
Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

Technical Report AC-TR-21-001
January 2021

Backdoor DNFS

Sebastian Ordyniak, André Schidler, and
Stefan Szeider

www.ac.tuwien.ac.at/tr

Backdoor DNFs

Sebastian Ordyniak1 , André Schidler2 , Stefan Szeider2

s.ordyniak@leeds.ac.uk, {aschidler,sz}@ac.tuwien.ac.at

Abstract

We introduce backdoor DNFs, as a tool to measure
the theoretical hardness of CNF formulas. Like
backdoor sets, backdoor DNFs are defined relative
to a tractable class of CNF formulas. Each con-
junctive term of a backdoor DNF defines a partial
assignment which moves the input CNF formula
into the base class. Backdoor DNFs are more
expressive and potentially smaller than its prede-
cessors backdoor sets and backdoor trees. We es-
tablish the fixed-parameter tractability of the back-
door DNF detection problem. Our result holds for
the fundamental base classes Horn and 2CNF, and
their combination. We complement our theoretical
findings by an empirical study. Our experiments
show that backdoor DNFs provide a significant im-
provement over their predecessors.

1 Introduction
Over the last two decades, the progress on practical SAT solv-
ing has been “nothing short of spectacular” [Vardi, 2014].
State-of-the-art SAT solvers routinely solve instances with
millions of clauses and variables. This is in stark contrast
to the theoretical intractability of SAT. The problem is not
just NP-complete [Cook, 1971]; the Exponential-Time Hy-
pothesis [Impagliazzo et al., 2001], a standard complexity-
theoretic assumption, excludes the existence of an algorithm
that solves an n-variable 3SAT instance with 2o(n) steps.
This apparent discrepancy between theory and practice is
often explained by the presence of a “hidden structure” in
real-world SAT instances, which is implicitly exploited by
the SAT solver. Several approaches have been proposed in
the literature to make the vague notion of a hidden struc-
ture precise, including modularity [Ansótegui et al., 2014;
Newsham et al., 2014; Ganian and Szeider, 2015] and de-
composability [Mateescu, 2011; Jamali and Mitchell, 2017;
Ganian and Szeider, 2017]. The notion of a backdoor set,
introduced by Williams et al. [2003], provides another way
of capturing the existence of a hidden structure in a SAT in-
stance. The idea is to fix a polynomial-time solvable base
class C of CNF formulas (either defined by a polynomial-time
subsolver or by a syntactic property such as Horn). We then

measure the existence of hidden structure within a SAT in-
stance in terms of the number of variables one needs to instan-
tiate to put the instance into the base class C. The instantiated
variables form a backdoor set. One distinguishes between a
weak backdoor (there exists an instantiation of the backdoor
variables that produces a satisfiable instance that belongs to
C) and a strong backdoor (all instantiations for the backdoor
variables result in an instance that belongs to C). This paper
shall focus on strong backdoors since weak backdoors exist
only for satisfiable formulas.

Suppose we know a size-k backdoor set of a SAT in-
stance F . In that case we can decide its satisfiability by de-
ciding the satisfiability of at most 2k instances that belong
to the tractable base class C, i.e., in time 2k||F ||O(1). Thus,
SAT is fixed-parameter tractable (FPT) in the backdoor size
if a witnessing backdoor is known. Therefore, it is interesting
whether it is also fixed-parameter tractable to find a backdoor
set of size k (the backdoor set detection problem). The sys-
tematic study of the parameterized complexity of backdoor
set detection was initiated by Nishimura et al. [2004]. They
showed that backdoor set detection is FPT for the fundamen-
tal base classes Horn and 2CNF. Gaspers and Szeider [2012]
survey further results.

As stated above, a backdoor set of size k reduces the given
SAT instance to at most 2k tractable formulas in C. However,
2k is just a worst-case upper bound, which can be reduced
in many cases. Thus, the size of a backdoor set is only a
very coarse measure for a backdoor set’s quality Samer and
Szeider [2008] proposed a more refined measure. They intro-
duced backdoor trees, which are decision trees on the back-
door variables, where each leaf corresponds to an instance
in C. The number of leaves of a backdoor tree over a back-
door set of size k is a more refined quality measure for a
backdoor set. It ranges between the linear best-case lower
bound of k + 1 and the exponential worst-case upper bound
of 2k. Interestingly, a backdoor tree with the smallest num-
ber of leaves is not necessarily based on a backdoor set of the
smallest cardinality. Samer and Szeider [2008] showed that
the detection of backdoor trees with respect to the fundamen-
tal bases classes Horn and 2CNF is fixed-parameter tractable
when parameterized by the number of leaves of the backdoor
tree. They implicitly assumed that the variables used by a
backdoor tree form a subset-minimal backdoor set.

This paper proposes a new quality measure for backdoor

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

sets, which can again be significantly smaller than the num-
ber of leaves of a backdoor tree. The new measure is based on
a backdoor DNF for a CNF formula F , a tautological propo-
sitional DNF formula D over the variables of a backdoor set.
Each term of D, considered as a partial assignment, moves F
into the base class C. We observe that a backdoor tree can be
considered a special case of a backdoor DNF when we iden-
tify each leaf with the term assignments made on the unique
path from the root. We show that the difference between a
smallest backdoor tree and a smallest backdoor tree as found
by the known algorithm [Samer and Szeider, 2008], as well
as between a smallest backdoor tree and a smallest backdoor
DNF, can be arbitrarily large (Theorems 2 and 1). As our
main theoretical contribution (Theorem 3), we show the fol-
lowing:

The detection of backdoor DNFs and backdoor trees with
respect to the fundamental base classes Horn, AntiHorn,
and 2CNF is fixed-parameter tractable, parameterized by the
number of terms (for backdoor DNFs) or the number of leaves
(for backdoor trees).

In this result, we are not limited to backdoor DNFs over
a subset-minimal backdoor set. We show that such a limita-
tion prevents us from finding backdoor DNFs/trees with the
smallest number of terms/leaves. This strengthens the above
mentioned result by Samer and Szeider [2008], who showed
this for cardinality-minimal backdoor sets. Consequently, our
FPT algorithm needs to be considerably more sophisticated
to cover the general case. Although we still start the search
with subset-minimal backdoor sets, we have to systematically
explore extensions that lead to a smallest backdoor DNF or
backdoor tree, respectively.

Our FPT algorithm also works for heterogeneous base
classes [Gaspers et al., 2017a]. Different terms of a backdoor
DNF may lead to instances that belong to different tractable
base classes Horn and 2CNF, or AntiHorn and 2CNF. How-
ever, we show that similar to the detection of backdoor
sets, one cannot combine Horn and AntiHorn, for a fixed-
parameter tractable detection of backdoor trees or backdoor
DNFs (Theorem 4).

We complement the theoretical results with an empirical
evaluation. We compare the size of backdoor trees and back-
door DNFs over a wide range of SAT instances. We utilize
SAT encoding for the detection of these structures, as well as
an efficient SAT-based algorithm for the extraction of min-
imal unsatisfiable cores. Our experiments show that in all
considered instances, the backdoor DNFs are significantly
smaller than backdoor trees. In many cases, the difference
is of several orders of magnitude, which exceeds the expecta-
tion based on our theoretical results.

2 Preliminaries
We refer to the standard books for a basic overview of param-
eterized complexity theory [Cygan et al., 2015], and assume
that readers are aware of the complexity classes FPT, XP,
and W[1].

CNF and DNF formulas We consider propositional for-
mulas in conjunctive normal form (CNF) and disjunctive nor-
mal form (DNF) represented by sets of clauses, or sets of

terms, respectively; e.g., F = {{x,¬y}, {¬x, z}} represents
both, the CNF formula C = (x∨¬y)∧(¬x∨z) and the DNF
formula D = (x ∧ ¬y) ∨ (¬x ∧ z). For a CNF/DNF formula
F , v(F) denotes the set of variables occurring negated or un-
negated in F . By negating a DNF formula we obtain a CNF
formula, for instance D = (¬x ∨ y) ∧ (x ∨ ¬z). A (partial
truth) assignment is a mapping τ : X → {0, 1} (0 represent-
ing false, 1 representing true) defined on a set X of variables.
We write v(τ) = X . If v(τ) = {x} then we denote τ sim-
ply by ‘x = 1’ or ‘x = 0’. An assignment τ extends in the
obvious way to literals over v(τ) via τ(¬x) = 1− τ(x). We
identify each term of a DNF formula as a partial assignment,
e.g., the term (x ∧ ¬y) corresponds to τ : {x, y} → {0, 1}
with τ(x) = 1 and τ(y) = 0. F [τ] denotes the restriction of a
CNF formula F to τ (i.e., F [τ] is obtained from F by remov-
ing all clauses that contain a literal that is true under τ , and
by removing from the remaining clauses all literals that are
false under τ). A CNF formula F is satisfiable if F [τ] = ∅
for some assignment τ , otherwise it is unsatisfiable. A DNF
formula is a tautology if its negation is unsatisfiable. We also
consider variable deletion in the following form: If X is a set
of variables and F a CNF formula, then F − X denotes the
CNF formula obtained from F by removing from all clauses
literals of the form x or ¬x for x ∈ X .

Base Classes A base class is a class of CNF formulas for
which both membership and satisfiability can be decided in
polynomial time. Throughout this paper we also assume that
self-reducibility holds for the considered base classes C: For
every F ∈ C and x ∈ v(F) also F [x = 0], F [x = 1] ∈ C.

In this paper, we consider all base classes that can be ob-
tained as the union of the following fundamental classes of
CNF formulas:
• 2CNF, i.e., the family of all CNF formulas having at most

two literals per clause,
• HORN, i.e., the family of all CNF formulas having at most

one positive literal per clause,
• HORN−1, i.e., the family of all CNF formulas having at

most one negative literal per clause.
Let F = {2CNF,HORN,HORN−1}. The three considered
classes are the most important of the six classes considered
by Schaefer [1978]: The remaining three classes either don’t
directly apply to CNF formulas (affine formulas), or are not
self-reducible (0-valid and 1-valid formulas).

We consider any heterogeneous base class C such that
C =

⋃
F∈F F , as has been first considered by Gaspers et al.

[2017a]. Finally, we consider the class of renamable Horn
formulas (RHORN), which are formulas that can be made
Horn by replacing, for a subset X of variables, all occur-
rences of a literal whose underlying variable belongs to X by
its complement [Lewis, 1978; Gaspers and Szeider, 2012]. A
base class C can also be extended by adding empty clause de-
tection [Dilkina et al., 2007; Szeider, 2008]. This gives rise
to the base class C{} = {F : F ∈ C or F contains the empty
clause }.
Backdoor Sets Let C be a base class, F a CNF formula,
and B ⊆ v(F). Then B is a (strong) C-backdoor set (BS) of
F if F [τ] ∈ C for every truth assignment τ : B → {0, 1};

2

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

our BSs are usually referred to as strong BSs in the literature.
For each base class C we consider the following problem:
C-BACKDOOR SET (C-BS). Instance: A CNF formula F

and a non-negative integer k. Parameter: The integer k.
Question: Has F a C-backdoor set of cardinality at most k?

Let B be a C-BS of a CNF formula F . B is smallest if
F has no C-BS that is smaller than B; B is minimal if F
has no C-BS that is a proper subset of B. We say that a set
W of variables of F is a C-backdoor branching set for a set
B′ ⊆ v(F), if every C-BS for F that contains B′ also con-
tains at least one variable fromW . The following proposition
lies at the heart of the fpt-algorithms for C-BS (which is also
known to be NP-hard for every C ∈ ⋃

F∈F F [Crama et al.,
1997]), given by Gaspers et al. [2017a] and constitutes a cru-
cial prerequisite for our algorithms for BTs and BDNFs.

Proposition 1 ([Gaspers et al., 2017a]). Let F be a CNF for-
mula and B ⊆ v(F). Then, there is an algorithm that in time
O(2|B||F |) computes a C-backdoor branching set W for B
such that |W | ≤ 5.

Note, however, that C-BS for C ∈ {RHORN, 2CNF{},
HORN{}, HORN−1

{}} is known to be W[1]-hard [Gaspers
and Szeider, 2012].

Backdoor Trees A binary decision tree (DT) is a rooted
binary tree T . Every inner node of T is assigned a vari-
able, denoted by v(t), and has exactly one left and one right
child, which correspond to setting the variable to 0 or 1, re-
spectively. Moreover, every variable occurs at most once on
any root-to-leaf path of T . We denote by v(T) the set of all
variables assigned to any node of T . Finally, we associate
with each node t of T , the truth assignment τt that is defined
on all the variables v(P) occurring on the unique path P
from the root of T to t such that τt(v) = 0 (τt(v) = 1) if
v ∈ v(P) \ {v(t)} and P contains the left child (right child)
of the node t′ on P with v(t′) = v.

Let C be a base class, F a CNF formula, and T a DT
with v(T) ⊆ v(F). Then T is a C-backdoor tree (BT) of
F if F [τv] ∈ C for every leaf v of T . A C-BT T of F with the
smallest number of leaves (in the following, let |T | denote the
number of leaves), is a smallest C-BT of F . We consider the
following parameterized problem:

C-BACKDOOR TREE (C-BT) Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-BT with at most k leaves?

We will need the following auxiliary proposition showing
that computing a smallest C-BT can be done efficiently if the
set of allowed variables is small.

Proposition 2 (?). Let G be a C-BS for a CNF formula F .
Then, a smallest C-BT for F using only variables in G can be
computed in time |G|2|G|+1|F |O(1).

3 Backdoor DNFs
For a truth assignment τ : X → {0, 1} we denote by Dτ the
term that is satisfied by τ , i.e.,

Dτ = {x : x ∈ X, τ(x) = 1 } ∪ {¬x : x ∈ X, τ(x) = 0 }.

Let F be a CNF formula and G a set of partial truth
assignments defined on subsets of v(F). We call G a
C-backdoor DNF (BDNF) for F if (i) for each τ ∈ G,
F [τ] ∈ C, and (ii) GDNF = {Dτ : τ ∈ G } is a tautology.
We say that G is a smallest C-BDNF for F if |G| is minimal
over all C-BDNFs for F . Moreover, we say that G is
term-minimal if F [τ ′] /∈ C for every proper sub-assignment
τ ′ of an assignment τ ∈ G. We denote by v(G) the set
of all variables used by G, i.e., v(G) =

⋃
τ∈G v(τ).

We consider the following parameterized problem:
C-BACKDOOR DNF (C-BDNF) Parameter: k
Input: A CNF formula F and a non-negative integer k.
Question: Does F have a C-BDNF of size at most k?

If C is a tractable class and one is given a C-BDNF G for a
CNF formula F , then one can decide whether F is satisfiable
(and if so compute a satisfying assignment for F) in time
|G|(|F |)O(1) by testing satisfiability of the reduced formula
F [τ] (in time |F |O(1)) for every assignment τ ∈ G.

Because the set { τl : l ∈ L } is a C-BDNF for F for every
C-BT for F with leaves L, it holds that BTs are a restricted
version of BTs (similar to how backdoor sets are a restricted
version of BTs). However, BDNFs can be arbitrarily smaller
than BTs (which in turn can be arbitrary smaller than BS as
shown in [Samer and Szeider, 2008]), which makes them bet-
ter suited as shortcuts to tractability for Boolean Satisfiability,
as shown by the following theorem.

Theorem 1. For every s ≥ 1, there is a CNF formula F s
such that a smallest HORN-BDNF for F s is at least s − 2
smaller than a smallest HORN-BT for F s.

We will need the following observations for our algo-
rithms, showing that the variables of a BDNF (or BT) always
form a BS together with a simple bound on the number of
variables used by a BDNF (or BT).

Observation 1 (?). LetG be a C-BDNF of a CNF formula F .
Then, v(G) is a C-BS. Similarly, if T is a C-BT for F , then
v(T) is a C-BS.

Observation 2 (?). Let G (T) be a C-BDNF (BT) of a CNF
formula F . Then |var(G)| ≤ |G| − 1 (|var(T)| ≤ |T | − 1).

Analogously to Proposition 2 for BTs, we will now show
that computing a smallest C-BDNF can be done efficiently if
the set of allowed variables is small.

Proposition 3 (?). Let B be a C-BS for a CNF formula F .
Then, a smallest C-BDNF for F containing only variables in
B can be computed in time O(23|B|+1

+ 3|B||F |O(1)).

4 Finding BDNFs and BTs
In this section, we will provide a complete classification
of the parameterized complexity of C-BT and C-BDNF for
every base class C such that C =

⋃
F∈F F . In particu-

lar, we will show that both problems are fixed-parameter
tractable if and only if C 6= HORN ∪ HORN−1 (assuming
that FPT 6= W[1]). We start by giving our fpt-algorithms and
then show that both problems are W[1]-hard for the case that
C = HORN ∪ HORN−1.

3

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

Let F+ be the set of all these base classes, i.e., F+ =
{2CNF,HORN,HORN−1, 2CNF∪HORN, 2CNF∪HORN−1}.
Note first that using Propositions 2 and 3, both problems are
easily seen to be in XP for any base class C. This is because
there are at most |v(F)|k sets of variables that can be used by
a BDNF (or BT) of size at most k and for each of those sets,
we can compute a smallest BDNF (or BT) that uses only those
variables in fpt-time. This also illustrates that the main chal-
lenge that we have to overcome is to design a fpt-procedure
to enumerate all sets of variables that can potentially be used
by a smallest BDNF (or BT). Given Observation 1, one might
think that any smallest BDNF (or BT) uses only the variables
of a smallest BS, which if it were true would already provide
us with such an fpt-procedure since Proposition 1 can be eas-
ily employed to enumerate all minimal BSs of size at most k
in fpt-time. Unfortunately, this is not the case as shown by
the following theorem.

Theorem 2 (?). For every C ∈ F+ and every s ≥ 1, there is
a CNF formula F Cs such that a smallest C-BDNF (C-BT) for
F Cs is at least 2s − 2(s + 1) larger than a smallest C-BDNF
(C-BT), whose variables form a minimal C-BS for F Cs .

Proof Sketch. We show the theorem for C = HORN and
C-BDNFs. F HORN

s has variables {p, a1, . . . , as} ∪ { qj : 1 ≤
j ≤ r }, where r = 2s − s and the following clauses:
• a clause {ai, p} for every 1 ≤ i ≤ s and
• the clauses {a1, . . . , as, qj ,¬p} for every 1 ≤ j ≤ r.

We first show that F HORN
s has only two types of minimal

HORN-BSs, namely, the set B = {a1, . . . , as} and the sets
Bi = B \ {ai} ∪ {p, q1, . . . , qr} for every i with 1 ≤ i ≤ s.
This is because:
• no proper subset of B is a HORN-BS for F HORN

s because of
the clauses {ai, p},

• any HORN-BS can miss at most one variable ofB (because
of the clause {a1, . . . , as, q1,¬p}), and

• any HORN-backdoor that misses one variable in B has to
contain p (because of the clauses {ai, p}) and also every qj
(because of the clauses {a1, . . . , as, qj ,¬q}).

Therefore, every minimal HORN-BS that is not B has size at
least s−1+2s−s+1 = 2s, which together with Observation 1
implies that any HORN-BDNF that uses only variables in Bi
for some i has size at least 2s.

We now show that the same applies also to every
HORN-BDNF that uses only the variables in B, i.e., that it
has size at least 2s. This is because F [α] /∈ HORN for every
partial assignment α : B′ → {0, 1}, where B′ (B (because
of the clause {ai, p}, where ai ∈ B \ B′). Therefore, ev-
ery term of a HORN-BDNF has to assign all variables in B,
which implies that its size is at least 2s.

It only remains to show that F HORN
s has a HORN-BDNF

of size at most s + 2. To see this consider the following
HORN-BDNF for F HORN

s of size s + 2, which contains the
following assignments: (1) the assignment (p = 0), (2) the
assignment (p = 1, a1 = 0, . . . , as = 0), and (3) for every
i with 1 ≤ i ≤ s the assignment (p = 1, ai = 1). There-
fore, a smallest C-BDNF for F HORN

s is at least 2s − (s+2) ≥
2s−2(s+1) larger than such a smallest BDNF that only uses
variables in a minimal C-BS for F HORN

s .

The theorem also shows that our BTs can be arbitrarily
smaller than the BTs detected by Samer and Szeider’s algo-
rithm [Samer and Szeider, 2008], which are only allowed to
use subset-minimal C-backdoor sets.

It is therefore not sufficient to enumerate all BSs of a CNF
formula F to identify a set of variables that is used by a small-
est BDNF (or BT). Nevertheless, Observation 1 still allow
us to assume that we are given a BS for F and as we will
show next this will be sufficient to identify all sets of vari-
ables that can lead to a smallest BDNF (or BT). In particu-
lar, we will show next that if a smallest a smallest BDNF (or
BT) uses additional variables outside of a BS, then the set of
those additional variables has a special property (which we
will later exploit to extend minimal BSs), which we call use-
ful. Let F be a CNF-formula and B a C-BS. We say that
a set U of variables is C-useful for B if for every assignment
β : U → {0, 1}, there is a partial assignment α : B′ → {0, 1}
for some B′ ⊆ B such that F [α] /∈ C but F [α ∪ β] ∈ C. The
following lemma shows that the set of variables used by a
BDNF (or BT) for F that go beyond a BS, needs to be useful.

Lemma 1 (?). Let G be a smallest term-minimal C-BDNF
for F and let B be a C-BS contained in v(G), then the set
U = v(G) \ B is C-useful. Similarly, if T is a smallest C-BT
for F and B is a C-BS contained in v(T), then the set U =
v(T) \B is C-useful.

Proof Sketch. We will show the lemma for BDNFs. IfU = ∅,
then there is nothing to show. Hence, assume that U 6= ∅ and
suppose for a contradiction that the statement of the lemma
does not hold. Then, there is an assignment β : U → {0, 1}
such that F [α ∪ β] /∈ C for every assignment α : B′ →
{0, 1} with B′ ⊆ B and F [α] /∈ C. Let G[β] be the set of all
assignments in G that are compatible with β, which is non-
empty because GDNF is a tautology. If there is no assignment
in G[β] that assigns at least one variable in U , then G[β]DNF
is again a tautology and therefore G[β] is a C-BDNF for F ,
which because U 6= ∅ is smaller than G contradicting our
assumption that G was minimal. Therefore, G[β] contains an
assignment τ that is defined on at least one variable of U . Let
τ ′ be the restriction of τ to variables in B. Then, F [τ ′] ∈ C
and thereforeG\{τ}∪{τ ′} is a C-BDNF for F , contradicting
our assumption that G is term-minimal.

We will show next how we can efficiently find C-useful sets
for a given C-BS B of a CNF formula F . We say that a set
A of variables of F is a C-branching set for B if A ∩ U 6= ∅
for every C-useful set U for B. As we will see later, all we
need to find C-useful sets is to be able to compute “small”
C-branching sets efficiently (i.e., fpt parameterized by |B|).
The following lemma show show to achieve exactly this for
all base classes in F+.

Lemma 2. Let C ∈ F+ and let B be a C-BS for a CNF
formula F . Then, a C-branching set A such that |A| ≤ 5 ·
3|B|can be computed in time O(3|B||F |).

Proof Sketch. We show the statement of the lemma for the
(simple) case that C = HORN. Let α : B′ → {0, 1}
with B′ ⊆ B be a partial assignment of B such that F [α] /∈

4

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

HORN. We denote by P (α) the set of all variables that oc-
cur positively in a clause in F [α] \ HORN but are not in B.
We claim that every C-useful set U for B has to contain all
variables in P (α) for some assignment α as above. This then
shows the statement of the lemma because we can obtain a
branching set A of size at most 3|B| by choosing an arbitrary
variable from P (α) for every α : B′ → {0, 1} with B′ ⊆ B
and F [α] /∈ HORN.

Suppose for a contradiction that this is not the case and
let U be a C-useful set for B such that P (α) 6⊆ U for ev-
ery assignment α : B′ → {0, 1} with F [α] /∈ HORN. Let
β : U → {1} the assignment setting all variables in U
to 1. Because U is C-useful for B, there is a partial assign-
ment α : B′ → {0, 1} for B such that F [α] /∈ HORN but
F [α ∪ β] ∈ HORN. Because P (α) 6⊆ U , there is a vari-
able p ∈ P (α) \ U and a clause C ∈ F [α] \ HORN such
that all positive literals in C are from B ∪ {p}; this is be-
cause B is also a deletion HORN-BS for F and therefore
every clause in F − B contains at most one positive literal.
Hence, β only assigns negative literals of C to 1 and it fol-
lows that C[α ∪ β] /∈ HORN, contradicting our assumption
that F [α ∪ β] ∈ HORN.

Algorithm 1 Main method for finding a smallest BDNF.

Input: CNF formula F , subset B ⊆ v(F), and integer k
Output: a smallest C-BDNF for F using at least the variables in B

having size at most k if it exists, otherwise nil
1: function MINBDNF(F , k, B)
2: Gmin ← “compute a smallest C-BDNF for F using only

variables in B using Proposition 3”
3: if |B| ≥ k − 1 then
4: if Gmin = nil or |Gmin| ≤ k then
5: return Gmin

6: return nil
7: if B is not a C-BS for F then
8: A← “compute a C-backdoor branching set for B

using Proposition 1”
9: else

10: A← “compute a C-branching set for B using Lemma 2
11: for v ∈ A do
12: G←MINBDNF(F , k, B ∪ {v})
13: if G 6= nil and |G| < |Gmin| then
14: Gmin ← G
15: if |Gmin| ≤ k then return Gmin

16: return nil

We are now now ready to show our main tractability result.
Theorem 3. Let C ∈ F+. Then, the problems C-BDNF and
C-BT are fixed-parameter tractable.

Proof. We present the algorithm for C-BDNF, which is il-
lustrated in Algorithm 1. Given a CNF formula F , a subset
B ⊆ v(F), and an integer k, the main function minBDNF
behind the algorithm computes a smallest C-BDNF for F
that uses at least the variables in B and has size at most k;
if no such C-BDNF exists, the algorithm returns nil. To
solve C-BDNF, the function minBDNF needs to be called
with B being the emptyset. Towards showing the correctness
of the algorithm consider the case that F has a C-BDNF of

size at most k and let G be a smallest such C-BDNF. Be-
cause of Observation 2, |v(G)| ≤ k − 1. Moreover, because
of Observation 1, v(G) contains a minimal C-BS say S of
size at most k − 1. We first show that the algorithm is called
for B = S. This is because as long as the set B is not a
strong C-BS, the algorithm branches on the variables inside
a C backdoor branching set A, which by definition must also
contains a variable from S \ B. If v(G) = S, then the call
of minBDNF for B = S already finds a C-BDNF of size |G|
in Line 2, which will eventually be returned. Otherwise, we
obtain from Lemma 1 that v(G) \ S is C-useful for S, and
it remains to show that the algorithm is eventually called for
B = v(G). To see this consider the calls following the call
where B = S. Since B is already a C-BS, the algorithm now
branches on all variables of a C-branching set A for B, which
by definition must also contain a variable of v(G)\B. Finally,
it is easy to see that any solution returned by the algorithm is
a C-BDNF of size at most k.

It remains to analyse the runtime of the algorithm. Since
every execution of minBDNF leads to at most |A| recur-
sive calls, each recursive call adds at least one variable to
B and the algorithm stops whenever |B| ≥ k − 1, we ob-
tain that the algorithm makes at most |A|k−1 recursive class.
Moreover, the time required for one call of minBDNF is
easily seen to be dominated by the time required by Line 2
to compute a smallest C-BDNF for F using only variables
in B using Proposition 3, which is at most O(23|B|+1

+
3|B||F |O(1)). Therefore, the total runtime of the algorithm
is at most O(|A|k−1(23|B|+1

+ 3|B||F |O(1)), which because
|A| is bounded by a function of k (for all classes C ∈ F+ due
to Lemma 2) shows that C-BDNF is in FPT.

The following theorem now shows that the problems are
W[2]-hard for the only remaining case that C = HORN ∪
HORN−1. The proof is based on a reduction by Gaspers et al.
[2017a].

Theorem 4 (?). Let C = HORN ∪ HORN−1. Then, the prob-
lems C-BT and C-BDNF are W[2]-hard.

5 Experiments
We complement our theoretical results by experiments. We
compute BDNFs and BTs on a large number of CNF formu-
las, stemming from various applications like logistics, plan-
ning, and combinatorics. The instances form ten groups:
(i) all interval series (ais)1, (ii–iii) graph coloring (flat, pret)1,
(iv) logistics car configuration (daimler) [Sinz et al., 2003],
(v) parity function learning (parity)1, (vi) inductive inference
(inductive)1, (vii) planning (blocksworld)1, (viii) pigeon hole
(pigeon)1, and (ix–x) vertex cover and treewidth for named
graphs (vc and tw). Since our algorithms are based on SAT
encodings, we can avoid the restriction to base classes that al-
low for fixed-parameter tractability. In particular, this allows
us to use the base classes HORN{} and RHORN{}, for which
already the BS problem is known to be W[1]-hard.

1https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

5

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

HORN{} RHORN{}

Group Size Total |BDNF|/|BT| σ2 Size Total |BDNF|/|BT| σ2

ais 87/1051 2/2 8.5 · 10−3 1.3 · 10−4 61/581 1/1 1.7 · 10−2 0.0 · 100
blocksworld 82/607 2/2 2.6 · 10−1 3.5 · 10−2 82/607 2/2 2.4 · 10−1 2.7 · 10−2
daimler 1407/1887 3/3 3.2 · 10−1 4.3 · 10−3 1667/3977 18/18 4.1 · 10−1 2.2 · 10−1
flat 150/545 99/99 1.5 · 10−3 5.6 · 10−6 150/545 97/99 6.4 · 10−4 9.4 · 10−8
inductive 288/5077 16/16 5.4 · 10−1 1.0 · 10−1 655/9649 41/41 1.1 · 100 5.6 · 10−1
parity 201/803 10/10 9.5 · 10−1 3.6 · 10−1 70/277 5/5 1.1 · 100 5.0 · 10−2
pigeon 74/322 5/5 3.0 · 10−3 2.7 · 10−5 49/169 2/2 1.2 · 10−2 1.4 · 10−4
pret 105/280 8/8 3.6 · 10−5 1.3 · 10−9 160 4/4 3.2 · 10−5 4.5 · 10−12
tw 222/965 9/12 5.6 · 10−1 2.7 · 10−1 125/433 5/6 6.1 · 10−1 4.4 · 10−2
vc 175/355 38/38 5.3 · 10−1 1.5 · 10−1 175/355 38/38 5.5 · 10−1 1.5 · 10−1

Table 1: Comparison between backdoor DNFs and backdoor trees for several classes and groups of instances. |BDNF|/|BT| is the average
ratio between the number of terms of the computed BDNF and the number of leaves of the computed BT, σ2 is the variance. Size shows the
average number of variables/clauses; Total shows the number of instances for which a BDNF could be computed.

We compute the SAT encodings using Python 3.8.0 and
PySAT 1.6.02. As the SAT solver, we use Cadical as provided
by PySAT, which works slightly better with our encodings
than the other solvers provided by PySAT. We run the ex-
periments on servers with two Intel Xeon E5540 CPUs, each
running at 2.53 GHz per core, use Ubuntu 18.04. Each run is
limited to six hours and 12 GB RAM.

The algorithm for BDNFs is based on incremental SAT
solving. It finds one potential term of a BDNF in each solver
call. Once a term is found, it is added to the encoding and
so excluded in future calls. We use a cardinality constraint
on the size of the term to obtain only subset-minimal terms.
When all the found terms together form a tautological DNF,
the algorithm terminates. Termination is checked using a sec-
ond incremental SAT solver instance, which checks, in incre-
ments of 1000 added terms, whether the DNF’s negation is
an unsatisfiable CNF. Finally, we minimize the DNF by com-
puting a minimal unsatisfiable core [Belov et al., 2014] for its
negation. The found DNF is then inclusion-minimal but not
necessarily of smallest cardinality. We compute BTs using a
recursive algorithm. The algorithm computes one branch of
the tree at a time using a SAT solver call. The algorithm then
calls itself for each sub-branch.
Results In total, we select 2197 instances from the sources
mentioned above that were small enough for the encodings.
For each instance, we compute a deletion BS and discard
instances based on the BS’s size: we choose 192 instances
where a HORN-backdoor is smaller than 100 and 222 in-
stances where a RHORN-backdoor is smaller than 50.

Given our theoretical results, we expect BDNFs to be
smaller than BTs. Indeed, in Table 1 we see this compari-
son in terms of the ratio of the BDNF size to BT size. The
lower the ratio, the smaller the BDNF in comparison to the
respective BT.

We found the lowest ratios for the graph coloring instances
in pret and flat. For RHORN the DNFs for the groups in-
ductive and parity are comparatively large. Parity is a group
where it is easy to obtain empty clauses. Therefore, the DNFs

2https://pysathq.github.io

(4 partial assignments) and trees (2 partial assignments) are
very small compared to the BS size (21–26). Inductive are
instances that are almost in RHORN and have a deletion BS
of size 1. The respective DNFs and trees are also very small.
For the vertex cover and treewidth encodings, the DNFs are
about half as large as the trees for all classes.

Interestingly, the set of variables used by about 90 % of the
BDNFs are not equal (but only contain) a minimal BS. This
is also strongly supported by our theoretical analysis show-
ing that BTs and BDNFs can be arbitrarily smaller if they are
not restricted to use only variables from a minimal BS (The-
orem 2).

6 Conclusion
We have introduced backdoor DNFs as a versatile tool for
representing the hidden structure in a SAT instance. Our main
theoretical results show that for fundamental base classes for
which the detection of strong backdoor sets is FPT, also the
detection of backdoor DNFs is FPT. This finding is signifi-
cant, as backdoor DNFs can be far more succinct than back-
door sets or backdoor trees. Our experiments show that SAT
instances drawn from a wide range of application domains
indeed contain backdoor DNFs that are by several orders of
magnitude smaller than their backdoor tree counterparts.

In the past, parameterized complexity of backdoor set de-
tection, and the use of backdoor sets for tractable problem
solving, has been explored in a wide range of problems be-
yond SAT: CSP [Gaspers et al., 2017c; Ganian et al., 2017;
Gaspers et al., 2017b], ASP [Fichte and Szeider, 2015a;
Fichte and Szeider, 2015b], Temporal Logic [Meier et al.,
2019], QBF [Samer and Szeider, 2009] Abstract Argumen-
tation [Dvorák et al., 2012], and Planning [Kronegger et al.,
2019]. We think that many of these results can be lifted to
backdoor DNFs. This provides several challenging research
question for future work.

6

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

References
[Ansótegui et al., 2014] Carlos Ansótegui, Maria Luisa

Bonet, Jesús Giráldez-Cru, and Jordi Levy. The fractal
dimension of SAT formulas. In Proc. IJCAR ’14, LNCS
8562, pp. 107–121. Springer, 2014.

[Belov et al., 2014] Anton Belov, Marijn Heule, and João
Marques-Silva. MUS extraction using clausal proofs. In
Proc. SAT ’14, LNCS 8561, pp. 48–57. Springer, 2014.

[Cook, 1971] Stephen A. Cook. The complexity of theorem-
proving procedures. In Proc. STOC ’71, pp. 151–158,
Shaker Heights, Ohio, 1971.

[Crama et al., 1997] Y. Crama, O. Ekin, and P. L. Hammer.
Variable and term removal from Boolean formulae. Discr.
Appl. Math., 75(3):217–230, 1997.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Dilkina et al., 2007] Bistra N. Dilkina, Carla P. Gomes, and
Ashish Sabharwal. Tradeoffs in the complexity of back-
door detection. In Proc. CP ’07, LNCS 4741, pp. 256–270.
Springer, 2007.

[Dvorák et al., 2012] Wolfgang Dvorák, Sebastian Ordy-
niak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artif. Intell., 186:157–173,
2012.

[Fichte and Szeider, 2015a] Johannes Klaus Fichte and Ste-
fan Szeider. Backdoors to normality for disjunctive logic
programs. ACM Trans. Comput. Log., 17(1), 2015.

[Fichte and Szeider, 2015b] Johannes Klaus Fichte and Ste-
fan Szeider. Backdoors to tractable answer set program-
ming. Artif. Intell., 220:64–103, March 2015.

[Ganian and Szeider, 2015] Robert Ganian and Stefan Szei-
der. Community structure inspired algorithms for SAT
and #SAT. In Proc. SAT ’15, LNCS 9340, pp. 223–237.
Springer, 2015.

[Ganian and Szeider, 2017] Robert Ganian and Stefan Szei-
der. New width parameters for model counting. In SAT
’17, LNCS 10491, pp. 38–52. Springer, 2017.

[Ganian et al., 2017] Robert Ganian, M. S. Ramanujan, and
Stefan Szeider. Discovering archipelagos of tractability for
constraint satisfaction and counting. ACM Trans. on Alg.,
13(2):29:1–29:32, 2017.

[Gaspers and Szeider, 2012] Serge Gaspers and Stefan Szei-
der. Backdoors to satisfaction. In The Multivariate Algo-
rithmic Revolution and Beyond, LNCS 7370, pp. 287–317.
Springer, 2012.

[Gaspers et al., 2017a] Serge Gaspers, Neeldhara Misra, Se-
bastian Ordyniak, Stefan Szeider, and Stanislav Zivný.
Backdoors into heterogeneous classes of SAT and CSP.
J. Comput. Syst. Sci., 85:38–56, 2017.

[Gaspers et al., 2017b] Serge Gaspers, Neeldhara Misra, Se-
bastian Ordyniak, Stefan Szeider, and Stanislav Zivny.

Backdoors into heterogeneous classes of SAT and CSP.
J. of Comput. and Syst. Sci., 85:38–56, 2017.

[Gaspers et al., 2017c] Serge Gaspers, Sebastian Ordyniak,
and Stefan Szeider. Backdoor sets for CSP. In The Con-
straint Satisfaction Problem, Dagstuhl Follow-Ups 7, pp.
137–157. Dagstuhl, 2017.

[Impagliazzo et al., 2001] Russell Impagliazzo, Ramamo-
han Paturi, and Francis Zane. Which problems have
strongly exponential complexity? J. of Comput. and Syst.
Sci., 63(4):512–530, 2001.

[Jamali and Mitchell, 2017] Sima Jamali and David
Mitchell. Improving SAT solver performance with
structure-based preferential bumping. In Proc. GCAI ’17,
EPiC 50, pp. 175–187. EasyChair, 2017.

[Kronegger et al., 2019] Martin Kronegger, Sebastian Ordy-
niak, and Andreas Pfandler. Backdoors to planning. Artif.
Intell., 269:49–75, 2019.

[Lewis, 1978] Harry R. Lewis. Renaming a set of clauses as
a Horn set. J. of the ACM, 25(1):134–135, January 1978.

[Mateescu, 2011] Robert Mateescu. Treewidth in industrial
SAT benchmarks. MSR-TR-2011-22, Microsoft, 2011.

[Meier et al., 2019] Arne Meier, Sebastian Ordyniak, M. S.
Ramanujan, and Irena Schindler. Backdoors for linear
temporal logic. Algorithmica, 81(2):476–496, 2019.

[Newsham et al., 2014] Zack Newsham, Vijay Ganesh, Se-
bastian Fischmeister, Gilles Audemard, and Laurent Si-
mon. Impact of community structure on SAT solver per-
formance. In Proc. SAT ’14, LNCS 8561, pp. 252–268.
Springer, 2014.

[Nishimura et al., 2004] Naomi Nishimura, Prabhakar
Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proc. SAT ’04, pp.
96–103, 2004.

[Samer and Szeider, 2008] Marko Samer and Stefan Szeider.
Backdoor trees. In Proc. AAAI ’08, pp. 363–368. AAAI
Press, 2008.

[Samer and Szeider, 2009] Marko Samer and Stefan Szeider.
Backdoor sets of quantified Boolean formulas. J. Autom.
Reason., 42(1):77–97, 2009.

[Schaefer, 1978] Thomas J. Schaefer. The complexity of sat-
isfiability problems. In Proc. STOC ’78, pp. 216–226.
ACM, 1978.

[Sinz et al., 2003] Carsten Sinz, Andreas Kaiser, and Wolf-
gang Küchlin. Formal methods for the validation of auto-
motive product configuration data. Artif. Intell. Eng. Des.
Anal. Manuf., 17(1):75–97, 2003.

[Szeider, 2008] Stefan Szeider. Matched formulas and back-
door sets. J. on Satisf. Boolean Model. Computat., 6:1–12,
2008.

[Vardi, 2014] Moshe Y. Vardi. Boolean satisfiability: theory
and engineering. Comm. ACM, 57(3):5, March 2014.

[Williams et al., 2003] Ryan Williams, Carla Gomes, and
Bart Selman. Backdoors to typical case complexity. In
Proc. IJCAI ’03, pp. 1173–1178. M. Kaufmann, 2003.

7

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
00

1

