise, if s(τ∗) < k and F [τ∗] ̸= {∅}, we pick a variable x ∈ F [τ∗] and
we add below τ the children τ0 = τ ∪ {(x, 0)} and τ1 = τ ∪ {(x, 1)}. Note that
in this case both s(τ0) and s(τ1) are strictly greater than s(τ). It is easy to see
that there exists a total truth assignment τ of F that satisfies at least k clauses
if and only if T has a success leaf (for the only-if direction note that τ defines
a path from the root of T to a success leaf). Since at each branching step the
number of satisfied clauses increases, it follows that T is of depth at most k and
so has at most 2k leaves. Hence the search algorithm runs in time O∗(2k) which
renders Max-SAT fixed-parameter tractable for parameter k. By sophisticated
case distinctions, one can make the algorithm significantly faster. The currently
fastest algorithm is runs in time O∗(1.3248k) [CXW17].

Note that one can always satisfy at least half of the clauses of a CNF for-
mula (the all-true or the all-false assignment will do). Thus, a more challenging
parameter for Max-SAT is the number k − |F |/2 (this constitutes a parameteri-
zation “above the guaranteed value” |F |/2). Indeed, by a result of Mahajan and
Raman [MR99], Max-SAT is fixed-parameter tractable also under this more gen-
eral setting. For an r-CNF input formula, where r is an arbitrary constant, one
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can always satisfy at least a 1 − 2−r fraction of its clauses, and such an assign-
ment can be found in polynomial time using Johnson’s Algorithm [Joh73]. Alon
et al. [AGK+11] showed that Max-SAT for r-CNF formulas is fixed-parameter
tractable parameterized above this bound, answering a question posed by Maha-
jan et al. [MRS06].

One can consider an even more challenging approach, taking the dual param-
eter k′ = |F | − k; that is, to parameterize by the number of clauses that remain
unsatisfied. It is easy to see that for every constant k′ the problem is NP-complete
in general and polynomial-time solvable for 2CNF formulas (Max-2-SAT). It fol-
lows from recent results of Razgon and O’Sullivan [RO08] that Max-2-SAT is
fixed-parameter tractable for the dual parameter k′. We will return to this prob-
lem again in Section 17.4.1.

Apart from Max-SAT there are also other interesting optimization versions of
satisfiability. For example, Bounded-CNF-SAT asks whether a CNF formula can
be satisfied by setting at most k variables to true. With parameter k, Bounded-
CNF-SAT is W[2]-complete; Bounded-3-CNF-SAT, however, is easily seen to
be fixed-parameter tractable [DMS11]. A similar problem, Weighted-CNF-SAT ,
asks for a satisfying assignment that sets exactly k variables to true. Weighted-
CNF-SAT is W[2]-complete; Weighted-c-CNF-SAT is W[1]-complete for every
constant c ≥ 2 [DF99].

17.4. Backdoor Sets

As outlined in the introduction, every satisfiability parameter π gives rise to the
hierarchy of classes

Cπ
0 ⊆ Cπ

1 ⊆ Cπ
2 ⊆ · · ·

where class Cπ
k contains all CNF formulas F with π(F ) ≤ k. We call this hierarchy

the π-hierarchy, and we refer to the class at the lowest level of the hierarchy as
the base class. The following are necessary conditions for a class C of CNF
formulas under which it could possibly act as the base class for the π-hierarchy of
some satisfiability parameter π such that both SAT(π) and VER(π) are fixed-
parameter tractable:

1. C is closed under isomorphism;
2. membership in C can be decided in polynomial time;
3. satisfiability of elements of C can be decided in polynomial time.

Some authors also require that a base class is self-reducible, that is, if F ∈ C
then F [x = 0], F [x = 1] ∈ C for all x ∈ var(F ). Most natural base classes are
self-reducible.

Next, we will see how one can define a π-hierarchy starting at an arbitrary
base class C utilizing the notion of “backdoor sets” which was introduced by
Williams, Gomes, and Selman [WGS03] for analyzing the behavior of SAT al-
gorithms. Actually, with different terminology and context, backdoor sets have
already been studied by Crama, Elkin, and Hammer [CEH97]. Consider a CNF
formula F and a set B ⊆ var(F ) of variables. B is called a strong C-backdoor
set of F if for every truth assignment τ : B → {0, 1} the restriction F [τ ] belongs
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to the base class C. We also introduce the notion of weak backdoor sets. A set
B ⊆ var(F ) is called a weak C-backdoor set of F if there exists truth assignment
τ : B → {0, 1} such that the restriction F [τ ] is satisfiable and belongs to the base
class C. We denote the size of a smallest strong C-backdoor set of F by bC(F )
and the size of a smallest weak a C-backdoor set of F by wbC(F ).

Example 17.4.1. Consider the base class Horn of Horn formulas (an instance is
Horn if each of its clauses contains at most one un-negated variable) and consider
the formula F =

{
{u, v, w}, {u, x, y}, {u, v, x, y}, {v, y, z}, {u, v, w, z}

}
. The

set B = {u, v}, is a strong Horn-backdoor set since F [τ ] ∈ Horn for all four
truth assignments τ : B → {0, 1}.

Note that F is satisfiable if and only if at least one of the restrictions F [τ ],
τ : B → {0, 1}, is satisfiable. Thus, if we know a strong C-backdoor set B
of F , we can decide the satisfiability of F by deciding the satisfiability of at
most 2|B| polynomial-time solvable formulas that belong to C (this is a O∗(2k)
fixed-parameter algorithm with respect to the parameter k = |B|). Of course
we can find a C-backdoor set of size at most k (or decide that it does not exist)
by trying all subsets B ⊆ var(F ) with |B| ≤ k, and checking whether all F [τ ],
τ : B → {0, 1}, belong to C; consequently VER(bC) ∈ XP. However, as we
shall see in the following section, VER(bC) can or cannot be fixed-parameter
tractable, depending on the base class C.

For an algorithm that provides fixed-parameter tractability of VER(bC),
we will always assume that it provides, as a witness for bC(C) ≤ k, a strong
C-backdoor set of F size of size ≤ k. Hence the fixed-parameter tractability of
VER(bC) implies the fixed-parameter tractability of SAT(bC).

As mentioned above, a strong C-backdoor set of F of size k reduces the
satisfiability of F to the satisfiability of at most 2k instances in C. The notions
of backdoor trees and backdoor DNFs [SS08, OSS21] make this reduction explicit.
This allows a refined worst-case estimation of the number of instances in C that
need to be checked, which can be exponentially smaller than 2k.

17.4.1. Horn, 2CNF, and Generalizations

Horn and 2CNF are two important base classes for which the detection of strong
backdoor sets is fixed-parameter tractable.

Theorem 17.4.1 ([NRS04]). For C ∈ {Horn, 2CNF} the problems SAT(bC)
and VER(bC) are fixed-parameter tractable.

The algorithms of Nishimura et al. rely on the concept of variable deletion.
For explaining this, it is convenient to consider the following variant of backdoor
sets: A set B ⊆ var(F ) is called a deletion C-backdoor set of F if F − B belongs
to C. Here F − B denotes the CNF formula {C \ (B ∪ B) : C ∈ F }, i.e., the
formula obtained from F by removing from the clauses all literals of the form ℓ
or ℓ for ℓ ∈ B. Let dbC(F ) denote the size of a smallest deletion C-backdoor set
of F . For many important base classes C, deletion C-backdoor sets are also strong
C-backdoor sets. In particular, this is the case if the base class is clause induced ,
i.e., if whenever F belongs to C, all subsets of F belong to C as well. If C is clause
induced, then F [τ ] ⊆ F − B holds for every τ : B → {0, 1}.
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Lemma 17.4.2. Let C be a clause-induced base class and let F be an arbitrary
formula. Then every deletion C-backdoor set of F is also a strong C-backdoor set
of F .

For example, the base classes Horn and 2CNF are clause induced. For these
two base classes, even the converse direction of Lemma 17.4.2 holds.

Lemma 17.4.3 ([CEH97, NRS04]). Let C ∈ {Horn, 2CNF} and let F be an
arbitrary formula. Then the strong C-backdoor sets of F are exactly the deletion
C-backdoor sets of F .

Example 17.4.2. Consider the formula F of Example 17.4.1 and the strong
Horn-backdoor set B = {u, v} of F (note that B is also a strong 2CNF-backdoor
set of F ). Indeed, F − B =

{
{w}, {x, y}, {x, y}, {y, z}, {w, z}

}
is a Horn

formula.

Nishimura et al. describe a fixed-parameter algorithm for the detection of
strong Horn-backdoor sets. Their algorithm is based on bounded search trees
similarly to the vertex cover algorithm described above. In fact, we can directly
use a vertex cover algorithm. To this end, we associate with a formula F the
positive primal graph G. The vertices of G are the variables of F , and two
variables x, y are joined by an edge if and only if x, y ∈ C for some clause C of F
(negative occurrences of variables are ignored). Clearly, the positive primal graph
can be constructed in time polynomial in the size of F . Now it is easy to see that
for sets B ⊆ var(F ) the following properties are equivalent:

1. B is a strong Horn-backdoor set of F ;
2. B is a deletion Horn-backdoor set of F ;
3. B is a vertex cover of G.

Thus, any vertex cover algorithm, such as the O∗(1.2738k) algorithm by Chen et
al. [CKX10] mentioned above, can be used to find a strong Horn-backdoor set.

For the detection of strong 2CNF-backdoor sets one can apply a similar ap-
proach. Given a CNF formula F and a positive integer k, we want to determine
whether F has a strong 2CNF-backdoor set of size at most k. Let S be the set of
all size-3 subsets S of var(F ) such that S ⊆ var(C) for some clause C of F . Evi-
dently, S can be constructed in polynomial time. Observe that a set B ⊆ var(F )
is a hitting set of S if and only if B is a deletion 2CNF-backdoor set of F . By
Lemma 17.4.3, the latter is the case if and only if B is a strong 2CNF-backdoor
set of F . Thus, Wahlström’s algorithm for 3-HS [Wah17] solves VER(b2CNF)
in time O∗(2.076k).

A generalization of backdoor sets, in particular Horn- and 2CNF-backdoor
sets, to quantified Boolean formulas has been proposed by taking the variable
dependencies caused by the quantifications into account [SS09].

The classes Horn and 2CNF are two of the five classes of CNF formulas that
can be identified with tractable satisfiability problems considered by Schaefer in
his seminal work on generalized satisfiability problems [Sch78]. The remaining
three are the classes Horn− of anti-Horn formulas (each clause contains at most
one negative literal), and for ε ∈ {0, 1} the classes ε-Val of ε-valid formulas.
A CNF-formula F is ε-valid if each nonempty clause ∅ ̸= C ∈ F contains at
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least one literal xε with x ∈ var(C). The affine Boolean formulas considered by
Schaefer do not correspond naturally to a class of CNF formulas; hence we do
not consider them here.

For a given formula F we can compute in polynomial time a smallest deletion
ε-Val-backdoor set (which is also a smallest strong ε-Val-backdoor set) by taking
the union of var(C) over all C ∈ F with C ⊆ { x1−ε : x ∈ var(C) }. We put

Schaefer = {Horn,Horn−, 2CNF, 0-Val, 1-Val}

and summarize the discussed results as follows.

Theorem 17.4.4. The problem SAT(bC) is fixed-parameter tractable for all C ∈
Schaefer.

The detection of weak C-backdoor sets, however, is W[2] hard for several base
classes, including the classes in Schaefer. Gaspers and Szeider gave a generic re-
duction [GS12b, Proposition 1] that can be instantiated for various base classes C.
For the classes C ∈ Schaefer hardness results even for the permissive problems
SAT(wbC) are known:

Theorem 17.4.5 ([GS12b]). SAT(wbC) is W[1]-hard for all C ∈ Schaefer

A significant improvement over Horn as the base class for strong backdoor
sets is the consideration of the class UP of CNF formulas that can be decided
by unit propagation. That is, a CNF formula F belongs to UP if and only if
after repeated application of unit propagation one is either left with the empty
formula (i.e., F is satisfiable) or with a formula that contains the empty clause
(i.e., F is unsatisfiable). Unfortunately, VER(bUP) turns out to be complete for
the class W[P]. This holds also true if one considers the base class PL of CNF
formulas decidable by pure literal elimination, and by the base class UP + PL of
CNF formulas decidable by a combination of unit propagation and pure literal
elimination. Thus UP + PL contains exactly those formulas that can be decided
by the polynomial-time “subsolver” of the basic DPLL procedure [WGS03].

The following result provides strong evidence that the detection of strong
backdoor sets with respect to the base classes PL, UP, and UP + PL is not
fixed-parameter tractable. Let us write

Subsolver = {PL, UP, UP + PL}.

Theorem 17.4.6 ([Sze05]). For C ∈ Subsolver, the problem VER(bC) is
W[P]-complete.

Given this result, it appears to be very unlikely that one can find a size-
k strong backdoor set with respect to the base class of formulas decidable by
DPLL subsolvers significantly faster than by trying all sets of variables of size k.
Also, the consideration of deletion backdoor sets does not offer an opportunity
for overcoming this limitation: the classes UP, PL, and UP + PL are not clause
induced—indeed, not every deletion backdoor set is a strong backdoor set with
respect to these classes.

However, the class RHorn of renamable Horn formulas is an interesting
base class that is clause induced. A formula is renamable Horn if some renaming
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of it is Horn. It is well known that recognition and satisfiability of renamable
Horn formulas is feasible in polynomial time [Lew78]. A renamable Horn formula
is unsatisfiable if and only if we can derive the empty clause from it by unit
propagation; also, whenever we can derive from a formula the empty clause by
means of unit resolution, then some unsatisfiable subset of the formula is renam-
able Horn [KBL99]. Thus RHorn lies in a certain sense half way between UP
and Horn. Since RHorn is clause induced, both strong and deletion backdoor
sets are of relevance. In contrast to Horn, not every strong RHorn-backdoor set
is a deletion RHorn-backdoor set. Indeed, bRHorn is a more general satisfiability
parameter than dbRHorn as can be seen from Lemma 17.4.2 and the following
example.

Example 17.4.3. For 1 ≤ i ≤ n, let Fi =
{
{xi, yi, z}, {xi, yi, z}, {xi, yi},

{xi, yi}
}
, and consider F =

∪n
i=1 Fi. Evidently {z} is a strong RHorn-backdoor

set of F , since each proper subset of
{
{xi, yi}, {xi, yi}, {xi, yi}, {xi, yi}

}
, 1 ≤ i ≤

n, is renamable Horn. However, every deletion RHorn-backdoor set of F must
contain at least one variable xi or yi for all 1 ≤ i ≤ n. Hence bRHorn(F ) ≤ 1 and
dbRHorn(F ) ≥ n, which shows that bRHorn is more general than dbRHorn.

The detection of strong RHorn-backdoor sets is W[1]-hard [GS12b], but the
detection of deletion RHorn-backdoor sets is fixed-parameter tractable:

Theorem 17.4.7 ([RO08, GS12b]). The problems VER(dbRHorn) and
SAT(dbRHorn) are fixed-parameter tractable.

Even the corresponding permissive problem is hard as well.

Theorem 17.4.8 ([GS12b]). SAT(wbRHorn) is W[1]-hard.

Boros et al. [BCH90] introduced an interesting class of CNF formulas, later
called QHorn [BHS94], with favorable algorithmic properties: both recognition
as well as deciding satisfiability of QHorn formulas can be performed in linear
time. The class QHorn properly contains the fundamental classes RHorn and
2CNF:

Horn ⊊ RHorn ⊊ QHorn ⊋ 2CNF.

A CNF formula F is in QHorn if there is a certifying function β : var(F ) ∪
var(F ) → {0, 1

2 , 1} with β(x) = 1 − β(x̄) for every x ∈ var(F ) such that∑
l∈C β(l) ≤ 1 for every clause C of F .

As QHorn generalizes RHorn, it is not surprising, that the problems
VER(bQHorn) and VER(wbQHorn) are W[2]-hard as well. However, Gaspers
et al. [GOR+16] showed that the detection of deletion QHorn-backdoor sets is
fixed-parameter approximable, which implies the fixed-parameter tractability of
SAT(dbQHorn).

Theorem 17.4.9 ([GOR+16]). The problem SAT(dbQHorn) is fixed-parameter
tractable.

This result was later improved by Ramanujan and Saurabh [RS17] who de-
veloped a general algorithmic framework for certain skew symmetric cut prob-
lems in graphs, and applied their method to show fixed-parameter tractability
of VER(dbQHorn).
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Base Class VER(wbC) VER(bC) VER(dbC)
weak strong deletion

C ∈ Schaefer W[2]-h [NRS04] (FPT) FPT [NRS04] FPT [NRS04]

C ∈ Subsolver W[P]-c [Sze05] W[P]-c [Sze05] n/a

Forest W[2]-h [GS12a] (FPT [GS12a]) ?† (?) FPT

RHorn W[2]-h W[2]-h (?) FPT [RO08]

QHorn W[2]-h[GOR+16] W[2]-h[GOR+16] (?) FPT[RS17]

CLU W[2]-h [NRS07] (FPT) W[2]-h [NRS07] (FPT [NRS07]) FPT [NRS07]

( ) It is indicated in parentheses if the complexity of the problem for 3CNF formulas is different
from general CNF or unknown.

? It is open whether the problem is fixed-parameter tractable.
† Theorem 17.4.11 shows that the problem is fixed-parameter approximable.
n/a Deletion backdoor sets are undefined for base classes that are not clause-induced.

Table 17.1. The parameterized complexity of the detection of weak, strong, and deletion

C-backdoor sets, i.e., VER(wbC), VER(bC), and VER(dbC), respectively, for various base

classes C.

Table 17.1, which is adapted from a survey paper [GS12b], gives an overview
of parameterized complexity results of backdoor set detection problems for various
base classes.

17.4.2. Heterogeneous Base Classes

One can enhance the power of a strong backdoor set B of a formula F , by allowing
that for different assignments τ to B, F [τ ] belongs to different base classes. This
enhancement can be expressed in terms of heterogeneous base classes which are
the union of individual base classes.

Example 17.4.4. Consider the following CNF formula Fn = {C,D1, . . . , Dn}
where C = {x,¬a1, . . . ,¬an} and Di = {¬x, bi, ci}. It is easy to see that any
strong Horn-backdoor set needs to contain at least one of the variables bi or ci

from each clause Di, hence such a backdoor set must be of size ≥ n; on the other
hand, any strong 2CNF-backdoor set must contain at least n − 2 variables from
the clause C; However, Fn[x = 0] ∈ Horn and Fn[x = 1] ∈ 2CNF, hence the
singleton {x} is a strong Horn∪2CNF-backdoor set, where Horn∪2CNF is the
heterogeneos base class consisting of all Horn and all 2CNF formulas. Note that
any F ∈ Horn ∪ 2CNF contains either only Horn clauses or only 2CNF clauses,
not a mixture of both.

Weak backdoor sets with respect to heterogeneous base classes can also be
considered. Identifying a base class with a class of instances that are solvable
by a particular polynomial-time subsolver, one can consider a heterogeneous base
class as a “portfolio subsolver,” where for each instance the best suitable subsolver
from the portfolio is chosen.

The concept of heterogeneos base classes was introduced by Gaspers et
al. [GMO+17] who studied the parameterized complexity of backdoor detection
with respect to heterogeneos base classes in the context of SAT and CSP. For SAT,
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they gave a full classification of the problem for heterogeneos base classes that
are composed of base classes from Schaefer. For a nonempty subset S ⊆ Schaefer,
let S∪ =

∪
C∈S C. It turned out that the detection of strong S∪-backdoor sets

is fixed-parameter tractable for all nonempty subsets S ⊆ Schaefer that do not
contain any of the four pairs {Horn,Horn−}, {0-Val, 1-Val}, {Horn, 1-Val},
{0-Val,Horn−}, and is W[2]-hard otherwise. Thus, from the 31 nonempty sub-
sets of Schaefer, the problem is fixed-parameter tractable for 13 of them, and
W[2]-hard for the remaining 18. The fixed-parameter tractable cases can also
we described in terms of the two maximal subsets {2CNF,Horn, 0-Val} and
{2CNF,Horn−, 1-Val}:

Theorem 17.4.10 ([GMO+17]). Let ∅ ̸= S ⊆ Schaefer. If S ⊆
{2CNF,Horn, 0-Val} or S ⊆ {2CNF,Horn−, 1-Val}, then VER(bS∪), and
consequently SAT(bS∪), are fixed-parameter tractable. Otherwise, VER(bS∪) is
W[2]-hard.

Concerning the detection of weak backdoor sets, the W[2]-hardness for indi-
vidual base classes from Schaefer propagates to heterogeneous base classes that
are composed from subsets of Schaefer [GMO+17].

17.4.3. Acyclic Formulas

Many NP-hard problems can be solved in polynomial time for problem instances
that are in a certain sense acyclic. The satisfiability problem is no exception.
There are various ways of defining a CNF formula to be acyclic. Here we con-
sider acyclicity based on (undirected) incidence graphs (see Section 17.2.3). Let
Forest denote the class of CNF formulas whose undirected incidence graphs
are forests. It is well known that the satisfiability problem can be solved in
polynomial time for acyclic formulas [FMR08, SS10a]. The detection of dele-
tion Forest-backdoor sets is fixed-parameter tractable as one can use variants
of algorithms for finding feedback vertex sets (also known as cycle cut sets) in
graphs. It is not known, whether the detection of strong Forest-backdoors is
fixed-parameter tractable. However, Gaspers and Szeider [GS12a] showed that
the problem is fixed-parameter approximable. They gave a fixed-parameter algo-
rithm that either outputs a strong Forest-backdoor set of size ≤ 2k, or correctly
decides that the given formula has no strong Forest-backdoor set of size ≤ k.
This result renders SAT(bForest) fixed-parameter tractable. The detection of
weak Forest-backdoor sets is W[2]-hard, but fixed-parameter tractable if the
input formula is in 3CNF [GS12a].

Theorem 17.4.11 ([GS12a]). The problem SAT(bForest) is fixed parameter
tractable.

The class BAC of β-acyclic formulas, which was studied by Paulusma et
al. [OPS13], is another possible base class defined in terms of acyclicity. A CNF
formula is β-acyclic if its incidence graph G∗(F ) is chordal bipartite, which means
that G∗(F ) has no induced cycle on six or more vertices (a cycle is induced of there
are no edges between non-consecutive vertices). SAT-decision, as well as recogni-
tion, are polynomial-time solvable problems for BAC, which is a clause-induced
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base class. The detection of strong BAC-backdoor sets is W[2]-hard, but it is open
whether the detection of deletion BAC-backdoor sets is fixed-parameter tractable
[OPS13]. The W[2]-hardness of the detection of weak BAC-backdoor sets can
be established by instantiating the above mentioned generic reduction [GS12b,
Proposition 1].

17.4.4. Hitting Formulas

Iwama [Iwa89] observed that one could determine the number of models of a
CNF formula in polynomial time if any two clauses of the formula clash; such
formulas are known as hitting formulas [KZ01]. Consider a hitting formula F
with n variables. If a total truth assignment τ : var(F ) → {0, 1} does not satisfy
a clause C ∈ F , it satisfies all other clauses of F . Hence we can count the total
truth assignments that do not satisfy F by considering one clause after the other,
and the number of models is therefore exactly 2n − ∑

C∈F 2n−|C|. Of course, if
a formula is a variable-disjoint union of hitting formulas—we call such a formula
a cluster formula—we can still compute the number of models in polynomial
time by taking the product of the number of models for each component. Since
satisfiability (and obviously recognition) of cluster formulas can be established
in polynomial time, the class CLU of cluster formulas is a base class. CLU is
evidently clause induced.

Nishimura, Ragde, and Szeider considered the parameterized problem of de-
tecting CLU-backdoor sets.

Theorem 17.4.12 ([NRS07]). VER(bCLU) is W[2]-hard but VER(dbCLU) is
fixed-parameter tractable.

The hardness result is obtained by an fpt-reduction from the parameterized
hitting set problem HS. The FPT result is achieved employing an algorithm
that systematically destroys certain obstructions that consist of pairs or triples
of clauses. To this end, the obstruction graph of a CNF formula F is considered.
The vertex set of this graph is the set of variables of F ; two variables x, y are
joined by an edge if and only if at least one of the following conditions hold:

1. F contains two clauses C1, C2 that do not clash, x ∈ var(C1 ∩ C2), and
y ∈ var(C1 \ C2);

2. F contains three clauses C1, C2, C3 such that C1 and C3 do not clash,
x ∈ var((C1 \ C3) ∩ C2), and y ∈ var((C3 \ C1) ∩ C2).

Since the vertex covers of the obstruction graph are exactly the deletion
CLU-backdoor sets, we can find smallest deletion CLU-backdoor sets by using
a vertex cover algorithm. Hence VER(dbCLU(F )) is fixed-parameter tractable.

Example 17.4.5. Consider formula F =
{
{u, v}, {s, u, v}, {u, v, w, r},

{r, w, x, y}, {x, y, z}, {y, z}, {s, t}, {t}, {t, w}
}
. The obstruction graph has the

edges rw, st, tw, uw, vw; ru, rv, rx, ry, su, sv, wx, wy. The set B = {r, s, w}
forms a vertex cover of the obstruction graph; there is no vertex cover of size two.
B is a deletion CLU-backdoor set and consequently also a strong CLU-backdoor
set of F . There is, however, the smaller strong CLU-backdoor set B′ = {w, s}.
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The algorithm of Nishimura et al. outlined above can be used to count the
number #(F ) of models of a given formula F . More generally, assume that we
have a base class C such that #(F ) can be computed in polynomial time for
every F ∈ C (which is the case for CLU). Then, if we have a strong C-backdoor
set B of an arbitrary CNF formula F , we can compute #(F ) utilizing the identity

#(F ) =
∑

τ :B→{0,1}
2d(F,τ) #(F [τ ])

where d(F, τ) = |var(F −B)\var(F [τ ])| denotes the number of variables that dis-
appear from F [τ ] without being instantiated. Thus determining #(F ) reduces to
determining the number of models for 2|B| formulas of the base class C. In particu-
lar, the above considerations yield a fixed-parameter algorithm for model counting
parameterized by the clustering-width. Note, however, that for the classes Horn
and 2CNF, the model counting problem is #P-hard (even for monotone formu-
las) [Rot96]. Thus knowing a small strong backdoor set with respect to these
classes does not help to count the number of models efficiently.

We will see two further satisfiability parameters that generalize hitting for-
mulas in Section 17.5.2 (conflict treewidth) and Section 17.6.2 (h-modularity).

17.4.5. Empty Clause Detection

Dilkina, Gomes, and Sabharwal [DGS07] suggested strengthening the concept of
strong backdoor sets by means of empty clause detection. Let E denote the class
of all CNF formulas that contain the empty clause. For a base class C we put
C{} = C ∪ E ; we call C{} the base class obtained from C by adding empty clause
detection. Formulas can have much smaller strong C{}-backdoor sets than strong
C-backdoor sets; Dilkina et al. give empirical evidence for this phenomenon con-
sidering various base classes. Note that the addition of empty clause detection
makes only sense for strong backdoor sets [DGS07], not for weak or deletion
backdoor sets. Dilkina et al. show that given a CNF formula F and an inte-
ger k, determining whether F has a strong Horn{}-backdoor set of size k is both
NP-hard and co-NP-hard (here k is considered only as part of the input and not
as a parameter). Thus, the non-parameterized complexity of the search problem
for strong Horn-backdoor sets gets harder when empty clause detection is added.
Also, the parameterized complexity gets harder, which can be shown using results
from Fellows et al. [FSW06].

Theorem 17.4.13 ([Sze08]). For C ∈ {Horn{}, 2CNF{},RHorn{}} the problem
VER(bC) is W[1]-hard.

17.5. Treewidth

Treewidth is an important graph invariant that measures the “tree-likeness” of
a graph. Many otherwise NP-hard graph problems such as Hamiltonicity and
3-colorability are fixed-parameter tractable if parameterized by the treewidth of
the input graph. It is generally believed that many practically relevant problems
do have low treewidth [Bod93]. For taking the treewidth of a CNF formula, one
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Figure 17.3. Tree decompositions of the primal graph (a), the incidence graph (b), and the

dual graph (c)

needs to represent the structure of a formula as a graph. For this, we can use the
graphs discussed in Section 17.2.3

Tree decompositions of graphs and the associated parameter treewidth were
studied by Robertson and Seymour in their famous Graph Minors Project. A
tree decomposition of a graph G = (V, E) is a tree T = (V ′, E′) together with a
labeling function χ : V ′ → 2V associating to each tree node t ∈ V ′ a bag χ(t) of
vertices in V such that the following three conditions hold:

1. every vertex in V occurs in some bag χ(t);
2. for every edge xy ∈ E there is a bag χ(t) that contains both x and y;
3. if χ(t1) and χ(t2) both contain x, then each bag χ(t3) contains x if t3 lies

on the unique path from t1 to t2.

The width of a tree decomposition is maxt∈V ′ |χ(t)|−1. The treewidth of a graph
is the minimum width over all its tree decompositions. The treewidth of a graph
is a measure for its acyclicity, i.e., the smaller the treewidth, the less cyclic the
graph. In particular, a graph is acyclic if and only if it has treewidth 1.

The above definition of a tree decomposition can be easily generalized to
hypergraphs by requiring in item (2) that all vertices in each hyperedge occur
together in some bag. Every tree decomposition of the primal graph G(F ) of a
CNF formula F is a tree decomposition of the hypergraph H(F ). Thus, if the
treewidth of the primal graph is k, the cardinality of each clause of F cannot be
larger than k + 1.

For a CNF formula F , we introduce the following notions of treewidth: the
(primal) treewidth tw of F is the treewidth of its primal graph G(F ), the inci-
dence treewidth tw∗ of F is the treewidth of its incidence graph G∗(F ), and the
dual treewidth twd of F is the treewidth of its dual graph Gd(F ). Tree decom-
positions of the three graphs associated with formula F in Figure 17.1 are shown
in Figure 17.3. Since there are no tree decompositions of these graphs of smaller
width, we know that tw(F ) = 3 and tw∗(F ) = twd(F ) = 2.

Kolaitis and Vardi [KV00] have shown that always tw∗(F ) ≤ tw(F ) + 1
and tw∗(F ) ≤ twd(F ) + 1. In other words, the incidence treewidth dominates
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the primal treewidth and the dual treewidth. On the other hand, there exist
families of CNF formulas with incidence treewidth one and arbitrarily large primal
treewidth and dual treewidth, i.e., this domination is strict.

Example 17.5.1. Consider the two families Fn = {{x1, x2, . . . , xn}} and Gn =
{{x1, y}, {x2, y}, . . . , {xn, y}} of CNF formulas. Then tw∗(Fn) = tw∗(Gn) = 1
while tw(Fn) = twd(Gn) = n − 1.

The intuitive idea of tree decompositions is to partition a graph into clusters
of vertices that can be organized as a tree. The smaller the width of a tree de-
composition, the more efficiently we can decide satisfiability of the corresponding
CNF formula by a bottom-up dynamic programming approach on the tree de-
composition. Thus, we aim to construct a tree decomposition of width as small
as possible; in the optimal case, the width of the tree decomposition equals the
treewidth of the graph.

In general, computing the treewidth of a graph is NP-hard [ACP87]. How-
ever, since tree decompositions with large width do not help us in deciding satis-
fiability efficiently, we are more interested in graphs with small treewidth. Bod-
laender [Bod96] has shown that it can be decided in linear time whether the
treewidth of a graph is at most k if k is a constant. This immediately implies fixed-
parameter tractability of the problems VER(tw), VER(tw∗), and VER(twd).
In Section 17.5.4 we will review algorithms for constructing tree decompositions.

17.5.1. Deciding Satisfiability

As mentioned above, if a tree decomposition of the primal graph, the incidence
graph, or the dual graph is given, we can decide satisfiability of the correspond-
ing CNF formula by a bottom-up dynamic programming approach on the tree
decomposition. The smaller the width of the given tree decomposition, the more
efficiently we can decide satisfiability. In particular, from Yannakakis’s algo-
rithm [Yan81] we obtain the following result as already observed by Gottlob et
al. [GSS02].

Theorem 17.5.1. The problem SAT(tw) is fixed-parameter tractable.

To see this, consider a tree decomposition of the primal graph of a given CNF
formula F and let k be the width of this tree decomposition. Note that the number
of nodes of the tree can be bounded by the length n = ∥F∥. Now, we associate
with each node t of the tree a table Mt with |χ(t)| columns and at most 2|χ(t)| rows.
Each row contains Boolean values encoding a truth assignment to the variables
in χ(t) that does not falsify any clause of F . The size of each table is therefore
bounded by 2k+1(k + 1) and all such tables can be computed in time O(2kkn2).
In this way we can transform our SAT problem into an equivalent constraint
satisfaction problem by a fixed-parameter algorithm with parameter treewidth.
This constraint satisfaction problem can now be solved by Yannakakis’s algorithm
in time O(4kkn). Yannakakis’s algorithm works as follows: for each node t of the
tree it is checked whether to each truth assignment in table Mt′ associated with t’s
parent t′ there exists a consistent truth assignment in table Mt. We remove
truth assignments in table Mt′ to which no such consistent truth assignment
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Figure 17.4. A fixed-parameter algorithm for SAT(tw)

in table Mt exists. The whole procedure works in a bottom-up manner, i.e., a
node is processed if all of its children have already been processed. The CNF
formula F is satisfiable if and only if some truth assignments are left in the table
associated with the root after termination of this procedure. Thus, in summary,
we can decide SAT(tw) in time O∗(4k). By using an improved algorithm, we
can decide SAT(tw) in time O∗(2k) [SS10a].

Example 17.5.2. Consider the primal graph of the CNF formula F in Figure 17.1
and its tree decomposition in Figure 17.3(a). The tables associated with each
tree node are shown in Figure 17.4: there are 14 truth assignments in table Mt0

associated with the root t0, 10 in table Mt1 associated with the left child t1,
and 4 in table Mt2 associated with the right child t2. Now let us start with the
left child t1 and remove the rows 1010 and 1110 from table Mt0 since there are
no consistent truth assignments in table Mt1 . Then we consider the right child t2
and remove the rows 0100, 0101, 0110, and 0111 from table Mt0 since there are
no consistent truth assignments in table Mt2 . Since there are no further nodes to
be processed, we are finished and know that F is satisfiable.

Since tw∗ strictly generalizes tw, the following result is stronger than Theo-
rem 17.5.1.

Theorem 17.5.2. The problem SAT(tw∗) is fixed-parameter tractable.

Since incidence treewidth strictly dominates primal treewidth and dual tree-
width as already mentioned above, this result implies both Theorem 17.5.1 and
fixed-parameter tractability of SAT(twd). The situation is different for “general-
ized satisfiability” also known as “Boolean constraint satisfaction” where Boolean
relations replace clauses. Generalized satisfiability is fixed-parameter tractable
for the parameter primal treewidth but W[1]-hard for the parameter incidence
treewidth [SS10b].

In the following, we will discuss three approaches to establishing Theo-
rem 17.5.2.
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Proof via a Logic Meta Theorem Courcelle has shown that every graph property
that can be expressed in a certain formalism (monadic second-order logic, MSO)
can be decided in linear time for graphs of bounded treewidth [Cou88]. This
theorem applies to many NP-hard graph properties such as 3-colorability and
yields fixed-parameter tractability for these problems with respect to parameter
treewidth. Thus MSO theory provides a very general and convenient tool for clas-
sifying problems parameterized by treewidth as fixed-parameter tractable. Using
the general methods of MSO theory, one can easily establish fixed-parameter
tractability of SAT(tw∗) [CMR01, GS08, Sze04b]. However, the algorithms ob-
tained via the generic constructions are impractical.

Proof via Clause Splitting It is well known (see, e.g., [GJ79, p. 48]) that a CNF
formula F can be transformed in polynomial time into an equisatisfiable 3CNF
formula F3, by repeatedly splitting a clause (ℓ1 ∨ ℓ2 ∨ ℓ3 ∨ · · ·∨ ℓr) with r ≥ 4 into
two clauses (ℓ1∨ℓ2∨x) and (¬x∨ℓ3 · · ·∨ℓr) where x is a new variable. Samer and
Szeider [SS10b, Remark, pp. 111] have shown that in general this procedure can
increase the incidence treewidth arbitrarily, but if applied properly (respecting
an ordering of clauses and variables that is inferred from a tree decomposition of
the incidence graph), the incidence treewidth stays bounded.

Lemma 17.5.3 (Splitting Lemma [SS10b]). Given a CNF formula F together
with a tree decomposition of width k of the incidence graph of F . By splitting
clauses we can obtain in polynomial time an equisatisfiable 3CNF formula with
incidence treewidth at most k + 1 and primal treewidth at most 3(k + 1).

Thus, there is an fpt-reduction from SAT(tw∗) to SAT(tw), and hence
Theorem 17.5.1 implies Theorem 17.5.2.

Proof via Dynamic Programming For more practical algorithms, however, one
needs to use more closely the combinatorial structure of the particular problem at
hand. Fischer et al. [FMR08] and Samer and Szeider [SS10a] presented practical
fixed-parameter algorithms for the more general problem #SAT(tw∗) of counting
the number of models. This trivially implies Theorem 17.5.2, since a CNF formula
is satisfiable if and only if it has at least one model. In the following we present
the algorithm introduced by Samer and Szeider. The algorithm is based on “nice”
tree decompositions, which are a special kind of tree decompositions. It is well
known that one can transform any tree decomposition of width k in linear time
into a nice tree decomposition of width at most k [BK96, Klo94].

For each node t, we write Xt and Ft to denote the set of all variables
and clauses occurring in χ(t′), respectively, for some node t′ in the subtree rooted
at t. Moreover, we use the shorthands χv(t) = χ(t)∩Xt and χc(t) = χ(t)∩Ft for
the set of variables and the set of clauses in χ(t) respectively. For each truth as-
signment α : χv(t) → {0, 1} and subset A ⊆ χc(t), we define N(t, α,A) as the set
of truth assignments τ : Xt → {0, 1} for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t) and
2. A is exactly the set of clauses of Ft that are not satisfied by τ .

Now, we associate with each node t of the tree a table Mt with |χ(t)| + 1
columns and 2|χ(t)| rows. The first |χ(t)| columns contain Boolean values encod-
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Figure 17.5. A fixed-parameter algorithm for #SAT(tw∗)

ing α(x) for variables x ∈ χv(t), and membership of C in A for clauses C ∈ χc(t).
The last column contains the integer n(t, α, A) = |N(t, α, A)|. Given the tables
of the children of some node t, the table Mt can be computed in time O(4kkl),
where l is the cardinality of the largest clause. All the tables associated with tree
nodes can be computed in a bottom-up manner. The number of models of the
corresponding CNF formula F is then given by Σα:χv(r)→{0,1}n(r, α, ∅), where r is

the root of the tree. Thus, we can decide #SAT(tw∗) in time O∗(4k). Based on
an observation by Björklund [Bjö18], Slivovsky and Szeider [SS20] improved the
running time for #SAT(tw∗) to O∗(2k) through efficiently computing covering
products [BHKK07].

Example 17.5.3. Consider the incidence graph of the CNF formula F in Fig-
ure 17.1 and its tree decomposition in Figure 17.3(b). A fragment of the corre-
sponding nice tree decomposition and the tables associated with each tree node
are shown in Figure 17.5. Note that we omit for simplicity those rows from the
tables where n = 0. We assume that the tables Mt4 and Mt5 associated with the
nodes t4 and t5 respectively have already been computed in a bottom-up man-
ner starting from the leaves. For example, the entries in table Mt4 mean that
(i) there exists exactly one truth assignment τ : Xt4 → {0, 1} such that τ(z) = 0
and τ satisfies all clauses in Ft4 except C1, (ii) there exists exactly one truth
assignment τ : Xt4 → {0, 1} such that τ(z) = 1 and τ satisfies all clauses in Ft4

except C5, and (iii) there exists exactly one truth assignment τ : Xt4 → {0, 1}
such that τ(z) = 1 and τ satisfies all clauses in Ft4 except C1 and C5. The next
step is to compute the tables Mt2 and Mt3 from tables Mt4 and Mt5 respectively.
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Since t2 and t3 are forget nodes (the variable z has been forgotten in t2 and the
variable w has been forgotten in t3), this can be done according to the rule for
forget nodes as given in [SS10a]. Now we compute table Mt1 from tables Mt2

and Mt3 according to the rule for join nodes. Finally, we compute table Mt0

from table Mt1 according to the rule for introduce nodes. From table Mt0 we can
now see that there are exactly 12 truth assignments τ : Xt0 → {0, 1} such that τ
satisfies all clauses in Ft0 (for 6 of these truth assignments it holds that τ(y) = 0
and for 6 of them it holds that τ(y) = 1), where Xt0 = var(F ) and Ft0 = F .
Consequently, the CNF formula F has exactly 12 models.

Bacchus, Dalmao, and Pitassi [BDP03] presented another fixed-parameter al-
gorithm for computing the number of models of a CNF formula F . The parameter
in their algorithm is the branchwidth of the hypergraph H(F ). Similar to tree
decompositions, branch decompositions and the corresponding branchwidth were
introduced by Robertson and Seymour in their Graph Minors Project. It is well
known that a graph with treewidth k has branchwidth at most k + 1 and that
a graph with branchwidth k has treewidth at most 3k/2 [RS91]. Thus, primal
treewidth and branchwidth are domination equivalent satisfiability parameters.
Bacchus et al. define a static ordering of the variables of F based on the branch
decomposition of H(F ) and run a DPLL procedure with caching on this order-
ing. In particular, they decompose the input formula and intermediate formulas
into disjoint components; these components are cached when they are solved the
first time, which allows truncating the search-tree of the DPLL procedure. The
resulting algorithm runs in time 2O(k)nc, where k is the branchwidth, n is the
number of variables, and c is a constant.

17.5.2. Consensus Treewidth and Conflict Treewidth

Recall from above the definitions of the consensus graph G☼(F ) and the con-
flict graph G�(F ), associated with a CNF formula F . We define the consensus
treewidth tw☼(F ) = tw(G☼(F )) and the conflict treewidth tw�(F ) = tw(G�(F )).
Ganian and Szeider [GS17] introduced these two satisfiability parameters and
studied their parameterized complexity. The consensus treewidth turned out to
be an interesting parameter which is not dominated by any known satisfiability
parameter and admits fixed-parameter tractability.

Theorem 17.5.4 ([GS17]). The problem #SAT(tw☼) is fixed-parameter
tractable.

On the other hand, conflict treewidth seems to be not that useful:

Theorem 17.5.5 ([GS17]). The problem SAT(tw�) is W[1]-hard.

W[1]-hardness is avoided by bounding the size of clauses and eliminating pure
literals. For such formulas, however, conflict treewidth is dominated by incidence
treewidth.

17.5.3. Expression Treewidth

Before discussing algorithms for computing tree decompositions, let us briefly
mention a very general approach to applying treewidth to CNF formulas (or rather
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Boolean functions in general), that was suggested by Jha and Suciu [JS12]. They
define the expression treewidth of a Boolean function f as the smallest treewidth
of any Boolean circuit representing the function. The circuit is considered as a
directed acyclic graph D, and its treewidth is taken from the undirected graph
D obtained from D by ignoring the orientation of edges. By letting fF denote
the Boolean function represented by a CNF formula F , we can define the satisfia-
bility parameter expression treewidth xtw(F ) as the expression treewidth of fF .
Expression treewidth strictly dominates incidence treewidth [JS12]. Courcelle’s
meta-theorem [Cou88] can be used to show that SAT(xtw) is fixed-parameter
tractable if the circuit D with minimal treewidth is provided as the input. Bova
and Szeider [BS17] have shown that VER(xtw) is at least decidable, using a
meta-theorem by Seese [See91]. It would be interesting to know more efficient
algorithms for this problem.

17.5.4. Tree Decomposition Algorithms

As for most algorithms, also in the case of computing tree decompositions, there
has to be a tradeoff made between runtime, space requirement, and simplicity.
In the following, we use n to denote the number of vertices of the given graph.
The current fastest exact tree decomposition algorithm runs in time O∗(1.8899n)
and is due to Fomin, Kratsch, and Todinca [FKT04] and Villanger [Vil06]. This
algorithm is based on the computation of potential maximal cliques. Bodlaender
et al. [BFK+06] developed a simpler algorithm based on a recursive divide-and-
conquer technique that requires polynomial space and runs in time O∗(4n). For
special classes of graphs, however, there exist exact tree decomposition algorithms
that run in polynomial (or even linear) time [Bod93].

Polynomial-time algorithms also exist in the case of bounded treewidth.
These algorithms are fixed-parameter algorithms: Reed’s algorithm [Bod93,
Ree92] decides in time O(n log n) whether the treewidth of a graph is at most k
and, if so, computes a tree decomposition of width at most 3k + 2. Bodlaender
and Kloks [BK96] developed an algorithm with the same asymptotic runtime as
Reed’s algorithm that decides whether the treewidth of a graph is at most k and,
if so, computes a tree decomposition of width at most k. Bodlaender [Bod96]
improved this result to a linear-time algorithm. The hidden constant factors in
the runtime of the latter two algorithms, however, are very large so that they are
only practical for very small k (e.g., up to k = 5) [BK96, Bod05].

Algorithms that approximate treewidth by finding tree decompositions of
nearly minimal width give a guarantee on the quality of the output. Bodlaender
et al. [BDD+16] gave a single exponential algorithm that runs in 2O(k)n time,
and either outputs a tree decomposition of the given graph G of width at most
5k + 4, or determines that tw(G) > k.

In practice, it often suffices to obtain tree decompositions of small width with-
out any guarantees. There exist several powerful tree decomposition heuristics
for this purpose. In the worst case, the width of tree decompositions obtained
by such heuristics can be far from treewidth; however, their width is often small
in practically relevant cases. An important class of tree decomposition heuris-
tics is based on finding an appropriate linear ordering of the vertices from which
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a tree decomposition can be constructed [Bod05]. Minimum degree and min-
imum fill-in [Bod05], lexicographic breadth-first search [RTL76], and maximum
cardinality search [TY84] are well-known examples of such ordering heuristics.
Koster, Bodlaender, and van Hoesel [KBvH01a, KBvH01b] compared several tree
decomposition heuristics by empirical evaluation.

We refer the interested reader to Bodlaender’s excellent survey papers [Bod93,
Bod05] for a more extensive overview of tree decomposition algorithms.

One can also use SAT solvers to determine the treewidth of graphs. Samer and
Veith [SV09] gave a first SAT encoding, that, given a graph G and an integer k,
produces a CNF formula F (G, k) which is satisfiable if and only if tw(G) ≤ k.
This approach was further improved [BJ14, BBE17], as well as used to improve
a heuristically computed tree decomposition locally [FLS17].

17.5.5. Beyond Treewidth

Beside treewidth, other decomposition-based measures for the tractability of
certain computation problems with graph and hypergraph representations have
been proposed in the literature. One of the most prominent examples is clique-
width [CER93]. Intuitively, the clique-width cwd(G) of a graph G is the smallest
number of colors required to construct the graph by means of certain operations
that do not distinguish between vertices of the same color. Clique-width is de-
fined for undirected graphs and directed graphs. Let D be the undirected graph
obtained from a directed graph D by ignoring the orientation of edges. Then
cwd(D) ≤ cwd(D).

Bounding the clique-width of primal graphs does not help with deciding sat-
isfiability: one can easily make the primal graph a clique as follows: Let F be
a CNF formula and x a new variable not occurring in F . Now consider the
CNF formula F ∗ obtained from F by adding the two clauses C = var(F ) ∪ {x}
and C ′ = {x}. Clearly F and F ∗ are equisatisfiable and even share the same
number of models. Now the primal graph of F ∗ is a clique and so it has clique-
width 2. For the incidence graph, however, bounding the clique-width helps, as
we shall see below.

We distinguish between cwd∗(F ) = cwd(G∗(F )) and dcwd∗(F ) =
cwd(D∗(F )). From results by Courcelle and Olariu [CO00] it follows that cwd∗

strictly dominates dcwd∗, and dcwd∗ strictly dominates tw∗. The problems
VER(cwd∗) and VER(dcwd∗) are not known to be fixed-parameter tractable,
but fixed-parameter approximable [Oum05, FMR08].

Theorem 17.5.6 ([OPS13]). The problem SAT(cwd∗) is W[1]-hard.

This hardness even holds if the corresponding decomposition is provided with
the input.

Theorem 17.5.7 ([SS13]). #SAT(cwd∗) is XP-tractable.

This result is obtained by a dynamic programming algorithm in which cer-
tain projections of truth assignments play an important role. Such projections
have already been used previously for showing XP-tractability of #SAT for the
satisfiability parameter modular treewith [PSS16] which is the treewidth of the
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incidence graph, taken after the contraction of modules (i.e., of vertices with
the same neighbors). Modular treewidth strictly dominates treewidth and is, in
turn, strictly dominated by clique-width. Sæther et al. [STV15] generalized the
algorithm underlying Theorem 17.5.7 to be applicable to larger classes of formu-
las, however, requiring the corresponding decomposition to be provided with the
input.

Theorem 17.5.8 ([CMR01, FMR08]). #SAT(dcwd∗) is fixed-parameter
tractable.

The fixed-parameter tractability of #SAT(dcwd∗) follows from meta-
theorem of monadic second-order logic [CMR01] similarly as in the case of
treewidth. Also a direct dynamic programming algorithm is known [FMR08].
For computing clique-width decompositions of (directed) incidence graphs one
can use SAT-encodings [HS15, Par16].

Rank-width [RS86] is a graph invariant that is similar to clique-width and can
also be defined for directed and undirected incidence graphs. The corresponding
satisfiability parameters are domination equivalent with directed and undirected
clique-width, respectively. For satisfiability checking and model counting, di-
rected rank-width has an advantage over dcwd∗ since the corresponding verifi-
cation problem is known to be fixed-parameter tractable and so one saves the
approximation error. Moreover, even if optimal clique-width or rank-width de-
compositions are provided, the rank-width based algorithm can be exponentially
faster than the clique-width based algorithm [GHO13].

Generalizations of treewidth like hypertree-width [GLS02], spread-cut
width [CJG08], and fractional hypertree-width [GM06] are defined for hyper-
graphs in the context of constraint satisfaction and conjunctive database queries.
According to the current status of knowledge, they have no relevance for the sat-
isfiability problem of CNF formulas [SS10a]. This can be seen, using the simple
construction we considered at the beginning of Section 17.5.5: the hypergraph
H(F ∗) is acyclic [GLS02], and so hypertree-width, spread-cut width, and frac-
tional hypertree-width of H(F ∗) are 1. A similar construction can be made with
respect to the dual hypergraph Hd(F ) [SS10a].

17.6. Further Satisfiability Parameters

In this section, we will discuss further satisfiability parameters that are (i) based
on a combination of backdoor sets and treewidth, (ii) based on a community
structure in the formula, and (iii) based on matchings in the incidence graph of
the formula.

17.6.1. Hybrid Satisfiability Parameters

The general approaches to satisfiability parameters as discussed in the previous
two sections (based on backdoors and decompositions, respectively) are comple-
mentary. Take, for instances bHorn (size of a smallest strong Horn-backdoor)
and tw∗ (treewidth of the incidence graph). The two satisfiability parameters are
incomparable, as one can construct Horn formulas of arbitrarily large incidence
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treewidth (i.e., bHorn is 0 and tw is unbounded), and formulas of arbitrarily large
bHorn and and bounded primal treewidth.

Several ways for combining the strengths of the two approaches have been
considered which we will briefly discuss.

Strong Backdoors into Bounded Incidence Treewidth Gaspers and Szeider [GS13]
considered strong W≤t-backdoor sets where W≤t consists of all CNF formulas F
with tw∗(F ) ≤ t, where t > 0 is a fixed constant. W≤t is suitable as a base
class (Theorem 17.5.2), even #SAT is polynomial-time tractable for W≤t. For
t = 1 we obtain the base class Forest discussed above. It is crucial to consider
strong backdoor sets, not just deletion backdoor sets, as dbW≤t

is easily seen
to be dominated by tw∗, whereas bW≤t

strictly dominates tw∗ [GS13]. When
we know a strong W≤t-backdoor set of size k of a formula F , we can compute
#(F ) in O∗(2k) time. The main problem is finding such a backdoor set, i.e.,
VER(bW≤t

). Gaspers and Szeider [GS13] showed that this problem is fixed-
parameter approximable, which implies the following result.

Theorem 17.6.1 ([GS13]). For every t ≥ 1, #SAT(bW≤t
) is fixed-parameter

tractable.

By adjusting t and backdoor set size, one can fine-tune the algorithm behind
Theorem 17.6.1 to a particular class of input formulas. Fomin at al. [FLM+15]
considered the problems SAT(wbW≤t

) and SAT(bW≤t
) for the special case where

the input is an r-CNF formula for an arbitrary constant r. They showed that
the corresponding permissive problems are fixed-parameter tractable. Their al-
gorithms avoid the computation of a fixed-parameter approximation and achieves
a single exponential running time.

Backdoor Treewidth Next we consider an approach due to Ganian et
al. [GRS17b, GRS17a], where one considers not the size of a smallest strong
C-backdoor set of a given CNF formula F as the parameter, but the treewidth of
a strong C-backdoor set of smallest treewidth. The treewidth of a strong C-back-
door set B is taken in terms of a torso graph GB

F . The vertices of GB
F are the

variables in B, and an edge connects two variables x, y ∈ B if and only if the
incidence graph G∗(F ) contains a path between x and y that does not traverse
any vertex in X (except x and y). Thus, the torso graph is obtained by “collaps-
ing” (possibly large parts of) the incidence graph to single edges. The C-backdoor
treewidth of F , denoted twC(F ), is the smallest tw(GB

F ) over all strong C-back-
door sets B of F . Figure 17.6 shows an example for this construction. We note
that, in general, a strong C-backdoor set B of F with smallest tw(GB

F ) might not
be among the smallest strong C-backdoor sets of F . In the following we focus on
base classes C ∈ {Horn, Horn−1, 2CNF}.

If we know a strong C-backdoor set B with tw(GB
F ) = k, we can com-

pile connected components of G∗(F ) − B into constraints, and so represent F
by an equisatisfiable Boolean CSP instance over the variables B, whose primal
treewidth is k. Solving this CSP instance is fixed-parameter tractable parameter-
ized by k [GSS02]. Hence again, the challenging task is to find the set B, which
was shown by Ganian et al. [GRS17a] to be fixed-parameter tractable:
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z

v w x y z

Figure 17.6. Top: an example of a formula F , drawn by its incidence graph, where posi-

tive occurrences of variables are indicated with bold edges. B = {v, w, x, y, z} forms a strong

Horn-backdoor set of F . Bottom: the torso graph GB
F , which is a path and has, therefore,

treewidth 1. Consequently, the Horn-backdoor treewidth is bHorn(F ) = 1.

Theorem 17.6.2 ([GRS17a]). For C ∈ {Horn, Horn−, 2CNF}, the problems
VER(twC) and SAT(twC) are fixed-parameter tractable.

17.6.2. Modularity

Networks that arise from real-world applications frequently exhibit a certain
community structure, where nodes form strongly interconnected communities
which are sparsely connected with each other. With the notion of modularity
[New03, New06, NG04, ZPWL13] one can measure to what extent a network
exhibits such a structure. It was empirically observed, that the performance
of SAT solvers shows some correlation with the modularity of the input formu-
las [ABGL14, NGF+14]. However, the presence of a community structure is not
a guarantee for a formula to be tractable. In fact, it is not difficult to show
that SAT remains NP-hard for highly modular instances [GS15, MFS16]. Based
on this observation, Ganian and Szeider proposed the satisfiability parameter h-
modularity which is inspired by the general concept of modularity, but in contrast
to the existing notion does provide performance guarantees for SAT decision and
even model counting. This satisfiability parameter is based on the splitting of
the clauses of a given formula into classes, called h-communities, where each class
is a hitting formula (see Section 17.4.4), and therefore strongly interconnected.
The h-communities are only sparsely connected with each other, as the graph
representing their interconnection (the community graph) as small treewidth.

More specifically, we call a subset H of a formula F to be a hitting community
(or h-community in brief) in F if H is a hitting formula. The degree deg(H) of an
h-community H is the number of edges in the dual graph of F between a clause
in H and a clause outside of H. A hitting community structure (or h-structure in
brief) P is a partitioning of F into h-communities, and the degree deg(P) of P is
max{ deg(H) : H ∈ P }.

To measure the treewidth of an h-structure P, we construct a community
graph G(P) as follows. The vertices of G(P) are the h-communities in P, and
two vertices A, B in G(P) are joined by an edge if and only if there exist clauses
C ∈ A and D ∈ B which are adjacent.
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Figure 17.7. The dual graph (left) and community graph (right) of the formula F and the

h-structure P.

We define the h-modularity of an h-structure P as the maximum over deg(P)
and tw(G(P)). The h-modularity h-mod(F ) of a formula F is then defined as
the minimum h-mod(P) over all h-structures P of F .

Example 17.6.1. Consider the formula F which can be split into h-communities
H1 = {{x, y, ¬a}, {¬x, y, a}, {x,¬y}, {¬x,¬y}}, H2 = {{a, b, c}, {¬b}},
H3 = {{c, ¬d, e, f}, {d,¬e}}, H4 = {{f, ¬g, ¬h}, {h, ¬i}}, H5 = {{i, ¬j},
{j, k, l,¬m,¬n}}, and H6 = {{u,¬v, g, ¬k, l, m, ¬n}, {u, v, ¬l, ¬u, v}}. Fig-
ure 17.7 (left) shows the dual graph of F with the h-communities indicated.
Figure 17.7 (right) shows the corresponding community graph, which is of
treewidth 2. The h-communities H1 and H3 have degree 2, and all other
h-communities have degree 3. Therefore the h-modularity of F is at most
max(3, 2) = 3.

Once we know a community structure P of a CNF formula F , then we can
solve SAT and #SAT by a fixed-parameter algorithm for parameter h-mod(P)
by compiling it into an instance of the Sum-of-Products problems (the counting
version of CSP), and solve it using known results [BDP09, GKSS18]. For actu-
ally finding a community structure P of small h-modularity, we know a fixed-
parameter approximation algorithm [GS15].

Theorem 17.6.3 ([GS15]). The problem #SAT(h-mod) is fixed-parameter
tractable.

17.6.3. Matchings

A matching in a graph is a set of edges such that every vertex is incident with at
most one edge of the matching. A CNF formula is called matched if its incidence
graph has a matching such that all clauses are incident with an edge of the
matching. Matched formulas are always satisfiable since one can satisfy each
clause independently by choosing the right truth value for the variable that is
associated with it via the matching.

Example 17.6.2. Consider the CNF formula F = {C1, . . . , C4} with C1 =
{v, y, z}, C2 = {y, x}, C3 = {v, z, w}, C4 = {y, x, w}. The set M =
{vC1, yC2, zC3, xC4} is a matching in the incidence graph of F that covers all
clauses. Hence F is a matched formula and it is indeed satisfiable: we put τ(v) = 1
to satisfy C1, τ(y) = 0 to satisfy C2, τ(z) = 0 to satisfy C3, and τ(x) = 1 to
satisfy C4.
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The notion of maximum deficiency (first used by Franco and Van
Gelder [FV03] in the context of CNF formulas) allows to gradually extend the
nice properties from matched formulas to more general classes of formulas. The
maximum deficiency of a formula F , denoted by md(F ), is the number of clauses
remaining uncovered by a largest matching of the incidence graph of F . The
parameters md and tw∗ are domination incomparable [Sze04b]. The term “max-
imum deficiency” is motivated by the equality

md(F ) = max
F ′⊆F

d(F ′)

which follows from Hall’s Theorem. Here d(F ′) denotes the deficiency of F ′, the
difference |F ′| − |var(F ′)| between the number of clauses and the number of vari-
ables. The problem VER(md) can be solved in polynomial time, since a largest
matching in a bipartite graph can be found in polynomial time trough Hopcroft
and Karp’s algorithm [HK73, LP86] (and the number of uncovered clauses remains
the same whatever largest matching one considers).

Deficiency and maximum deficiency have been studied in the context of min-
imal unsatisfiable formulas, i.e., unsatisfiable formulas that become satisfiable by
removing any clause. Let MU denote the recognition problem for minimal un-
satisfiable formulas. By a classic result of Papadimitriou and Wolfe [PW88], the
problem MU is DP-complete; DP is the class of problems that can be considered
as the difference of two problems in NP and corresponds to the second level of
the Boolean Hierarchy [Joh90]. Kleine Büning [Kle00] initiated the study of MU
parameterized by the deficiency d. Since d(F ) = md(F ) ≥ 1 holds for minimal
unsatisfiable formulas F [AL86], algorithms for SAT(md) are of relevance. Fleis-
chner et al. [FKS02] have shown that one can decide the satisfiability of formulas
with maximum deficiency bounded by a constant in polynomial time.

As a consequence, minimal unsatisfiable formulas with deficiency bounded
by a constant can be recognized in polynomial time. The order of the polyno-
mial that bounds the running time of Fleischner et al.’s algorithm depends on k;
hence, it only establishes that SAT(md) and MU(d) are in XP. Szeider [Sze04a]
developed an algorithm that decides satisfiability and minimal unsatisfiability of
formulas with maximum deficiency k in time O∗(2k), thus establishing the fol-
lowing result.

Theorem 17.6.4 ([Sze04a]). The problems SAT(md) and MU(d) are fixed-
parameter tractable.

Key for Szeider’s algorithm is a polynomial-time procedure that either decides
the satisfiability of a given formula F or reduces F to an equisatisfiable formula F ∗

with md(F ∗) ≤ md(F ), such that

md(F ∗[x = 0]) < md(F ∗) and md(F ∗[x = 1]) < md(F ∗) for all x ∈ var(F ∗);

a formula F ∗ with this property is called md-critical. In particular, a formula
is md-critical if every literal of F ∗ occurs in at least two clauses and for every
non-empty set X of variables of F ∗ there are at least |X| + 2 clauses C of F ∗

such that var(C) ∩ X ̸= ∅. The above reduction is applied at every node of a
(DPLL-type) binary search tree. Since at every step from a node to one of its
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children the maximum deficiency of the formula gets reduced, it follows that the
height of the search tree is bounded in terms of the maximum deficiency of the
given formula, yielding the fixed-parameter tractability of SAT(md).

Let r be a positive integer and let Mr denote the class of formulas F with
md(F ) ≤ r. Since both recognition and satisfiability of formulas in Mr can be
solved in polynomial time and, since Mr is clause induced, it makes sense to
consider Mr as the base class for strong and deletion backdoor sets. However,
such backdoor sets are difficult to find:

Theorem 17.6.5 ([Sze08]). The problems VER(bMr ) and VER(dbMr ) are
W[2]-hard for every r ≥ 1.

17.7. Concluding Remarks

We close this chapter by briefly mentioning further research on the parameterized
complexity of problems related to propositional satisfiability.

For example, Fellows, Szeider and Wrightson [FSW06] have studied the prob-
lem of finding in a given CNF formula F a small unsatisfiable subset S param-
eterized by the number of clauses of S. The problem is W[1]-complete, but
fixed-parameter tractable for several classes of CNF formulas, including formulas
with planar incidence graphs and formulas with both clause size and occurrence of
variables bounded. W[1]-hardness prevails if the input formula is Horn [dHKS17].
This is in stark contrast to the case where the input is a 2CNF formula; then the
problem can be solved even in polynomial time [BM07].

Propositional proof complexity is a further area of research that is related to
satisfiability and admits parameterizations. In particular, one can study proofs
that establish that a given CNF formula cannot be satisfied by setting at most k
variables to true; k is considered as the parameter. Dantchev, Martin, and Szei-
der [DMS11] have studied the proof complexity of resolution for such “parameter-
ized contradictions,” with very interesting follow-up work [ABdR+18, BGLR12].

Another promising line of research that connects parameterized complexity
with SAT solving is the exploration of fixed-parameter tractable reductions to SAT.
The idea is to solve problems that are believed to be harder than NP (e.g., prob-
lems from the second level of the Polynomial Hierarchy) by a fixed-parameter
algorithm that can call a SAT solver as an auxiliary device. Such algorithms
where developed for disjunctive answer-set programming and propositional ab-
duction problems [PRS13, FS15]. De Haan and Szeider [dHS17, dHS19] devel-
oped a parameterized hardness theory for such problems which lies the grounds
for classifying problems that admit such fixed-parameter tractable reductions to
SAT, and those that don’t.

We hope that this survey provides a stimulating starting point for further research
on satisfiability and related topics that fruitfully utilizes concepts of parameter-
ized complexity theory.
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[Bjö18] A. Björklund. Personal Communication, 2018.
[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms

for the pathwidth and treewidth of graphs. Journal of Algorithms,
21(2):358–402, 1996.

[BM07] J. Buresh-Oppenheim and D. G. Mitchell. Minimum 2CNF res-
olution refutations in polynomial time. In J. Marques-Silva and
K. A. Sakallah, editors, Theory and Applications of Satisfiability
Testing - SAT 2007, 10th International Conference, Lisbon, Por-
tugal, May 28-31, 2007, Proceedings, volume 4501 of LNCS, pages
300–313. Springer-Verlag, 2007.

[Bod93] H. L. Bodlaender. A tourist guide through treewidth. Acta Cyber-
netica, 11(1-2):1–22, 1993.

[Bod96] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal of Computing,
25(6):1305–1317, 1996.

[Bod05] H. L. Bodlaender. Discovering treewidth. In Proc. 31st Conference on
Current Trends in Theory and Practice of Computer Science (SOF-
SEM’05), volume 3381 of LNCS, pages 1–16. Springer-Verlag, 2005.

[BS17] S. Bova and S. Szeider. Circuit treewidth, sentential decision,
and query compilation. In E. Sallinger, J. V. den Bussche, and
F. Geerts, editors, Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2017,
Chicago, IL, USA, May 14-19, 2017, pages 233–246. ACM, 2017.

[BW04] F. Bacchus and J. Winter. Effective preprocessing with hyper-
resolution and equality reduction. In Proc. 6th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT’03),
Selected and Revised Papers, volume 2919 of LNCS, pages 341–355.
Springer-Verlag, 2004.

[CCDF97] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes
of parameterized tractability. Annals of Pure and Applied Logic,
84(1):119–138, 1997.

[CEH97] Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal
from Boolean formulae. Discrete Applied Mathematics, 75(3):217–
230, 1997.

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting
hypergraph grammars. Journal of Computer and System Sciences,
46(2):218–270, 1993.

[Ces06] M. Cesati. Compendium of parameterized problems. http:

//cesati.sprg.uniroma2.it/research/compendium/, September
2006.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

4

728



[CFK+13] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algo-
rithms. Texts in Computer Science. Springer, 2013.

[CJG08] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural
tractability for constraint satisfaction problems. Journal of Computer
and System Sciences, 74(5):721–743, 2008.

[CKJ01] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations
and further improvements. Journal of Algorithms, 41(2):280–301,
2001.

[CKX10] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex
cover. Theoretical Computer Science, 411(40-42):3736–3756, 2010.

[CMR01] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parame-
ter complexity of graph enumeration problems definable in monadic
second-order logic. Discrete Applied Mathematics, 108(1-2):23–52,
2001.

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique-width of
graphs. Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[Cou88] B. Courcelle. The monadic second-order logic of graphs: Definable
sets of finite graphs. In Proc. 14th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG’88), volume 344 of
LNCS, pages 30–53. Springer-Verlag, 1988.

[CXW17] J. Chen, C. Xu, and J. Wang. Dealing with 4-variables by resolu-
tion: an improved MaxSAT algorithm. Theoretical Computer Sci-
ence, 670:33–44, 2017.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[DGS07] B. N. Dilkina, C. P. Gomes, and A. Sabharwal. Tradeoffs in the com-
plexity of backdoor detection. In Proc. 13th International Conference
on Principles and Practice of Constraint Programming (CP’07), vol-
ume 4741 of LNCS, pages 256–270. Springer-Verlag, 2007.

[dHKS17] R. de Haan, I. Kanj, and S. Szeider. On the parameterized complex-
ity of finding small unsatisfiable subsets of CNF formulas and CSP
instances. ACM Trans. Comput. Log., 18(3):Art. 21, 46, 2017.

[dHS17] R. de Haan and S. Szeider. Parameterized complexity classes beyond
Para-NP. Journal of Computer and System Sciences, 87:16–57, 2017.

[dHS19] R. de Haan and S. Szeider. Compendium of parameterized prob-
lems at higher levels of the polynomial hierarchy. MDPI Algorithms,
12(9):1–28, 2019.

[DMS11] S. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof
complexity. Computational Complexity, 20(1):51–85, 2011.

[Fel03] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new
directions in fpt. In H. L. Bodlaender, editor, Graph-Theoretic Con-
cepts in Computer Science (WG 2003), volume 2880 of LNCS, pages
1–12. Springer-Verlag, 2003.

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

4

729



Verlag, 2006.
[FKS02] H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recog-

nition of minimal unsatisfiable formulas with fixed clause-variable
difference. Theoretical Computer Science, 289(1):503–516, 2002.

[FKT04] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algo-
rithms for treewidth and minimum fill-in. In Proc. 31st International
Colloquium on Automata, Languages and Programming (ICALP’04),
volume 3142 of LNCS, pages 568–580. Springer-Verlag, 2004.

[FLM+15] F. V. Fomin, D. Lokshtanov, N. Misra, M. S. Ramanujan, and
S. Saurabh. Solving d-sat via backdoors to small treewidth. In P. In-
dyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 630–641. SIAM, 2015.

[FLS17] J. K. Fichte, N. Lodha, and S. Szeider. SAT-based local improvement
for finding tree decompositions of small width. In S. Gaspers and
T. Walsh, editors, Theory and Applications of Satisfiability Testing
- SAT 2017 - 20th International Conference, Melbourne, VIC, Aus-
tralia, August 28 - September 1, 2017, Proceedings, volume 10491 of
LNCS, pages 401–411. Springer-Verlag, 2017.

[FMR08] E. Fischer, J. A. Makowsky, and E. V. Ravve. Counting
truth assignments of formulas of bounded tree-width or clique-
width. Discrete Applied Mathematics, 156(4):511–529, 2008. DOI:
10.1016/j.dam.2006.06.020.

[FS15] J. K. Fichte and S. Szeider. Backdoors to tractable answer set pro-
gramming. Artificial Intelligence, 220:64–103, March 2015.

[FSW06] M. R. Fellows, S. Szeider, and G. Wrightson. On finding short reso-
lution refutations and small unsatisfiable subsets. Theoretical Com-
puter Science, 351(3):351–359, 2006.

[FV03] J. Franco and A. Van Gelder. A perspective on certain polynomial
time solvable classes of satisfiability. Discrete Applied Mathematics,
125(2):177–214, 2003.
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[PRS13] A. Pfandler, S. Rümmele, and S. Szeider. Backdoors to abduction. In
Proceedings of IJCAI 2013, the 23th International Joint Conference
on Artificial Intelligence, August 3-9, 2013, Beijing, China, 2013.

[PSS16] D. Paulusma, F. Slivovsky, and S. Szeider. Model counting for CNF
formulas of bounded modular treewidth. Algorithmica, 76(1):168–
194, 2016.

[PW88] C. H. Papadimitriou and D. Wolfe. The complexity of facets resolved.
Journal of Computer and System Sciences, 37(1):2–13, 1988.

[Ree92] B. A. Reed. Finding approximate separators and computing tree-
width quickly. In Proc. 24th Annual ACM symposium on Theory of
Computing (STOC’92), pages 221–228. ACM Press, 1992.

[RO08] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter
tractable. In Proc. 35th International Colloquium on Automata,
Languages and Programming (ICALP’08), Track A: Algorithms, Au-
tomata, Complexity, and Games, volume 5125 of LNCS, pages 551–
562. Springer-Verlag, 2008.

[Rot96] D. Roth. On the hardness of approximate reasoning. Artificial In-
telligence, 82(1-2):273–302, 1996.

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic
aspects of tree-width. Journal of Algorithms, 7(3):309–322, 1986.

[RS91] N. Robertson and P. D. Seymour. Graph minors X. Obstructions
to tree-decomposition. Journal of Combinatorial Theory, Series B,
52(2):153–190, 1991.

[RS17] M. S. Ramanujan and S. Saurabh. Linear-time parameterized algo-
rithms via skew-symmetric multicuts. ACM Transactions on Algo-
rithms, 13(4):Art. 46, 25, 2017.

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal of Computing, 5(2):266–
283, 1976.

[Sch78] T. J. Schaefer. The complexity of satisfiability problems. In Con-
ference Record of the Tenth Annual ACM Symposium on Theory of
Computing (San Diego, Calif., 1978), pages 216–226. ACM, 1978.

[See91] D. Seese. The structure of the models of decidable monadic theories
of graphs. Annals of Pure and Applied Logic, 53(2):169–195, 1991.

[Spi03] J. P. Spinrad. Efficient Graph Representations. Fields Institute
Monographs. AMS, 2003.

[SS08] M. Samer and S. Szeider. Backdoor trees. In Proc. 23rd AAAI Con-
ference on Artificial Intelligence (AAAI’08), pages 363–368. AAAI

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

4

734



Press, 2008.
[SS09] M. Samer and S. Szeider. Backdoor sets of quantified Boolean for-

mulas. Journal of Automated Reasoning, 42(1):77–97, 2009.
[SS10a] M. Samer and S. Szeider. Algorithms for propositional model count-

ing. Journal of Discrete Algorithms, 8(1):50–64, 2010.
[SS10b] M. Samer and S. Szeider. Constraint satisfaction with bounded

treewidth revisited. Journal of Computer and System Sciences,
76(2):103–114, 2010.

[SS13] F. Slivovsky and S. Szeider. Model counting for formulas of bounded
clique-width. In L. Cai, S. Cheng, and T. W. Lam, editors, Algo-
rithms and Computation - 24th International Symposium, ISAAC
2013, Hong Kong, China, December 16-18, 2013, Proceedings, vol-
ume 8283 of LNCS, pages 677–687. Springer-Verlag, 2013.

[SS20] F. Slivovsky and S. Szeider. A faster algorithm for propositional
model counting parameterized by incidence treewidth. In L. Pulina
and M. Seidl, editors, Proceedings of SAT 2020, The 23rd Interna-
tional Conference on Theory and Applications of Satisfiability Test-
ing, volume 12178 of LNCS, pages 267–276. Springer-Verlag, 2020.

[STV15] S. H. Sæther, J. A. Telle, and M. Vatshelle. Solving #sat and
MAXSAT by dynamic programming. J. Artif. Intell. Res., 54:59–
82, 2015.

[SV09] M. Samer and H. Veith. Encoding treewidth into SAT. In Proceedings
of the 12th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2009, volume 5584 of LNCS, pages 45–50.
Springer-Verlag, 2009.

[Sze04a] S. Szeider. Minimal unsatisfiable formulas with bounded clause-
variable difference are fixed-parameter tractable. Journal of Com-
puter and System Sciences, 69(4):656–674, 2004.

[Sze04b] S. Szeider. On fixed-parameter tractable parameterizations of SAT.
In Proc. 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT’03), Selected and Revised Papers, volume
2919 of LNCS, pages 188–202. Springer-Verlag, 2004.

[Sze05] S. Szeider. Backdoor sets for DLL subsolvers. Journal of Automated
Reasoning, 35(1-3):73–88, 2005. Reprinted as Chapter 4 of the book
“SAT 2005 – Satisfiability Research in the Year 2005”, edited by E.
Giunchiglia and T. Walsh, Springer-Verlag, 2006.

[Sze08] S. Szeider. Matched formulas and backdoor sets. Journal on Satisfi-
ability, Boolean Modeling and Computation, 6:1–12, 2008.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and se-
lectively reduce acyclic hypergraphs. SIAM Journal of Computing,
13(3):566–579, 1984.

[Vil06] Y. Villanger. Improved exponential-time algorithms for treewidth
and minimum fill-in. In Proc. 7th Latin American Symposium on
Theoretical Informatics (LATIN’06), volume 3887 of LNCS, pages
800–811. Springer-Verlag, 2006.

[Wah17] M. Wahlström. Algorithms, measures and upper bounds for satis-

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

4

735



fiability and related problems. PhD thesis, Linköpings Universitet,
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