
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-20-011
September 2020

Fixed-Parameter
Tractability of
DependencyQBFwith
Structural Parameters

Robert Ganian, Tomáš Peitl, Friedrich
Slivovsky, and Stefan Szeider

This is the authors’ copy of a paper that will appear in the proceedings of KR2020,
the 17th International Conference on Principles of Knowledge Representation and
Reasoning.
www.ac.tuwien.ac.at/tr

Fixed-Parameter Tractability of Dependency QBF
with Structural Parameters

Robert Ganian1 , Tomáš Peitl2 , Friedrich Slivovsky1 , Stefan Szeider1
1TU Wien

2Friedrich-Schiller-Universität Jena
rganian@ac.tuwien.ac.at, tomas.peitl@uni-jena.de, {fslivovsky,sz}@ac.tuwien.ac.at

Abstract

We study dependency quantified Boolean formulas (DQBF),
an extension of QBF in which dependencies of existential
variables are listed explicitly rather than being implicit in
the order of quantifiers. DQBF evaluation is a canonical
NEXPTIME-complete problem, a complexity class contain-
ing many prominent problems that arise in Knowledge Rep-
resentation and Reasoning. One approach for solving such
hard problems is to identify and exploit structural proper-
ties captured by numerical parameters such that bounding
these parameters gives rise to an efficient algorithm. This
idea is captured by the notion of fixed-parameter tractabil-
ity (FPT). We initiate the study of DQBF through the lens
of fixed-parameter tractability and show that the evaluation
problem becomes FPT under two natural parameterizations:
the treewidth of the primal graph of the DQBF instance com-
bined with a restriction on the interactions between the de-
pendency sets, and also the treedepth of the primal graph aug-
mented by edges representing dependency sets.

1 Introduction
Dependency quantified Boolean formulas (DQBF) are a
powerful formalism that extends propositional and quanti-
fied Boolean formulas (QBF) by allowing an explicit specifi-
cation of dependencies for individual existentially quantified
variables, also known as Henkin quantifiers (Henkin 1961).
The price of this additional syntactic tool is the NEXPTIME-
completeness of DQBF evaluation (Peterson, Reif, and
Azhar 2001), and as such DQBF evaluation is believed to
be significantly more difficult than SAT and QBF evalua-
tion, which are NP- and PSPACE-complete, respectively.
As one of the canonical NEXPTIME-complete problems,
DQBF can be used to succinctly encode problems for which
no efficient encodings into QBF are likely to exist, such as
synthesis of safe controllers (Bloem, Könighofer, and Seidl
2014), distributed synthesis for specifications in linear tem-
poral logic (Chatterjee et al. 2013), consistency checking
for certain description logics (Tobies 1999; Tobies 2001;
Lutz 2001), checking the existence of secure plans (Eiter et
al. 2004), and other problems that are central to knowledge
representation and reasoning. We note that NEXPTIME-
complete problems are provably intractable, while no such
proofs for problems in the Polynomial or Boolean Hierar-
chies are known (Papadimitriou 1994).

In the past two decades we have seen, first in SAT solv-
ing and later in QBF as well, that these theoretically hard
problems can often be successfully tackled in practice. A
wide range of SAT and QBF solvers have been developed to
date (Eén and Sörensson 2003; Audemard and Simon 2009;
Biere and Lonsing 2010; Janota et al. 2012; Rabe and Ten-
trup 2015; Janota 2018; Peitl, Slivovsky, and Szeider 2019),
some of which can solve instances with millions of vari-
ables, and progress in these areas has revolutionized applica-
tion fields such as formal verification (Vizel, Weissenbacher,
and Malik 2015). Inspired by this success story, researchers
are now turning their attention even higher up the complex-
ity hierarchy, to DQBF.

Indeed, research on DQBF is picking up steam in all
directions—from investigations of restricted cases (Bubeck
and Büning 2006) and DQBF proof systems and their proof
complexity (Beyersdorff et al. 2016; Balabanov, Chiang, and
Jiang 2014; Beyersdorff et al. 2018), through the develop-
ment of powerful DQBF solvers and preprocessors (Fröhlich
et al. 2012; Fröhlich et al. 2014; Finkbeiner and Tentrup
2014; Tentrup and Rabe 2019; Wimmer, Scholl, and Becker
2019), to the establishment of an independent DQBF track
in the annual QBF Evaluation1.

When dealing with computational problems that are hard
in their full generality, such as evaluating DQBF, a natural
question is whether we can identify restrictions under which
the problem can be solved efficiently. One way to achieve
this is through the identification of polynomially tractable
classes of instances—an approach that has led to many clas-
sical results in past years, such as the identification of Horn
and Krom as two tractable fragments of SAT. A more recent
framework that allows us to identify and algorithmically use
such restrictions is provided by the parameterized complex-
ity paradigm (Cygan et al. 2015; Downey and Fellows 2013;
Gottlob, Scarcello, and Sideri 2002), which associates each
instance of the problem with an integer parameter k that
can be used to quantify how structured the instance is. The
goal is then to obtain algorithms that are efficient when the
parameter is small: the best-case outcome is an algorithm
with a runtime of the form f(k) ·nO(1), where n is the input
size, and f is a computable function. Such algorithms are
called fixed-parameter algorithms, and parameterized prob-

1http://www.qbflib.org/qbfeval20.php

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

lems which admit such an algorithm are said to belong to the
complexity class FPT.
Contribution. In this paper, we initiate the investigation
of DQBF through the lens of parameterized complexity
by developing the first two fixed-parameter algorithms for
the problem. As for the choice of parameters, we follow
up on previous successful work on SAT (Samer and Szei-
der 2009b; Ganian and Szeider 2017), QBF (Chen 2004;
Atserias and Oliva 2014; Eiben, Ganian, and Ordyniak 2018;
Eiben, Ganian, and Ordyniak 2020) as well as numer-
ous other problems (Ganian and Ordyniak 2018; Samer
and Szeider 2010) by considering restrictions to the primal
graph2—a natural graph representation which captures how
variables in the instance interact with each other. The by far
most prevalent restriction in this context is the parameteri-
zation by treewidth, a graph parameter which measures how
tree-like the graph is, and our first result aims at establish-
ing the tractability of DQBF evaluation with respect to the
treewidth of the primal graph (i.e., the primal treewidth).

It is important to note that DQBF (and also QBF) evalu-
ation remains intractable even when restricted to instances
with constant primal treewidth (Atserias and Oliva 2014),
and the intuitive reason for this is the fact that instances
of small primal treewidth still allow for arbitrary interac-
tions between variables through the quantifier dependencies
of those variables. Hence, in order to achieve tractability, it
is natural to combine primal treewidth with a measure that
bounds the complexity of the interactions between the de-
pendency sets. A suitable “base case” for such a parame-
terization is the previously studied class of DQBFs which
require each pair of dependency sets to be either disjoint or
equal (Scholl et al. 2019); here, we refer to these as modular
DQBFs. A natural parameter that suggests itself at this point
is the total number of “omissions” from the dependency sets
of a DQBF required to achieve modularity; this matches the
notion of (deletion) backdoors (Williams, Gomes, and Sel-
man 2003) whose size has been used as a parameter in the
SAT, CSP, and QBF settings (Gaspers and Szeider 2012;
Gaspers et al. 2014; Samer and Szeider 2009a). However,
since our aim here is merely to restrict the interaction be-
tween variable dependencies, we show that parameteriz-
ing by the total size of the backdoor is not necessary for
tractability.

Indeed, as our first result, we establish fixed-parameter
tractability of DQBF evaluation when parameterized by the
primal treewidth and the local size of a backdoor to mod-
ularity—which measures the largest number of omissions
from a single dependency set in a backdoor instead of the
total number of all omissions. We remark that, as a conse-
quence of parameterizing by the local size of the backdoor,
our result implies fixed-parameter tractability of DQBF pa-
rameterized by the primal treewidth and the maximum size
of a dependency set (representing a rather trivial subcase of
our parameterization).

Given this result, it is natural to ask the following ques-
tions: Is it possible to apply a structural parameter to solve
DQBF instances without placing any explicit restrictions on

2Definitions are provided in Section 2.

the variable dependencies, and simply modeling dependen-
cies directly in the graph representation? Furthermore, can
we use such a parameter to solve instances where the depen-
dency sets of variables are highly non-modular? Our second
result provides a positive answer to these questions by us-
ing the parameter treedepth, a fundamental and well-studied
restriction of treewidth. In particular, we establish fixed-
parameter tractability of DQBF evaluation when parameter-
ized by the treedepth of the augmented primal graph alone,
where the augmented primal graph is obtained from the pri-
mal graph by representing dependencies as edges.

Methods and Techniques. The core of the first algorith-
mic result lies in a series of reductions. However, be-
fore applying these, we first develop a polynomial-time 2-
approximation algorithm for detecting backdoors to modu-
larity of minimum local size. We then make use of partial
expansion of this backdoor, where a formula is instantiated
with all assignments to a subset of the universal variables,
and copies of the dependent existential variables and clauses
in which they occur are created. We show that the combi-
natorial explosion this operation introduces is capped by a
function of our parameters, and moreover that the increase
in treewidth is bounded as well, which effectively gives us
an FPT-reduction to a modular DQBF. On this class, we can
invoke a result of Scholl et al. (2019), which shows that
the formula can be reduced to a QBF with 2 quantifier al-
ternations. We then prove that this translation is treewidth-
preserving, which allows us to finally use fixed-parameter-
tractability of bounded-alternation QBF to obtain our result.

The second result applies the branch-pruning technique
to iteratively reduce the input DQBF into an equivalent one
whose size is bounded by a function of the treedepth (Ganian
and Ordyniak 2018; Gutin, Jones, and Wahlström 2016). In-
tuitively, the technique uses a treedepth “decomposition” to
identify irrelevant parts of the instance, i.e., a set of variables
and clauses whose deletion will not change the outcome of
the evaluation. The difficulty here lies in the specific chal-
lenges posed by DQBFs: among others, during the proof,
we need to alter a model of a pruned formula so that it can
also work for the formula before the pruning step, without
any a-priori knowledge of how the model operates.

Related Work. Treewidth is a famous structural param-
eter that has found ubiquitous applications across nearly
all areas of theoretical computer science research. Among
others, treewidth is known to give rise to fixed-parameter
algorithms for SAT (Samer and Szeider 2009b) and also
for QBF when combined with the number of quantifier al-
ternations (Chen 2004). In the latter case, it is known
that the dependence of the running time on the number of
alternations is a tower of exponents and that this is un-
avoidable (Pan and Vardi 2006; Fichte, Hecher, and Pfan-
dler 2019). Treedepth is a restriction of treewidth that is
closely tied to the theory of graph sparsity (Nesetril and
de Mendez 2012) and has been successfully used to solve
problems that have proved resilient to the dynamic program-
ming techniques commonly employed with treewidth (Ga-
nian and Ordyniak 2018; Gutin, Jones, and Wahlström 2016;
Iwata, Ogasawara, and Ohsaka 2018).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

To the best of our knowledge, there has been no inves-
tigation of treewidth, or indeed other structural parame-
ters, in the context of DQBF. Perhaps the most closely re-
lated results involved the introduction of two refinements of
treewidth that can be used to solve QBF instances without
restricting the number of quantifier alternations. The more
recent of these, called dependency treewidth (Eiben, Ganian,
and Ordyniak 2018), is designed in a way which allows in-
stances of small width to be solved by Q-resolution (Kleine
Büning, Karpinski, and Flögel 1995)—a proof system for
QBF which does not have any directly applicable equiv-
alent in DQBF. The other result is centered around prefix
treewidth (Eiben, Ganian, and Ordyniak 2020), which is de-
signed in a way that facilitates the construction of a model
by dynamic programming. While on a high level such an
approach might seem fruitful also for DQBF evaluation, due
to the lack of a linear quantifier order in DQBF it is not
clear at all whether or how techniques from that paper can
be adapted to our more general setting.

Organisation. After going through preliminaries about
DQBF, treewidth, and treedepth in Section 2, we give the
algorithm which uses treewidth and backdoors to modular-
ity in Section 3. In Section 4 we then turn to the treedepth-
based algorithm. Finally, we conclude with some remarks
and open questions in Section 5.

2 Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 =
[i] ∪ {0}. We refer to the handbook by Diestel (2012) for
standard graph terminology, and to the recent books for a ba-
sic overview of parameterized complexity theory (Downey
and Fellows 2013; Cygan et al. 2015).

Dependency QBF. We assume the existence of a count-
ably infinite set containing propositional variables. A literal
is either a variable x, or its negation x, whereby x = x.
For a variable x we let var(x) = var(x) = x, and we say
that x and x are literals on x. A clause is a disjunction of
literals, and a CNF (i.e., a formula in conjunctive normal
form) is a conjunction of clauses. Whenever convenient, we
interpret a clause as a set of literals, and a CNF as a set
of clauses. The empty clause is denoted by ⊥. We write
vars(C) = {var(l) : l ∈ C} for the set of variables oc-
curring in a clause, and vars(φ) = ∪C∈φvars(C) for the
set of variables occurring in a CNF φ. For a set of vari-
ables V , the restriction of a clause C to V is the clause
C|V = {l ∈ C : var(l) ∈ V }. For a set of literals X ,
we write X = {x : x ∈ X}.

An assignment to a set of variables X is a mapping τ :
X → {0, 1}, for a literal x ∈ X we define τ(x) = 1− τ(x).
We sometimes interpret an assignment τ as the set of literals
it sets to true, i.e., as {l ∈ X ∪ X : τ(l) = 1}. The set of
assignments to X is denoted by 2X .

The substitution of an assignment τ into a clause C, de-
notedC[τ], is>, if there is l ∈ C such that τ(l) = 1, and the
clause {l ∈ C : τ(l) 6= 0} otherwise. The substitution of τ
into a CNF φ is the CNF φ[τ] = {C[τ] : C ∈ φ,C[τ] 6= >}.
We say that τ satisfies φ if φ[τ] = ∅.

A DQBF3 is a formula Φ of the form

Φ = ∀u1 · · · ∀um∃x1(Sx1
) · · · ∃xn(Sxn) · φ,

where the matrix φ is a CNF, and each existential variable
xi has its associated dependency set Sxi ⊆ {u1, . . . , um}—
the specification of the dependency sets is called the pre-
fix. By vars∀(Φ) and vars∃(Φ) we denote the universal
and existential variables of Φ, respectively, and vars(Φ) =
vars∀(Φ) ∪ vars∃(Φ). For V ⊆ vars(Φ) and an assignment
τ ∈ 2V , we write Φ[τ] for the formula whose prefix is ob-
tained from the prefix of Φ by deleting variables assigned
by τ , and whose matrix is φ[τ]. We only deal with closed
DQBF, i.e., where vars(φ) ⊆ vars(Φ). The size |Φ| of a
DQBF Φ with the matrix φ is defined as the total number of
literals in all its clauses plus the total size of its dependency
sets, i.e., as

∑
C∈φ |C|+

∑
x∈vars∃(Φ) |Sx|.

A candidate model of a DQBF Φ is a set of functions

f = {fx : 2Sx → 2{x} : x ∈ vars∃(Φ)}.

For a candidate model f and τ ∈ 2vars∀(Φ), we write f(τ) =
{fx(τ |Sx) : x ∈ vars∃(Φ)} for the assignment resulting
from applying f to τ—also known as the response of f to
τ . A model of Φ is a candidate model f such that for every
τ ∈ 2vars∀(Φ) the assignment τ ∪ f(τ) satisfies the matrix φ.
A DQBF is true if it has a model, and false otherwise.

The primal graph GΦ of a DQBF Φ is the graph whose
vertices are vars(Φ) and two variables a, b are adjacent if and
only if there is a clause C such that a, b ∈ vars(C). Notice
that the primal graph does not capture the prefix of Φ in any
way. Hence, we also consider the augmented primal graph
G?Φ of Φ, which is the graph obtained fromGΦ by adding an
edge between each pair u, x of variables such that u ∈ Sx.
Treewidth. Let G be a graph. A tree decomposition of G
is a pair (T, χ) where T is a tree and χ : T → 2V (G) is a
mapping from tree nodes to subsets of V (G) such that:

• ∀e = uv ∈ E(G),∃t ∈ V (T) : {u, v} ⊆ χ(t), and

• ∀v ∈ V (G), T [{t | v ∈ χ(t)}] is a non-empty connected
subtree of T .

We call the vertices of T nodes and the sets in χ(t) bags
of the tree decomposition (T, χ). The width of (T, χ) is
equal to max{|χ(t)| − 1 | t ∈ V (T)} and the treewidth of
G (denoted tw(G)) is the minimum width over all tree de-
compositions of G. The primal treewidth of a DQBF Φ is
the treewidth of its primal graph.

It is possible to efficiently construct near-optimal tree de-
compositions for graphs of low treewidth:

Proposition 1 (Bodlaender et al., 2016). There exists an al-
gorithm which, given an n-vertex graph G and an integer k,
in time 2O(k) ·n either outputs a tree-decomposition of G of
width at most 5k + 4 and O(n) nodes, or determines that
tw(G) > k.

Treedepth. Treedepth is a structural parameter closely re-
lated to treewidth, and the structure of graphs of bounded

3We only consider what is otherwise also known as an S-form
DQBF in CNF (Balabanov, Chiang, and Jiang 2014).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

treedepth is well understood (Nesetril and de Mendez 2012).
A useful way of thinking about graphs of bounded treedepth
is that they are (sparse) graphs with no long paths.

We formalize a few notions needed to define treedepth. A
rooted forest is a disjoint union of rooted trees. For a ver-
tex x in a tree T of a rooted forest, the height (or depth) of x
in the forest is the number of vertices in the path from the
root of T to x. The height of a rooted forest is the maximum
height of a vertex of the forest.
Definition 1 (Treedepth). Let the closure of a rooted for-
est F be the graph clos(F) = (Vc, Ec) consisting of the
vertex set Vc =

⋃
T∈F V (T) and the edge set Ec =

{xy : x is an ancestor of y in some T ∈ F}. A treedepth de-
composition of a graph G is a rooted forest F such that
G ⊆ clos(F). The treedepth td(G) of a graph G is the min-
imum height of any treedepth decomposition of G.
We will later use Tx to denote the vertex set of the subtree
of T rooted at a vertex x of T . Similarly to treewidth, it is
possible to determine the treedepth of a graph in FPT time.
Proposition 2 (Nesetril and de Mendez, 2012). Given an
n-vertex graph G and a constant w, it is possible to decide
whether G has treedepth at most w, and if so, to compute an
optimal treedepth decomposition of G in time O(n).

3 DQBF Parameterized by Treewidth
In this section, we present algorithms for evaluating DQBFs
with small treewidth. Since bounded treewidth on its own is
not enough to ensure tractability (Atserias and Oliva 2014),
we additionally introduce a parameter that imposes restric-
tions on the dependency sets. This allows us to reduce to
the problem of evaluating a QBF with a Σ3 prefix, which is
known to be FPT parameterized by treewidth (Chen 2004;
Capelli and Mengel 2019). Our parameter takes the value 0
for DQBFs with dependency sets that are pairwise identical
or disjoint.

3.1 Modularity and Backdoors
The first notion we will need to define a suitable restriction
of the dependency set is modularity.
Definition 2 (Modular). Let S = (Si)i∈[m] be a family of
subsets of a finite set X . The family S is called modular
if Si ∩ Sj 6= ∅ =⇒ Si = Sj for all i, j ∈ [m].
A DQBF with modular dependency sets can be rewritten as
a QBF with a Σ3 prefix (Scholl et al. 2019). An inspec-
tion of the proof shows that the rewriting preserves primal
treewidth.
Theorem 1 (Scholl et al. 2019). A DQBF Φ with modu-
lar dependency sets can be rewritten into an equisatisfiable
QBF Φ′ with a Σ3 prefix in polynomial time. Moreover, if Φ
has primal treewidth w then Φ′ has primal treewidth at most
w + 2.

Proof. Let V1, . . . , Vl be a partitioning of the existential
variables of Φ such that, for any two existential variables,
their dependency sets coincide if, and only if, they are from
the same part. Each clause C of Φ can be expressed as a
disjunction C = C1 ∨ · · · ∨ Cl of variable-disjoint clauses

with var(Ci) ⊆ Vi ∪ D(Vi). The rewriting now splits the
clause C into clauses C1 ∨ z1,¬z1 ∨ C2 ∨ z2, . . . ,¬zl−1 ∨
Cl by introducing new existential variables zi such that
D(zi) = ∅. The dependency sets of the original existen-
tial variables are then inflated so as to include all universal
variables. The resulting DQBF Φ′ can be written as a QBF
with the prefix ∃Z∀U∃E, where Z is the set of existential
variables zi introduced by splitting clauses, U = vars∀(Φ),
and E = vars∃(Φ). Clearly, the entire rewriting can be done
in polynomial time. For a proof of soundness, refer to the
paper by Scholl et al. (2019).

We now show that the primal treewidth is increased by at
most 2. First, consider a tree decomposition (T, χ) of the
primal graph associated with Φ. To obtain a tree decompo-
sition (T ′, χ′) of the primal graph associated with Φ′, we
only need to take care of the auxiliary variables Z. Consider
a clause C = C1 ∨ · · · ∨Cl split in the way described above
and let z1, . . . , zl−1 ∈ Z be the newly introduced existential
variables. Because vars(C) is a clique in the primal graph,
there has to be a node t ∈ T such that vars(C) ⊆ χ(t).4
In T ′, we add new nodes t1, . . . , tl such that t1 is adjacent
to t and ti is adjacent to ti−1, for 1 < i ≤ l, so that the
nodes t, t1, . . . , tl form a path in T ′. We let χ′(t) = χ(t)
for t ∈ T , χ′(t1) = χ(t) ∪ {z1}, χ′(tl) = χ(t) ∪ {zl−1},
and χ′(ti) = χ(t) ∪ {zi, zi+1} for 1 < i < l. Clearly, T ′ is
a tree and (T ′, χ′) still satisfies all conditions required of a
tree decomposition for original variables v ∈ vars(Φ)) and
edges vw connecting variables v, w ∈ var(Φ) in the primal
graph of Φ′. Also, each auxiliary variable zi is contained in
some bag, edges zizi+1 in the primal graph are covered by
the bag χ′(ti), and the running intersection property is satis-
fied for each variable zi by construction. Finally, if ziv is an
edge in the primal graph and v ∈ vars(Φ) then v ∈ vars(C)
and zi, v ∈ χ′(ti). This proves that (T ′, χ′) is a tree de-
composition of the primal graph of Φ′, and its width is at
most w + 2.

The parameter we will use to restrict dependencies mea-
sures the “distance” to a modular instance. To formalize
this, we introduce a natural adaptation of backdoors to our
setting.

Definition 3 (Deletion Backdoor to Modularity). Let X be
a finite set and S = (Si)i∈[m] a family of subsets of X . A
deletion backdoor to modularity of S is a set X ′ ⊆ X such
that the family S′ = (Si \X ′)i∈[m] is modular.

A natural parameter traditionally used in the context of
SAT and CSP is the size of a smallest backdoor to a certain
tractable class. However, here we consider a considerably
more relaxed restriction: the parameter will simply bound
the maximum intersection between the backdoor and a de-
pendency set. Formally, a deletion backdoor to modular-
ity X ′ of S is said to be locally k-bounded (or to have local
size k) if |Si ∩X ′| ≤ k for each i ∈ [m].

For a DQBF Φ, we say that a set B of universal variables
in Φ is a locally k-bounded backdoor to modularity if for

4For a proof of this statement refer to a standard textbook on
graph theory (Diestel 2012) or parameterized complexity (Flum
and Grohe 2006).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

each x ∈ vars∃(Φ) it holds that |Sx∩B| ≤ k. The parameter
we will use to restrict the dependencies is the minimum local
size of a backdoor to modularity—but before we can use it,
we first need to show how to efficiently compute it.

Lemma 1. There is a polynomial-time algorithm that, given
a family S = (Si)i∈[m] of subsets of a finite set X and an
integer k ∈ N, either determines that S does not have a
locally k-bounded backdoor to modularity, or computes a
backdoor to modularity of S that is locally 2k-bounded.

Proof. The algorithm proceeds as follows. First, it sets B =
∅ and loops over all integers i, j ∈ [m] and checks whether
the modularity condition Si ∩ Sj 6= ∅ =⇒ Si = Sj holds.
If the condition holds for every such i, j, then the instance is
already modular andB = ∅ is a locally k-bounded backdoor
to modularity.

Otherwise, let i, j be a pair such that the condition is vio-
lated. Let L = Si \ Sj , C = Si ∩ Sj and R = Sj \ Si, and
recall that C as well as L ∪ R must be non-empty. More-
over, observe that every backdoor to modularity must either
be a superset of C or a superset of L∪R (indeed, as long as
a single variable remains undeleted in C and a single vari-
able remains undeleted in L ∪ R, the set system cannot be
modular). Consider first the case where |C| > k; then every
locally k-bounded backdoor must necessarily contain L∪R.
In this case, we add L ∪ R into B and check whether B re-
mains locally k-bounded (if not, we correctly conclude that
S does not have a locally k-bounded backdoor to modular-
ity). Similarly, if |L| > k or |R| > k, then every locally
k-bounded backdoor must necessarily contain C, and hence
we add C into B and check to ensure B remains locally k-
bounded.

Using the above procedure, we process every pair Si, Sj
of sets in S such that their intersection C as well as both
their non-intersecting parts L and R are larger than k, and
have obtained a preliminary backdoor B that contains vari-
ables which must be present in every locally k-bounded
backdoor to modularity. Now consider a set Si such that
|Si| > 2k. We claim that for every set Sj it must hold that
either Si ∩ Sj = ∅ or Si = Sj . Indeed, if this were not
the case, then the sets Si and Sj would have been processed
by the above procedure—after all, either Si ∩ Sj or Si \ Sj
must necessarily be larger than k—and the procedure would
either result in Si ∩ Sj being empty or in Si = Sj . Since
this property holds for the intersection between Si and ev-
ery set Sj and the property will not be violated by further
additions to B, we may at this point safely remove every Si
of size greater than 2k from the family without changing the
outcome of the algorithm.

At this point, the family only contains sets of size at most
2k. To obtain our desired 2-approximation, we now simply
add the contents of every remaining set into B.

In view of Lemma 1, it is natural to ask why one needs to
resort to approximation for computing the parameter—after
all, finding a local backdoor of minimum local size could
have been a polynomial-time computable problem. Or, per-
haps it could at least be possible to compute the parameter
exactly by using a fixed-parameter algorithm. Surprisingly,

we settle these questions by showing that the problem is not
only NP-complete, but remains NP-complete even when the
task is to determine whether there exists a backdoor to mod-
ularity of local size 2.

Lemma 2. Given a family S = (Si)i∈[m] of subsets of a
finite set X and an integer k ∈ N, is it NP-complete to
decide whether there exists a locally 2-bounded backdoor to
modularity.

Proof. Inclusion in NP is trivial, since we can easily verify
whether a backdoor to modularity is locally k-bounded. To
show hardness, we reduce from the NP-hard 1-IN-3 POSI-
TIVE 3-SAT problem, where we are given a 3-CNF formula
φ (i.e. each clause has 3 literals) without negative literals
and are asked whether there exists a 1-in-3 satisfying assign-
ment, i.e. one which sets precisely one literal in each clause
to true (Garey and Johnson 1979).

Let φ = {C1, . . . , Cn} be an instance of 1-IN-3 POS-
ITIVE 3-SAT, where Ci = {xi1, xi2, xi3}. Let S(φ) =
φ ∪ {{xij} : 1 ≤ i ≤ n; 1 ≤ j ≤ 3}. We claim that φ
has a 1-in-3 satisfying assignment if and only if S(φ) has a
locally 2-bounded backdoor to modularity.

For the first direction, let τ be a 1-in-3 satisfying assign-
ment of φ, which we interpret as the set of variables it sets to
true. Then τ ′ = vars(φ) \ τ is a locally 2-bounded backdoor
to modularity of S(φ): indeed, τ ′ deletes exactly 2 variables
from every clause, and the rest is an instance consisting of
singletons only, which is trivially modular.

Conversely, let B be a locally 2-bounded backdoor to
modularity of S(φ). Because S(φ) contains the sets Ci =
{xi1, xi2, xi3}, and {xi1}, {xi2}, {xi3}, B must necessarily
contain at least 2 variables from Ci. On the other hand,
B ∩ Ci ≤ 2, so in fact B contains exactly 2 variables from
every clause. Hence B′ = vars(φ) \B is a 1-in-3 satisfying
assignment of φ.

3.2 Universal Expansion
One method of deciding the truth value of a DQBF is by
performing expansion of universal variables (Bubeck and
Büning 2006; Balabanov, Chiang, and Jiang 2014). Expand-
ing a universal variable u in a DQBF Φ results in the con-
junction Φ[u 7→ 1] ∧ Φ[u 7→ 0] of copies of Φ where u
is removed from the quantifier prefix and replaced with the
corresponding value in the matrix. Prenexing yields a DQBF
with two copies (eu and eu) of each existential variable e
of Φ that has u in its dependency set. By repeating this
step we can expand an entire set V of universal variables
and get up to 2|V | copies of the matrix and each existen-
tial variable. It is convenient to keep track of the universal
assignment associated with each copy by working with an-
notated literals `σ that consist of a literal ` and a truth as-
signment σ : V → {0, 1}. We introduce the concept of
instantiation to describe the copy of the matrix induced by
an assignment σ.

Definition 4 (Instantiation). Let Φ be a DQBF, V ⊆
vars∀(Φ), σ ∈ 2V , and ` a literal. The instantiation `[σ]

Φ
of a literal ` with the assignment σ in Φ is the annotated lit-
eral `σ

′
with σ′ = σ|Svar(`) if ` is existential, and `[σ] if `

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

is universal. In particular, for a universal literal ` we get
`
[σ]
Φ = > if σ(`) = 1, `[σ]

Φ = ⊥ if σ(`) = 0, and `[σ]
Φ = `

if var(`) /∈ V . This allows us to define the instantiation of a
clause C with σ in Φ as C [σ]

Φ =
∨
`∈C `

[σ]
Φ , and the instanti-

ation of a CNF φ with σ in Φ as φ[σ]
Φ =

∧
C∈ϕ C

[σ]
Φ .

We omit the DQBF Φ from the subscript of an instantiated
literal whenever it is understood.
Definition 5 (Expansion of Universal Variables). Given a
DQBF Φ = ∀u1 · · · ∀um∃x1(Sx1

) · · · ∃xn(Sxn) · φ and a
subset V ⊆ U = vars∀(Φ), the expansion of V in Φ results
in the DQBF

Φ′ = ∀U ′∃x[V]
1 (S′x1

) . . . ∃x[V]
n (S′xn).

∧

σ∈2V

φ[σ],

where U ′ = U \ V , S′xi = Sxi \ V , and ∃x[V]
i (S′xi) is a

shorthand for the set {∃x[σ]
i (S′xi)}σ∈2V of existential quan-

tifiers created by instantiating the variable xi with assign-
ments to V , for 1 ≤ i ≤ n.

It is well known that universal expansion is sound and
complete for DQBF (Bubeck 2010).
Lemma 3. Let Φ be a DQBF, let V be a subset of its univer-
sal variables, and let Φ′ be obtained by expanding V in Φ.
Then Φ is true if, and only if, Φ′ is true.

The following result shows that universal expansion of a
locally k-bounded deletion backdoor set to modularity does
not increase the size and the primal treewidth of a formula
too much.
Lemma 4. Let Φ = ∀u1 · · · ∀um∃x1(Sx1) · · · ∃xn(Sxn) · φ
be a DQBF and let V ⊆ vars∀(Φ) be a locally k-bounded
backdoor set to modularity of the family (Sxi)i∈[n] of the de-
pendency sets of Φ. The DQBF Φ′ obtained by expanding V
in Φ has the following properties:

1. The size of Φ′ is in O(2k(w+1)‖Φ‖).
2. The family of dependency sets of Φ′ is modular.
3. The primal treewidth of Φ′ is at most 2k(w+1) − 1.

Proof. Since V is locally k-bounded we can get at most 2k

existential variables x[σ]
i by instantiating an existential vari-

able xi with assignments σ ∈ 2V for 1 ≤ i ≤ n, so the
length of the quantifier prefix of Φ′ is in O(2k ‖Φ‖). For
each clause C ∈ φ we can get at most 2k(w+1) distinct
instantiations C [σ] for assignments σ ∈ 2V : instantiations
of C only differ in the annotations of existential literals `,
and by the above argument there are at most 2k such instan-
tiations `[σ] for each literal; moreover, each clause contains
at mostw+1 existential literals because the primal treewidth
of φ is w. This proves the bound on the size of φ′.

By definition of expansion, every dependency set of an
existential variable in Φ′ is obtained by removing V from a
dependency set of a variable from Φ. Because V is a dele-
tion backdoor set to modularity the resulting set family is
modular.

To obtain the desired bound on the primal treewidth of Φ′,
consider a tree decomposition (T, χ) of the primal graph of

the DQBF Φ. We are going to construct a tree decompo-
sition (T, χ′) of the primal graph associated with Φ′ by re-
placing variables by their annotated copies. Formally, we let
χ′(t) = {x[σ] | v ∈ χ(t), σ ∈ 2V } \ {>,⊥}. We have to
verify that (T, χ′) is indeed a tree decomposition.

First, we show that every variable of Φ′ is contained in a
bag. Each universal variable u ∈ vars∀(Φ′) is in vars(Φ)\V
and u[σ] = u for any σ ∈ 2V by definition, so u ∈ χ′(t)
whenever u ∈ χ(t). Each existential variable of Φ′ is an
annotated variable e[σ] for some σ ∈ 2V . Since (T, χ) is a
tree decomposition, there is a node t ∈ T such that e ∈ χ(t)
and thus e[σ] ∈ χ′(t) by construction.

Second, we prove that every edge is covered by a bag. Ev-
ery clause of Φ′ is an annotated clause C [σ] for some assign-
ment σ ∈ 2V . Thus if `[σ]

1 , `
[σ]
2 ∈ C [σ], then `1, `2 ∈ C for a

clause C of Φ. Again, there has to be a node t ∈ T such that
var(`1), var(`2) ∈ χ(t) and var(`1)[σ], var(`2)[σ] ∈ χ′(t) by
construction.

Third, we verify that (T, χ′) has the running intersection
property. Take the subgraph Tv[σ] = {t ∈ T |v[σ] ∈ χ′(t)} of
T induced by the set of nodes whose bags contain the vari-
able v[σ] of Φ′. The subgraph Tv = {t ∈ T | v ∈ χ(t)} is
a tree because (T, χ) is a tree decomposition, and the iden-
tity Tv[σ] = Tv holds by construction. Thus (T, χ′) is a tree
decomposition.

It remains to prove the bound on the width of this decom-
position. We can get at most 2k annotated variables v[σ]

for each variable v of Φ by instantiating with assignments
σ ∈ 2V , and each bag χ(t) contains at most w+1 variables,
so |χ′(t)| ≤ (2k)w+1 = 2k(w+1).

We refer to the smallest k such that the family of depen-
dency sets of a DQBF has a locally k-bounded backdoor to
modularity as its distance to modularity.
Theorem 2. DQBF evaluation is fixed-parameter tractable
parameterized by the combination of primal treewidth and
distance to modularity.

Proof. Let Φ be a DQBF, w its primal treewidth, and k its
distance to modularity. By Lemma 1 there is a polynomial-
time algorithm that computes a set V ⊆ vars∀(Φ) of univer-
sal variables that constitutes a locally 2k-bounded backdoor
set to modularity of the family of dependency sets of Φ. We
expand V in Φ to obtain the DQBF Φ′. By Lemma 4, this
can be done in time O(22k(w+1)‖Φ‖), the primal treewidth
of Φ′ is at most 22k(w+1)− 1, and the family of dependency
sets of Φ′ is modular. Furthermore, the formulas Φ and Φ′

are equisatisfiable by Lemma 3. We then apply Theorem 1
to obtain an equisatisfiable QBF with two quantifier alter-
nations while increasing the primal treewidth by at most 2.
Finally, we use the fact that QBF is FPT parameterized by
primal treewidth for a fixed number of quantifier alterna-
tions (Chen 2004; Capelli and Mengel 2019).

4 DQBF Parameterized by Treedepth
In this section we describe an FPT algorithm for evaluating
DQBF parameterized by the treedepth of its augmented pri-
mal graph. The main result of this section is Theorem 3 at

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

the end, which describes the FPT algorithm on a high level.
The key technical result used by Theorem 3 is Lemma 5,
which however requires some introduction. We therefore
start by describing the general proof strategy, setting the
scene and preparing the vocabulary for the highly specific
Lemma 5.

The main technique used in the algorithm is that of
pruning—informally speaking, we will be reducing the in-
stance by deleting irrelevant variables so that in the end we
obtain an equivalent instance of bounded size (which can
then be solved by any algorithmic technique, even brute
force). For that purpose we define the following operation
of deleting a set of variables from a formula: for a DQBF Φ
and V ⊆ vars(Φ), let Φ − V be the formula obtained from
Φ by removing (1) all clauses containing at least one vari-
able from V , and (2) all variables from V . Note that since
Φ − V is obtained by first removing clauses, and then re-
moving variables that do not occur in the matrix, it follows
that if Φ is true, then so is Φ− V for any V .

For the rest of this section, we assume that Φ is a DQBF,
G?Φ is its augmented primal graph, F is a rooted forest of
depth k in which G?Φ is embedded, and T is a tree in F . We
will use the aliases U := vars∀(Φ) and X := vars∃(Φ).

We will prove by induction that it is possible to reduce
the number of children of any given node at depth k − i to
g(k, i), and consequently to reduce the size of any subtree
at depth k − i to h(k, i), where g(k, i) and h(k, i) are some
suitable functions that we will define shortly. Together with
the bound on the depth of T , we will then be able to bound
the size of T as a function of k.

We define g(k, 0) = 0, h(k, 0) = 1, and we further define
g(k, i), h(k, i) and the auxiliary functions s, r,m, c recur-
sively as follows:

s(k, i) = 23h(k,i)+k
(

2h(k,i)+k
)h(k,i)+k

r(k, i) = 2h(k,i)+k

m(k, i) =
(

22h(k,i)+k
)h(k,i)

c(k, i) = m(k, i)r(k, i)

g(k, i+ 1) = s(k, i)c(k, i)

h(k, i+ 1) = 1 + h(k, i)g(k, i+ 1)

These functions have the following intuitive meaning:
h(k, i) bounds the size of a subtree rooted at depth k − i
given that the number of children of any node at a larger or
equal depth k − j ≥ k − i is bounded by g(k, j); s(k, i)
bounds the number of DQBF formulas on h(k, i) + k vari-
ables; r(k, i) is the number of assignments to a set of size
h(k, i) + k; and m(k, i) bounds the number of combined
model functions for a set of h(k, i) existential variables that
may depend on up to h(k, i) + k universal variables.

Observe that our inductive hypothesis—that the number
of children of any node at depth k − i is at most g(k, i)—
holds trivially for i = 0.

For a node p ∈ T , we define Pp to be the set which con-
sists of p and all of its ancestors, and Ap to be the set of all
connected components of G?Φ[Tp]− Pp.

Assume that the inductive hypothesis (number of children
of any node at depth k − j is bounded by g(k, j)) holds for
all j ≤ i. For a node p ∈ T at depth k − i, we immediately
get |Tp| ≤ h(k, i).

Now, assume that there is a node t at depth k − (i + 1)
with more than g(k, i + 1) children. First, let us define a
notion of equivalence of connected components of At.

For two sets of variables A,B ∈ vars(Φ), a renaming
function is a bijection ηA,B : A → B. We implicitly ex-
tend a renaming function ηA,B and its inverse η−1

A,B to vari-
ables outside of A and B by setting ηA,B(x) = x, to lit-
erals by setting ηA,B(x) = ηA,B(x), to assignments by
setting ηA,B(τ) = τ ◦ η−1

A,B , to clauses as ηA,B(C) =

{ηA,B(`) : ` ∈ C}, to sets of clauses as ηA,B(φ) =
{ηA,B(C) : C ∈ φ}, to a DQBF Φ′ by renaming the pre-
fix as well as the matrix, and finally to model functions as
ηA,B(fx) = ηA,B ◦ fx ◦ η−1

A,B .
Let A,B be connected components in At. Let us de-

fine the equivalence ≡ as follows: A ≡ B if and only if
there is a renaming function ηA,B : A → B such that
Φ − A = ηA,B(Φ − B). Notice that A ≡ B implies
that A and B have precisely the same number of existen-
tials and universals, where there is a one-to-one mapping
between universals and one-to-one mapping between exis-
tentials such that 1) each clause on B ∪Pt has a counterpart
on A ∪ Pt, and 2) the dependencies are preserved by these
mappings.

Since |Pt| ≤ k and for each A ∈ At we have |A| ≤
h(k, i) and the variables from A only have dependencies
to/from Pt∪A and also only occur in clauses with Pt∪A, the
number of equivalence classes of≡ is upper-bounded by the
number of DQBF instances on h(k, i)+k variables, which is
at most s(k, i). Moreover, since each of the existential vari-
ables in A has at most h(k, i) + k dependencies, the total
number of existential strategies for each individual variable
in A ∩ X is upper-bounded by 22h(k,i)+k . Since the num-
ber of variables in A ∩ X is upper-bounded by h(k, i), we
obtain that the total number of possible existential strategies
for A ∩X is at most m(k, i).
Lemma 5. Let t be a node of T with more than g(k, i + 1)
children in T , where each child of t satisfies the inductive
hypothesis. Then we can compute in time O(h(k, i)! · |Φ|2)
a child a of t such that Φ is true if and only if so is Φ− Ta.

Proof. Since t has more than g(k, i + 1) = s(k, i)c(k, i)
children in T and there are at most s(k, i) equivalence
classes of≡, it follows that there will be over c(k, i) compo-
nents in At which are all equivalent. Let us denote this set
Qt. Note that since each component in At has size bounded
by h(k, i), it is possible to test all pairs of components for≡
(and in particular to compute Qt) by brute-forcing over all
renaming functions in time O(h(k, i)! · |Φ|2).

Let a be the root of an arbitrary component in Qt. We
claim that a satisfies the properties of the lemma. Since if Φ
is true, then trivially so is Φ−Ta, we only need to show that
if Φ− Ta has a model, then so does Φ.

Let f be a model of Φ − Ta. Consider the model f∗ for
Φ obtained from f as follows. First, since |Qt \ {Ta}| ≥

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

c(k, i) and there are at most m(k, i) many possible com-
bined model functions for the existentials in each component
of Qt, there must be at least one component Tb ∈ Qt \ {Ta}
whose strategy is reused at least r(k, i) times by f (modulo
renaming). Let Qft be the restriction of Qt to those com-
ponents which use the same strategy as Tb, and once again
note that |Qft | ≥ r(k, i); formally, Qft has the property that
for each Ty, Tz ∈ Qft , there is a renaming function ηy,z
such that Φ− Ty = ηy,z(Φ− Tz) and furthermore for each
x ∈ Ty we have fηy,z(x) = ηy,z(fx). We now build f∗

for the existentials in Ta by copying and renaming f from
Tb—more precisely, for each variable xa ∈ X ∩ Ta we set
f∗xa = ηb,a(fxb).

It remains to define how f∗ behaves on existential vari-
ables in Pt, which could now also depend on Ta ∩ U . Un-
fortunately, it is not clear how one should extend the model
function fx (for each variable x ∈ Pt∩X) to one for f∗x in a
way which results in f∗ being a model—the issue that arises
here is that the response of f∗x must depend only on Sx, and
cannot look at the entire assignment to all universals in Ta.
So instead, we use a different approach: we will show that,
in fact, all dependencies of every such x on Qft can safely
be omitted from the formula.

Claim 1. Let Φ′ be the DQBF obtained from Φ by setting
for each x ∈ Pt ∩ X its dependency set in Φ′ to S′x =
Sx \

⋃
Tb∈Qft Tb. Then Φ′ is true if and only if Φ is true;

moreover, a model of Φ′ can be obtained from a model of Φ
in polynomial time.

Proof of Claim. Clearly, if Φ′ is true, then so is Φ, since the
dependency sets are larger in Φ. We need to show that if Φ
has a model, then so does Φ′.

Let f1 be a model of Φ. Let γ : Qft ∩ U → {0, 1} be
an arbitrary assignment of the universals in Qft which en-
compasses all possible individual assignments of Qft . This
means that γ has the following property: for an arbitrary
Tb ∈ Qft and for each possible assignment β : Tb ∩ U →
{0, 1}, there exists Td ∈ Qft such that ∀ub ∈ Tb ∩ U :

γ(ηb,d(ub)) = β(ub). Such a γ exists since |Qft | ≥ r(k, i),
and it can easily be constructed in polynomial time since we
have already computed the renaming functions η for all pairs
of components.

Now consider the candidate model f2 for Φ′ which be-
haves exactly like f1 on all variables other than those in
Pt ∩ X . For each x ∈ Pt ∩ X and each λ : S′x → {0, 1},
let λ′ = λ[S′x] ∪ γ. We now set f2

x(λ) = f1
x(λ′); in other

words, the response of f2 for x simply copies the response
of f1 for x where we assume that the variables in Qft were
assigned according to γ. To conclude the proof, we want to
show that f2 is a model of Φ′.

Towards a contradiction, assume that there is a total uni-
versal assignment λ2 such that λ2 ∪ f2(λ2) falsifies the ma-
trix, and in particular the clause C.

First, consider the case that C contains no variables from
Qft . Then consider the assignment λ1 = λ2|U\Qft ∪ γ of
vars∀(Φ). By definition of f2, for each existential x ∈ Pt it

holds that f2
x(λ2|Sx) = f1

x(λ1|Sx), and hence no existential
in Pt can satisfy C under λ1∪f1(λ1). Moreover, all univer-
sals in C are assigned precisely the same way as in λ2, and
all other existentials in C must use the same assignment as
dictated by f2—hence C would be falsified when applying
f1 to λ1, a contradiction.

Second, consider the case thatC contains at least one vari-
able from Qft . In that case C can only contain variables
from Pt and precisely one component of Qft , say Te. Con-
sider once again the universal assignment λ1 = λ2|U\Qft ∪γ.
By the definition of γ, there must exist some component of
Qft , say Tf , such that λ2’s universal assignment on Te is
copied by γ on Tf—formally, we have ∀ue ∈ Te ∩ U :
γ(ηe,f (ue)) = λ2(ue). Moreover, by the definition of Qt Φ
must also contain a mirrored clause ηe,f (C) of C on Tf .

Now, by the definition of Qft and the fact that the assign-
ment λ2|Te is mirrored by γ on Tf , we obtain that under
λ1 ∪ f1(λ1), ηe,f (C) can be satisfied by neither (1) an ex-
istential nor (2) a universal in Tf . Moving on, the restric-
tion C|Pt of C to Pt is precisely the same as the restriction
ηe,f (C)|Pt . Hence, since λ1|Pt = λ2|Pt , we see that (3)
ηe,f (C) cannot be satisfied by a universal in Pt. Finally, by
the definition of f2 we have that f2

x(λ2|S′
x
) = f1

x(λ1|Sx),
and so under λ1 ∪ f1(λ1) the clause ηe,f (C) cannot be sat-
isfied by any x ∈ Pt ∩X either. Altogether, this contradicts
the fact that f1 is a model.

With Claim 1 in hand, we can proceed as follows. Let γ
be an arbitrary universal assignment of Qft which encom-
passes all individual assignments to the components in Qft ,
as defined in the proof of Claim 1. Since f is a model of
Φ, by following the proof of Claim 1 we can obtain a model
f ′ for Φ which alters the functions f ′x for each x ∈ Pt ∩X
so that they do not depend on the universal assignments to
Qft (on all other variables, f ′ is the same as f). For each
x ∈ Pt ∩X , we then simply set f∗x = f ′x.

To conclude the proof, it remains to show that f∗ is in-
deed a model. Assume for a contradiction that there is a
universal assignment λ0 : U → {0, 1} in Φ such that a
clause C is falsified by λ ∪ f?(λ). Observe that C must
contain an existential variable from Ta, since all other ex-
istential variables use the same function as in f ′, which we
already showed to be winning by Claim 1. Now consider the
assignment λ′0 ∈ 2vars∀(Φ−Ta) obtained from λ0 by copying
λ0|Ta onto an arbitrary different component of Qft , say Tb
(modulo ηa,b). Consider the clause C ′ = ηa,b(C) and note
that C ′ is indeed a clause in Φ − Ta that contains variables
from Tb ∪ Pt.

Let us now ask: what happens to C ′ under λ′0 ∪ f ′(λ′0)?
First, C ′ cannot be satisfied by any variable in Pt, since uni-
versals in Pt use the same assignment as λ0 and f ′ assigns
all existentials in Pt only based on dependencies outside of
Qft (which did not change at all compared to when we used
f∗ on λ0). Second, since C was not satisfied previously and
we copied the assignment of λ0|Ta onto Tb, it follows that
C ′ cannot be satisfied by any variable in Tb either. Hence,
we reach a contradiction with f ′ being a model.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

To summarize, we have shown that f∗ must be a model
for Φ − Ta, and hence Φ − Ta is equivalent to Φ and the
lemma holds.

With Lemma 5, we can state and prove the main result of
this section.

Theorem 3. DQBF is fixed-parameter tractable parameter-
ized by the treedepth of the augmented primal graph.

Proof. Let Φ be a DQBF instance whose augmented primal
graph G?Φ has treedepth k. We begin by using Proposition 2
to compute an optimal treedepth decomposition T of G?Φ of
width k. We then exhaustively invoke Lemma 5 in a leaves-
to-root fashion in order to reduce the number of children of
any node at a given depth. Once that is no longer possible,
we obtain an equivalent instance where the root r of T also
satisfies the size bound given by Lemma 5; in particular, the
resulting DQBF contains at most h(k, k) many variables. To
complete the proof, we can simply solve this bounded-size
instance by an exhaustive brute-force search.

5 Concluding Remarks
In this paper we have initiated the study of fixed-parameter
tractability of the evaluation of dependency QBF (DQBF)
under structural parameters. It turned out that the additional
expressibility of DQBF compared to QBF has its price and
requires new methods. We succeeded in obtaining two fixed-
parameter tractability results: one that utilizes the combina-
tion of primal treewidth and distance to modularity as a pa-
rameter; and one that utilizes the treedepth of the augmented
primal graph as a parameter.

One natural question is whether our parameterizations can
be relaxed without losing fixed-parameter tractability. While
our algorithms do exploit all the structural properties cap-
tured by these parameters, it would be desirable to obtain
matching parameterized hardness results for weaker param-
eterizations. One particularly interesting case is that of using
treewidth (rather than treedepth as we did) of the augmented
primal graph. We leave these as open questions for future
work.

Another interesting question for future work is to come
up with specific reductions from various NEXPTIME-com-
plete Knowledge Representation and Reasoning problems to
DQBF, and to analyze such reductions with respect to their
preservation of structural properties.

Acknowledgments
This research was partially supported by the FWF grants J-
4361, P31336, and P32441, as well as by the WWTF grant
ICT19-065.

References
Atserias, A., and Oliva, S. 2014. Bounded-width QBF is
PSPACE-complete. J. of Computer and System Sciences
80(7):1415–1429.
Audemard, G., and Simon, L. 2009. Predicting learnt
clauses quality in modern SAT solvers. In Boutilier, C.,
ed., IJCAI 2009, Proceedings of the 21st International Joint

Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009, 399–404.
Balabanov, V.; Chiang, H.-J. K.; and Jiang, J. R. 2014.
Henkin quantifiers and Boolean formulae: A certifica-
tion perspective of DQBF. Theoretical Computer Science
523:86–100.
Beyersdorff, O.; Chew, L.; Schmidt, R. A.; and Suda, M.
2016. Lifting QBF resolution calculi to DQBF. In Creignou,
N., and Le Berre, D., eds., Theory and Applications of Sat-
isfiability Testing – SAT 2016, 490–499. Cham: Springer
International Publishing.
Beyersdorff, O.; Blinkhorn, J.; Chew, L.; Schmidt, R.;
and Suda, M. 2018. Reinterpreting dependency schemes:
Soundness meets incompleteness in DQBF. Journal of Au-
tomated Reasoning.
Biere, A., and Lonsing, F. 2010. Integrating dependency
schemes in search-based QBF solvers. In Strichman, O.,
and Szeider, S., eds., Theory and Applications of Satisfia-
bility Testing - SAT 2010, volume 6175 of Lecture Notes in
Computer Science, 158–171. Springer Verlag.
Bloem, R.; Könighofer, R.; and Seidl, M. 2014. SAT-based
synthesis methods for safety specs. In McMillan, K. L., and
Rival, X., eds., Verification, Model Checking, and Abstract
Interpretation - VMCAI 2014, volume 8318 of Lecture Notes
in Computer Science, 1–20. Springer Verlag.
Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin,
F. V.; Lokshtanov, D.; and Pilipczuk, M. 2016. A ckn 5-
approximation algorithm for treewidth. SIAM J. Comput.
45(2):317–378.
Bubeck, U., and Büning, H. K. 2006. Dependency Quan-
tified Horn formulas: Models and complexity. In Biere, A.,
and Gomes, C. P., eds., Theory and Applications of Satisfia-
bility Testing - SAT 2006, volume 4121 of Lecture Notes in
Computer Science, 198–211. Springer Verlag.
Bubeck, U. 2010. Model-based transformations for quan-
tified Boolean formulas. Ph.D. Dissertation, University of
Paderborn.
Capelli, F., and Mengel, S. 2019. Tractable QBF by knowl-
edge compilation. In Niedermeier, R., and Paul, C., eds.,
36th International Symposium on Theoretical Aspects of
Computer Science, STACS 2019, March 13-16, 2019, Berlin,
Germany, volume 126 of LIPIcs, 18:1–18:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.
Chatterjee, K.; Henzinger, T. A.; Otop, J.; and Pavlogiannis,
A. 2013. Distributed synthesis for ltl fragments. In Formal
Methods in Computer-Aided Design, FMCAD 2013, 18–25.
IEEE.
Chen, H. 2004. Quantified constraint satisfaction and
bounded treewidth. In Proceedings of ECAI 2004, the 16th
Eureopean Conference on Artificial Intelligence, 161–165.
IOS Press.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.
Diestel, R. 2012. Graph Theory, 4th Edition, volume 173 of
Graduate texts in mathematics. Springer.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

Downey, R. G., and Fellows, M. R. 2013. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer.
Eén, N., and Sörensson, N. 2003. An extensible SAT-
solver. In Giunchiglia, E., and Tacchella, A., eds., Theory
and Applications of Satisfiability Testing, 6th International
Conference, SAT 2003. Santa Margherita Ligure, Italy, May
5-8, 2003 Selected Revised Papers, volume 2919 of Lecture
Notes in Computer Science, 502–518. Springer Verlag.
Eiben, E.; Ganian, R.; and Ordyniak, S. 2018. Small resolu-
tion proofs for QBF using dependency treewidth. In 35th
Symposium on Theoretical Aspects of Computer Science,
STACS 2018, February 28 to March 3, 2018, Caen, France,
28:1–28:15.
Eiben, E.; Ganian, R.; and Ordyniak, S. 2020. Using
decomposition-parameters for QBF: mind the prefix! J.
Comput. Syst. Sci. 110:1–21.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2004. A logic programming approach to knowledge-state
planning: Semantics and complexity. ACM Trans. Comput.
Log. 5(2):206–263.
Fichte, J. K.; Hecher, M.; and Pfandler, A. 2019. TE-
ETH: lower bounds for qbfs of bounded treewidth. CoRR
abs/1910.01047.
Finkbeiner, B., and Tentrup, L. 2014. Fast DQBF refutation.
In Sinz, C., and Egly, U., eds., Theory and Applications of
Satisfiability Testing - SAT 2014, volume 8561 of Lecture
Notes in Computer Science, 243–251. Springer Verlag.
Flum, J., and Grohe, M. 2006. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. An EATCS
Series. Berlin: Springer-Verlag.
Fröhlich, A.; Kovásznai, G.; Biere, A.; and Veith, H. 2012.
A DPLL algorithm for solving DQBF. In Pragmatics of SAT
2012.
Fröhlich, A.; Kovásznai, G.; Biere, A.; and Veith, H. 2014.
iDQ: Instantiation-based DQBF solving. In Pragmatics of
SAT 2014.
Ganian, R., and Ordyniak, S. 2018. The complexity land-
scape of decompositional parameters for ILP. Artif. Intell.
257:61–71.
Ganian, R., and Szeider, S. 2017. New width parameters
for model counting. In Theory and Applications of Satisfi-
ability Testing - SAT 2017 - 20th International Conference,
Melbourne, VIC, Australia, August 28 - September 1, 2017,
Proceedings, 38–52.
Garey, M. R., and Johnson, D. R. 1979. Computers and
Intractability. San Francisco: W. H. Freeman and Company,
New York.
Gaspers, S., and Szeider, S. 2012. Backdoors to satisfaction.
In Bodlaender, H. L.; Downey, R.; Fomin, F. V.; and Marx,
D., eds., The Multivariate Algorithmic Revolution and Be-
yond - Essays Dedicated to Michael R. Fellows on the Oc-
casion of His 60th Birthday, volume 7370 of Lecture Notes
in Computer Science, 287–317. Springer Verlag.
Gaspers, S.; Misra, N.; Ordyniak, S.; Szeider, S.; and Zivny,
S. 2014. Backdoors into heterogeneous classes of SAT and

CSP. In Brodley, C. E., and Stone, P., eds., Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, July 27 -31, 2014, Québec City, Québec, Canada.,
2652–2658. AAAI Press.
Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in AI and nonmonotonic reasoning.
Artificial Intelligence 138(1-2):55–86.
Gutin, G. Z.; Jones, M.; and Wahlström, M. 2016. The
mixed chinese postman problem parameterized by path-
width and treedepth. SIAM J. Discrete Math. 30(4):2177–
2205.
Henkin, L. 1961. Some remarks on infinitely long formulas.
Infinitistic Methods (Proc. Sympos. Foundations of Math.,
Warsaw, 1959) 167–183.
Iwata, Y.; Ogasawara, T.; and Ohsaka, N. 2018. On the
power of tree-depth for fully polynomial FPT algorithms. In
35th Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2018, February 28 to March 3, 2018, Caen,
France, 41:1–41:14.
Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke,
E. M. 2012. Solving QBF with counterexample guided re-
finement. In Cimatti, A., and Sebastiani, R., eds., Theory
and Applications of Satisfiability Testing - SAT 2012, vol-
ume 7317 of Lecture Notes in Computer Science, 114–128.
Springer Verlag.
Janota, M. 2018. Towards generalization in QBF solving
via machine learning. In McIlraith, S. A., and Weinberger,
K. Q., eds., Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence - AAAI 2018. AAAI Press.
Kleine Büning, H.; Karpinski, M.; and Flögel, A. 1995.
Resolution for quantified boolean formulas. Inf. Comput.
117(1):12–18.
Lutz, C. 2001. NEXPTIME-complete description log-
ics with concrete domains. In Goré, R.; Leitsch, A.; and
Nipkow, T., eds., Automated Reasoning, First International
Joint Conference, IJCAR 2001, Siena, Italy, June 18-23,
2001, Proceedings, volume 2083 of Lecture Notes in Com-
puter Science, 45–60. Springer.
Nesetril, J., and de Mendez, P. O. 2012. Sparsity - Graphs,
Structures, and Algorithms, volume 28 of Algorithms and
combinatorics. Springer.
Pan, G., and Vardi, M. Y. 2006. Fixed-parameter hierarchies
inside PSPACE. In 21th IEEE Symposium on Logic in Com-
puter Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, 27–36. IEEE Computer Society.
Papadimitriou, C. H. 1994. Computational Complexity.
Addison-Wesley.
Peitl, T.; Slivovsky, F.; and Szeider, S. 2019. Dependency
learning for QBF. Journal of Artificial Intelligence Research
vol. 65:181–208.
Peterson, G.; Reif, J.; and Azhar, S. 2001. Lower bounds
for multiplayer noncooperative games of incomplete in-
formation. Computers & Mathematics with Applications
41(7–8):957 – 992.
Rabe, M. N., and Tentrup, L. 2015. CAQE: A certifying
QBF solver. In Kaivola, R., and Wahl, T., eds., Formal Meth-

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

ods in Computer-Aided Design - FMCAD 2015, 136–143.
IEEE Computer Soc.
Samer, M., and Szeider, S. 2009a. Backdoor sets of quan-
tified Boolean formulas. Journal of Automated Reasoning
42(1):77–97.
Samer, M., and Szeider, S. 2009b. Fixed-parameter
tractability. In Biere, A.; Heule, M.; van Maaren, H.; and
Walsh, T., eds., Handbook of Satisfiability. IOS Press. chap-
ter 13, 425–454.
Samer, M., and Szeider, S. 2010. Constraint satisfac-
tion with bounded treewidth revisited. J. Comput. Syst. Sci.
76(2):103–114.
Scholl, C.; Jiang, J. R.; Wimmer, R.; and Ge-Ernst, A. 2019.
A PSPACE subclass of dependency quantified Boolean
formulas and its effective solving. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
1584–1591. AAAI Press.
Tentrup, L., and Rabe, M. N. 2019. Clausal abstraction
for DQBF. In Janota, M., and Lynce, I., eds., Theory and
Applications of Satisfiability Testing - SAT 2019 - 22nd In-
ternational Conference, SAT 2019, Lisbon, Portugal, July
9-12, 2019, Proceedings, volume 11628 of Lecture Notes in
Computer Science, 388–405. Springer.
Tobies, S. 1999. A NExpTime-complete description logic
strictly contained in c2. In Flum, J., and Rodriguez-Artalejo,
M., eds., Computer Science Logic, 292–306. Berlin, Heidel-
berg: Springer Berlin Heidelberg.
Tobies, S. 2001. Complexity results and practical algo-
rithms for logics in knowledge representation. Ph.D. Disser-
tation, RWTH Aachen University, Germany.
Vizel, Y.; Weissenbacher, G.; and Malik, S. 2015. Boolean
satisfiability solvers and their applications in model check-
ing. Proceedings of the IEEE 103(11):2021–2035.
Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity. In Gottlob, G., and Walsh, T.,
eds., Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 2003, 1173–1178.
Morgan Kaufmann.
Wimmer, R.; Scholl, C.; and Becker, B. 2019. The (D)QBF
preprocessor hqspre - underlying theory and its implemen-
tation. J. Satisf. Boolean Model. Comput. 11(1):3–52.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
1

