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Abstract Bounded fractional hypertree width is the most general known
structural property that guarantees polynomial-time solvability of the
constraint satisfaction problem. Fichte et al. (CP 2018) presented a
robust and scalable method for finding optimal fractional hypertree
decompositions, based on an encoding to SAT Modulo Theory (SMT).
In this paper, we provide an in-depth study of two powerful symmetry
breaking predicates that allow us to further speed up the SMT-based
decomposition: RootClique fixes the root of the decomposition tree;
LexTopSort fixes the elimination ordering with respect to an underlying
DAG. We perform an extensive empirical evaluation of both symmetry-
breaking predicates with respect to the primal graph (which is known in
advance) and the induced graph (which is generated during the search).

Keywords: Symmetry Breaking · Hypergraphs · Elimination Orderings
· SAT Modulo Theory.

1 Introduction

Bounded fractional hypertree width, introduced by Grohe and Marx [24,25], is the
most general known purely structural restriction that guarantees polynomial-time
tractability of the CSP. It generalizes all previously introduced structural restric-
tion, including treewidth [11,19], spread-cut width [10] and hypertree width [22].
However, in order to utilize bounded fractional hypertree width of a CSP instance
for solving it efficiently, one needs to have a fractional hypertree decomposition of
the constraint hypergraph of the CSP instance available, witnessing the bounded
fractional hypertree width. Computing such a decomposition of smallest width
is again an NP-hard task [18]. Nevertheless, previous work by Fichte et al. [16]
showed that a practically feasible SMT (SAT Modulo Theory) encoding exists,
which supports the computation of optimal fractional hypertree decompositions
of constraint hypergraphs with several hundred of vertices.

? The work has been supported by the Austrian Science Fund (FWF), Grants Y698,
32441, and 32830, and the Vienna Science and Technology Fund, Grant WWTF
ICT19-065. Hecher is also affiliated with the University of Potsdam, Germany.
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Contribution. In this paper, we introduce and study new symmetry breaking
methods that speed up the SMT-approach for finding optimal fractional hypertree
decompositions. Fractional hypertree decompositions are defined in terms of an
(unrooted) decomposition tree, whose nodes are labeled with so-called bags of
vertices of the decomposed hypergraph. However, the SMT encoding is based on
a characterization of fractional hypertree width in terms of linear elimination
orderings of the vertices of the decomposed constraint hypergraph. A hypergraph
with n vertices has n! linear elimination orderings, where many of these correspond
to the same decomposition tree. Consequently, that there is much room for
symmetry breaking (SB) strategies. We take a closer look at two symmetry
breaking methods: RootClique and TopSort.

RootClique is based on the observation, that we can pick any clique of the
primal graph of the decomposed hypergraph, and assume that this clique appears
in the bag of the decomposition tree’s root; hence we call it a root clique. This
symmetry breaking predicate allows us to restrict the considered linear orderings
to only those where vertices of the root clique appear at the very end.

A linear ordering of the vertices gives rise to a decomposition DAG on the
same vertex set, whose arcs correspond to the edges of the induced primal
graph of the decomposed hypergraph, oriented according to the linear ordering.
LexTopSort is based on the observation that from the many linear orderings that
are all topological sort of the same decomposition DAG, it suffices to consider
only one of them.

For both symmetry breaking predicates, we consider static and dynamic
variants. The static variants operate on the primal graph of the given hypergraph.
The dynamic variant operates on the induced primal graph, which is obtained
from the primal graph during the search by adding fill-in edges according to the
computed elimination ordering. Whereas the static variants have the advantage
that the symmetry breaking constraints can be computed in a preprocessing
phase before the decomposition process starts, it has the disadvantage of having
fewer edges available and thus breaks fewer symmetries. Our experiments show
whether advantage or disadvantage dominates.

A static version of RootClique was initially suggested for tree decompositions
by Bodlaender et al. [7] and then ported to fractional hypertree decompositions
by Fichte et al. [16]. For tree decompositions, it is reasonable to take a largest
clique as the root clique, as it has the best chance to break the most symmetries.
For a hypergraph, it is not clear what makes a clique well-suited for symmetry
breaking. In addition to the size of the root clique, we consider several other
criteria such as the size of the root clique including its neighborhood, the size of
the root clique not counting twin vertices, or the number of hyperedges being
incident with a vertex of the root clique. We also introduce a dynamic variant of
RootClique, which requires a nontrivial SMT encoding.

For the other symmetry breaking predicate, LexTopSort, it is the other way
around: a dynamic version has been suggested for hypertree decompositions by
Schidler and Szeider [35], and we introduce and test a first static variant.
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We provide an extensive experimental evaluation of all the discussed variants
and combinations of RootClique and LexTopSort within the basic SMT encoding
for fractional hypertree width frasmt by Fichte et al. [16]. For the experiments,
we ran all the mentioned variants on the two leading SMT solvers z3 [32]
and optimathsat [36]. Overall, RootClique seems to show better results than
LexTopSort. However, combining the two techniques at the same time even
further improved the performance and the number of solved instances. Notably,
it seems that using both solvers z3 and optimathsat in combination, where
we preferred the latter for instances of higher fractional hypertree width, the
resulting portfolio is quite close to the virtual best solver of our experiments.

2 Preliminaries

Hypergraphs. A hypergraph is a pair H = (V (H), E(H)), consisting of a set
V (H) of vertices and a set E(H) of hyperedges, each hyperedge is a subset
of V (H). For a hypergraph H = (V,E) and a vertex v ∈ V , we write EH(v) =
{ e ∈ E | v ∈ e } and NH(v) = (

⋃
EH(v)) \ {v}; the latter set is the neighborhood

of v. If u ∈ NH(v) we say that u and v are adjacent. The hypergraph H − v is
defined by H = (V \ {v}, {e \ {v} | e ∈ E}). The primal graph (or 2-section) of a
hypergraph H = (V,E) is the graph P (H) = (V,EP (H)) with EP (H) = { {u, v} |
u 6= v, there is some e ∈ E such that {u, v} ⊆ e }.

Consider a hypergraph H = (V,E) and a set S ⊆ V . An edge cover of S
(with respect to H) is a set F ⊆ E such that for every v ∈ S there is some
e ∈ F with v ∈ e. A fractional edge cover of S (with respect to H) is a mapping
γ : E → [0, 1] such that for every v ∈ S we have

∑
e∈EH(v) γ(e) ≥ 1. The weight

of γ is defined as
∑

e∈E γ(e). The fractional edge cover number of S (with respect
to a hypergraph H), denoted fnH(S), is the minimum weight over all its fractional
edge covers with respect to H.

A tree decomposition of a hypergraph H = (V,E) is a pair T = (T, χ) where
T = (V (T ), E(T )) is a tree and χ is a mapping that assigns each t ∈ V (T ) a set
χ(t) ⊆ V (called the bag at t) such that the following properties hold:

– for each v ∈ V there is some t ∈ V (T ) with v ∈ χ(t) (“v is covered by t”),
– for each e ∈ E there is some t ∈ V (T ) with e ⊆ χ(t) (“e is covered by t”),
– for any three t, t′, t′′ ∈ V (T ) where t′ lies on the path between t and t′′, we

have χ(t′) ⊆ χ(t) ∩ χ(t′′) (“bags containing the same vertex are connected”).

The width of a tree decomposition T of H is the size of a largest bag of T
minus 1. The treewidth tw(H) of H is the smallest width over all its tree
decompositions.

Hypertree Decompositions. A generalized hypertree decomposition of H is a
triple G = (T, χ, λ) where (T, χ) is a tree decomposition of H and λ is a mapping
that assigns each t ∈ V (T ) an edge cover λ(t) of χ(t). The width of G is the size
of a largest edge cover λ(t) over all t ∈ V (T ). A hypertree decomposition is a
generalized hypertree decomposition that satisfies a certain additional property,
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which was added to make the computation of the decomposition tractable [22].
The generalized hypertree width ghtw(H) of H is the smallest width over all
generalized hypertree decompositions of H. The hypertree width htw(H) is the
smallest width over all hypertree decompositions of H.

A fractional hypertree decomposition of H is a triple F = (T, χ, γ) where
(T, χ) is a tree decomposition of H and γ is a mapping that assigns each t ∈ V (T )
a fractional edge cover λ(t) of χ(t) with respect to H. The width of F is the
largest weight of the fractional edge covers λ(t) over all t ∈ V (T ). The fractional
hypertree width fhtw(H) of H is the smallest width over all fractional hypertree
decompositions of H.

To avoid trivial cases, we consider only hypergraphs H = (V,E) with EH(v) 6=
∅ for all v ∈ V . Consequently, every considered hypergraph H has a (fractional)
edge cover and fhtw(H) is always defined. If |V | = 1 then fhtw(H) = 1.

Since an edge cover can be seen as the special case of a fractional edge cover,
with weights restricted to {0, 1}, it follows that for every hypergraph H we have
fhtw(H) ≤ ghtw(H) ≤ htw(H) ≤ tw(P (H)).

Elimination Orderings. The first SAT encoding of treewidth was suggested
by Samer and Veith [34]. It uses an ordering-based characterization of treewidth
which is also used by more recent SAT encodings of treewidth [3,6]. Later, ordering-
based encodings where used for hypertree width [35], generalized hypertree
width [5], and fractional hypertree width [16,28].

Let H = (V,E) be a hypergraph with n = |V | and L = (v1, . . . , vn) a
linear ordering of the vertices of H. We define the hypergraph induced by L as
Hn

L = (V,En) where En is obtained from E by adding hyperedges successively
as follows. We let E0 = E, and for 1 ≤ i ≤ n we let Ei = Ei−1 ∪ {ei} where
ei = { v ∈ {vi+1, . . . , vn} | there is some e ∈ Ei−1 containing v and vi }. We
consider the binary relation ArcL = { (vi, vj) ∈ V × V | i < j and vi and
vj are adjacent in Hn

L }. We write ArcL(i) = {vi} ∪ { vj | (vi, vj) ∈ ArcL },
hence ArcL(i) = {vi} ∪ ei. We refer to P (Hn

L), the primal graph of the induced
hypergraph Hn

L, as the induced primal graph.
The fractional hypertree width of H with respect to a linear ordering L, denoted

fhtwL(H), is the largest fractional edge cover number with respect to H over all
the sets ArcL(i), i.e.,

fhtwL(H) =
n

max
i=1

fnH(ArcL(i)).

Theorem 1 ([16]). The fractional hypertree width of a hypergraph H equals the
smallest fractional width over all its linear orderings: fhtw(H) = minL fhtwL(H).

3 Symmetry Breaking for Elimination Orderings

In this section, we define all the symmetry breaking predicates, static and dynamic,
and describe their encoding. Throughout this section, let H = (V,E) be a fixed
hypergraph.
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As laid out in the proof of Theorem 1, one can translate back and forth
between linear orderings and fractional hypertree decomposition, preserving the
fractional width. The translation from the linear ordering into a decomposition
is canonical and deterministic. The translation in the other direction, however,
depends on several choices. Let us briefly describe the translation.

Let F = (T, χ, γ) be a fractional hypertree decomposition of H. First, we
choose a node r of T as the root and consider a rooted version Tr of T . For each
vertex v ∈ V , let t = f(v) be the node of Tr with v ∈ χ(t) that is closest to
the root r. This consideration yields a partial ordering ≤F of V , where u ≤F v
if and only if f(u) is a descendant of f(v) in Tr. The proof of Theorem 1 [16]
shows that any linear ordering L of V that refines ≤F , has the same fractional
width as F . We observe that the linear orderings that refine ≤F are exactly
the topological sorts of the DAG DF = (V,A) where A = { (u, v) | u 6= v and
u ≤F v }. Any topological sort L can be obtained from DF by repeatedly deleting
vertices without incoming arcs until all vertices have been deleted: L is then the
set of vertices arranged by their succession of deletion.

When we fix the root and the topological sort, we have determined the linear
ordering uniquely. We will fix the root with the RootClique symmetry breaking
predicate, and we will fix the topological sort with the LexTopSort symmetry
breaking predicate.

3.1 RootClique

The static RootClique predicate is based on the well-known fact that, if (T, χ)
is a tree decomposition of a graph G and K a clique in G, then there exists a
node t ∈ V (T ) with V (K) ⊆ χ(t) (see, e.g., [8]). Hence, when we choose any
clique K in the primal graph P (H), the static RootClique predicate requires
that the root r is chosen among the nodes for which V (K) ⊆ χ(r) holds. This is
not a full symmetry breaking, since a clique may appear in different bags. Hence,
we suggest several strategies for choosing a clique that suits this purpose. In
particular, we choose a clique in P (H), maximizing

1. the size of the clique,
2. the size of the clique including its neighborhood NH(K) in P (H),
3. the size of the clique not counting twin vertices, which are any two vertices u, v

sharing the same neighborhood, i.e., where NH(u) = NH(v), and
4. the number of hyperedges being incident with a vertex of the clique.

We also consider k-hypercliques which are cliques in P (H) not intersecting
with any hyperedge of H in more than k vertices. This concept was proposed by
Fichte et al. [16], and was primarily intended to obtain lower bounds during the
computation of fractional hypertree width. The dynamic RootClique predicate is
based on the fact that each bag χ(t) is a clique in the induced primal graph, and
conversely, every maximal clique in the induced primal graph corresponds to χ(t)
for some node t. We uniquely determine the root of the decomposition tree by
fixing the largest clique of the induced primal graph as the root clique.

Further details and the encodings are given after the next subsection.
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3.2 LexTopSort

We start by explaining the dynamic variant of LexTopSort. For better integration
with RootClique, we use the inverse variant of topological sorting, where vertices
without outgoing arcs are deleted, proving the ordering “from right to left.” When
there are several vertices without outgoing arcs, we choose the lexicographically
smallest vertex next. This choice uniquely determines the linear ordering, which
corresponds to the reflected lexicographically smallest topological sort. We denote
for two vertices vi, vj by lex(vi, vj) that vi precedes vj in the lexicographic
ordering.

We enforce this restriction on the linear ordering L = (v1, . . . , vn) of V with
the following predicate: For any 1 ≤ i < j ≤ n, if lex(vi, vj), then there must
be some k ∈ {i+ 1, . . . , j} such that the induced primal graph contains the edge
{vi, vk}. In other words, when we delete the lexicographically larger vertex vj
before we delete the lexicographically smaller vertex vi, then vi must have a
neighbor vk which has not been eliminated at that time, i.e., vi has an outgoing
arc in DF to a vertex vk that is still present when vj is deleted.

Since the encoding of dynamic LexTopSort is expensive, we propose a new
relaxed static version, which does not break all symmetries but can be encoded
in a significantly more compact way. The static version is obtained by a small
but influential change in the symmetry breaking predicate, by using the primal
graph, not the induced primal graph: For any 1 ≤ i < j ≤ n, if lex(vi, vj), then
there must be some k ∈ {i + 1, . . . , j} such that the primal graph contains the
edge {vi, vk}.

3.3 Encodings for Symmetry Breaking

In this section, we describe how RootClique and LextTopSort can be encoded
within the SMT encoding for fractional hypertree width due to Fichte et al. [16],
which we briefly review. To this end, let H = (V,E) be a given hypergraph with
V = {v1, . . . , vn} and w be a rational number. The encoding is an SMT formula
that is satisfiable if and only if the hypergraph has a linear ordering L of V such
that fhtwL(H) ≤ w. For computing the relation ArcL, it uses Boolean ordering
variables oi,j for 1 ≤ i < j ≤ n and Boolean arc variables ai,j for 1 ≤ i, j ≤ n.
Clauses are added that ensure that an ordering variable oi,j is true if and only if
i < j and vi precedes vj in L. In the following, we let o∗(i, j) refer to o(i, j) if
i < j and ¬o(j, i) otherwise. The arc variables are used to represent the relation
ArcL for the ordering L represented by the ordering variables, where a(i, j) is
true if and only if (vi, vj) ∈ ArcL, i.e., if vj ∈ ArcL(i). Finally, weight variable
w(i, e) for each 1 ≤ i ≤ n and e ∈ E is used to represent the weight of e in a
fractional edge cover γL(i) of the set ArcL(i), where L is the ordering represented
by the ordering variables.

Static RootClique (s-RQ). We encoded all the different variants for choosing
cliques, and computed them by a solver in a separate solving step, executed
before the actual decomposition. To this end, we use Boolean clique variables of
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the form k(i) for each vertex vi ∈ V (H), where those vertices set to true form a
clique K. All variants have in common, that a clique is computed as follows.

[¬k(i) ∨ ¬k(j)] for any two vertices vi, vj ∈ V (H) with vj 6∈ NH(vi).

Then, we considered different maximization constraints on top, resulting in
different variants. In the following, we present variants for computing cliques
that require adding different constraints to the constraint above.

Largest Clique (LQ). For obtaining a clique of size at least `, we add the following
constraints.

[
∑

vi∈V (H) k(i) ≥ `]

Largest Clique Including Neighbors (LQ+N). We also considered maximizing a
clique, where we additionally count the neighbors of the clique.

[
∑

vi∈V (H) k(i)+ |NH(vi)| ≥ `]

Largest Clique Excluding Twins (LQ-T). The following variant excludes twin
vertices, when computing a maximal clique.

[
∑

vi∈V (H) k(i)− (
∑

vi∈V (H) |{vj ∈ V (H) | j > i,NH(vj)=NH(vi)}|) ≥ `]

Largest k-Hyperclique (k-Hy). For k-hypercliques, we need the following additional
constraints.

[¬k(i1) ∨ · · · ∨ ¬k(ik)] for any k vertices vi1 , . . . , vik of hyperedge e ∈ E(H),

[
∑

vi∈V (H) k(i) ≥ `]

Clique with Largest Number of Used Hyperedges (LuH). This variant concerns
only about maximizing the number of hyperedges that are adjacent to a clique.

[
∑

e∈E(H)(
∨

vi∈e
k(i)) ≥ `]

Finally, after having computed a clique K, which can be obtained with any of
the variants above, one can add the following constraints to the base encoding in
order to actually break symmetries, statically guided by K. More precisely, the
clique K is ensured to be eliminated before the other vertices (and considered
the root of the decomposition) such that each vertex of K is eliminated in
lexicographic order, i.e., according to L.

[o∗(i, j)] for vj ∈ V (H) \K, vi ∈ K,

[o∗(i, j)] for vi, vj ∈ K, vi 6= vj , lex(vi, vj).
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Dynamic RootClique (d-RQ). While the main idea of this approach is similar
to static RootClique, here we aim for a largest bag of the resulting decomposition
to be the root node. However, this does not depend on the presence of a clique
in the primal graph P (H). Instead, we require such a clique in the induced
primal graph of H. As a result, the SMT encoding for fractional hypertree
decompositions based on elimination orderings is directly extended. For finding a
largest bag, Boolean variables B(i), b(i) for 1 ≤ i ≤ n and integer variables d(i)
for computing the degree of outgoing arcs in the induced primal graph of H are
used. Intuitively, B(i) indicates that vi ∈ V (H) is the lexicographically largest
vertex in L that is contained in a largest bag. Consequently, smaller vertices of i
are in this largest bag, whose member elements are indicated by variables b(j).

The following constraints model this construction, where the degree variables
are computed and only one largest bag is allowed.

[d(i) =
∑

1≤j≤n,j 6=i a(i, j)] for 1 ≤ i ≤ n,

[¬B(i) ∨ ¬B(j)] for 1 ≤ i < j ≤ n,

[
∨

vi∈V (H)B(i)].

We ensure that if for vertex vi there is a lex-smaller vertex vj , where there is
no arc from vi to vj , vi cannot be the largest vertex in a largest bag. Further, for
vertex vi with B(i) it is not allowed that there is a larger bag (of larger degree)
with a lexicographically larger vertex vj .

[¬o∗(j, i) ∨ a(i, j) ∨ ¬B(i)] for 1 ≤ i, j ≤ n, i 6= j,

[¬o∗(i, j) ∨B(j) ∨ ¬B(i) ∨ d(j)≤d(i)] for 1 ≤ i, j ≤ n, i 6= j.

For fixing the order of the elements within the bag and in relation to elements
outside this bag, we compute the elements of this largest bag as follows.

[¬b(i) ∨ ¬o∗(j, i) ∨ ¬B(j)] for 1 ≤ i, j ≤ n
[¬B(i) ∨ ¬o∗(j, i) ∨ b(j)] for 1 ≤ i, j ≤ n.

Then, we fine-tune the symmetry breaking by setting the order within this
(largest) bag and in relation to the other vertices. This is similar to symmetry
breaking for RootClique, but depending on the elements of the largest bag.

[¬b(i) ∨ b(j) ∨ o∗(i, j)] for 1 ≤ i < j ≤ n,

[¬b(i) ∨ ¬b(j) ∨ o∗(i, j)] for 1 ≤ i < j ≤ n, lex(vi, vj).

LexTopSort. For encoding LexTopSort, we need the following additional SMT
variables. Boolean variables s(i, j) for each 1 ≤ i, j ≤ n with i 6= j are used
to represent that vi has vj as the lex-smallest vertex with an arc from vi to vj
in the induced primal graph. For connected hypergraphs H, obviously, such a
vertex vj has to exist for every vertex vi, except for the smallest vertex in the
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ordering L. Being the smallest vertex vi is represented with Boolean variables l(i)
(for every 1 ≤ i ≤ n).

For both static and dynamic LexTopSort, we need to encode that there is
only one such smallest vertex. Further, we need to make sure that if for three
vertices vi, vj , vk with lex(vi, vj) either we have that o∗(i, j) (i is eliminated
before j), or vk is not the lex-smallest vertex of vi, or otherwise it is guaranteed
that j is eliminated before k. Intuitively, this ensures that either the succession
of elimination coincides with L or deleting the lexicographically larger vertex vj
is allowed since vk is present in DF when vj is deleted.

[¬l(i) ∨ ¬l(j)] for 1 ≤ i < j ≤ n,

[o∗(i, j) ∨ ¬s(i, k) ∨ o∗(j, k)] for 1 ≤ i, j, k ≤ n, lex(vi, vj).

Then, we add one of the following two blocks of constraints, depending on
the static or dynamic variant of LexTopSort.

Static LexTopSort (s-LT). The static variant ensures that for every vertex vi
that either vi is the smallest vertex or vi has a lex-smallest vertex. Then, for two
neighbors vj , vk of vi, if s(i, k), vj cannot be eliminated before vk in DF .

[
∨
{vi,vj}∈E(P (H)) s(i, j) ∨ l(i)] for vi ∈ V (H),

[¬o∗(j, k) ∨ ¬s(i, k)] for 1 ≤ i, j, k ≤ n, j 6= k, {vj , vk}⊆NH(vi).

Dynamic LexTopSort (d-LT). Conceptually, dynamic LexTopSort is similar to
static LexTopSort, although the variants show major differences in runtime as we
will see in Section 4.2. First, for every vertex vi either vi is the smallest vertex or
there is a lex-smallest vertex for vi. Then, if vi has vj as the lex-smallest vertex,
we require an arc from vi to vj in the induced primal graph of H. Similar to
static LexTopSort, if there are two candidates vj and vk for being the lex-smallest
vertex of vi, it is prohibited to take vk if vj is eliminated before vk.

[
∨

i 6=j s(i, j) ∨ l(i)] for vi ∈ V (H),

[¬s(i, j) ∨ a(i, j)] for 1 ≤ i, j ≤ n, i 6= j,

[¬a(i, j)∨¬a(i, k)∨¬o(j, k)∨¬s(i, k)] for 1 ≤ i, j, k ≤ n, i 6= j, i 6= k, j 6= k.

Combining RootClique with LexTopSort. For combining RootClique with
LexTopSort, we have to take care that the ordering L is in line with the vertices
of the root clique being lexicographically first.

Further, for static RootClique, where we have a (static) clique K prior the
actual solving with the SMT encoding, we can easily fix the smallest vertex of
the LexTopSort encoding as follows.

[l(i)] for vi ∈ K, if for every vj ∈ K with j 6= i, we have lex(vi, vj).
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4 Implementation and Experiments

We ported frasmt to Python 3.8. and implemented the different strategies for
symmetry breaking. The source code of our solver frasmt is readily available
at github.com/daajoe/frasmt and detailed results as well as analysis are online
at Zenodo [12]. In our implementation, we support two SMT solvers, namely z3
4.8.7 [32] as well as optimathsat 1.6.4 [36]. Hence, we have two configurations:
frasmt z3, which uses the SMT solver z3 and frasmt om, which uses the SMT
solver optimathsat. As it turns out, while one solver is overall better than the
other, both solvers complement each other quite well. To demonstrate this finding,
our results also show a portfolio variant frasmt z3+om that uses both solvers,
where for instances of fractional hypertree width larger than 4 solver optimathsat
is invoked and below, solver z3 is invoked. Further, for computing the cliques
that are used in the static variant of RootClique, we applied a solver called clingo
5.4.0 [20], which is an extension of SAT solvers and allows for incremental solving
as well as optimization without manual cardinality constraints. For obtaining
these cliques, we relied on the any-time algorithm of clingo. We allowed this
solver to use up to 500 seconds, which showed almost the same results as using
no internal time limit and –in the worst case– spending the total runtime on
symmetry breaking only. Indeed, for symmetry breaking, we then used the best
clique according to the optimization criteria of the clique variant that could
be computed within these 500 seconds. However, we observed that it is indeed
crucial to allow some time for symmetry breaking since the vanilla configuration
of frasmt z3 is almost identical to frasmt, which spends only 10 seconds on limited
approaches of symmetry breaking.

4.1 Benchmark Setup

We compared the different strategies of symmetry breaking with respect to the
goal of finding the best variant. To this end, we configured the following setup.

Measure and Resources. In order to draw conclusions about the efficiency of the
compared solvers, we mainly inspected wall clock times. We set a timeout of 7200
seconds and limited available RAM to 16 GB per instance. Resource limits were
set and enforced by the tool runsolver [33].

Benchmark Instances. We considered a selection of 2191 instances collected by
Fischl et al. [17] (publicly available at [15]) from various sources, consisting of
hypergraphs that originate from CSP instances and conjunctive database queries.
The instances and their original sources are summarized in Table 1. The instances
contain up to 2993 vertices and 2958 hyperedges.

Benchmark Hardware. Solvers were executed on a cluster of 12 nodes. Each node
is equipped with two Intel Xeon E5-2650 CPUs consisting of 12 physical cores
each at 2.2 GHz clock speed, 256 GB RAM and 1 TB hard disc drives (not an
SSD) Seagate ST1000NM0033. The results were gathered on Ubuntu 16.04.1 LTS
machines with disabled hyperthreading on kernel 4.4.0-139.
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Benchmark Set Type #Instances Origin

DaimlerChrysler Industrial 15
Grid2D Grid 12
ISCAS’89 Competition 24 [23]
MaxSAT MaxSAT 35 [5]
csp application XCSP 1090 [2]
csp random XCSP 863 [2]
csp other Misc 82
CQ Conjunctive Queries 156 [1,4,21,26,30,37]∑

Hyperbench 2191 [17]

Table 1. The benchmark sets consisting of the type, the number of instances as well as
the origin, of the instances we considered in our experiments. Note that some benchmark
sets are overlapping and therefore the numbers do not add up to 2191.

Compared Solvers. We mainly compare variants of frasmt z3 and frasmt om to
see the influence of symmetry breaking. The vanilla configuration frasmt z3 has
the same features as the best reported configuration [16] of frasmt, where no
extensive symmetry breaking is used. The results of frasmt z3 and frasmt are
almost identical (small differences may occur due to Python version upgrade),
which is why we refrained from further adding additional data to our plots and
tables. We also considered the recent solver triangulator [29]. While triangulator
overall is extremely fast on about half of the instances (about 1190), we observed
that the solver quickly runs out of main memory on most of the other instances,
which still persists if increasing main memory to 64GB. In consequence, we
only report results for the more recent solver triangulator-msc, which uses cplex
and is available at github.com/Laakeri/triangulator-msc. However, we follow
other recent work on symmetry breaking [9] and stress that the main goal of
our experiments is to demonstrate the benefit of our symmetry breaks, not to
compare the speed of our approach to other algorithms with different techniques.

4.2 Benchmark Results

We discuss the following three aspects, where we first elaborate on the variants
of RootClique. Then, we cover the performance of LexTopSort, including the
combination with RootClique, followed by static vs. dynamic symmetry breaking.

Computing Static RootCliques. Figure 1 depicts a cactus plot of the variants
s-RQ for static RootClique, as presented in the previous section. In this figure,
the x-axis refers to the number of instances, where for each solver the runtime
(y-axis) is sorted in ascending order. Therefore, this plot provides an overview of
the variants over all instances. In this plot, we mainly focused on showing the
variants for solver z3, which showed overall the best performance, since the results
for om, while different compared to z3, draw a similar picture. Surprisingly, the
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Figure 1. A cactus plot of the static variants of RootClique, compared to the vanilla
configuration frasmt z3. The x-axis shows the number of instances and the y-axis depicts
wall clock runtimes in seconds, which are sorted in ascending order, but for each solver
configuration individually. Solver “frasmt vbest” refers to the virtually best solver by
taking for each instance the best result among all displayed solver (configurations). The
legend is ordered from best to worst (from right to left in the plot).

k-hyperclique variant (k-Hy) shows the best results4, which is, however, almost
as good as the two variants LQ-T and LQ for computing largest cliques. While
the variant on aiming for the largest clique without twin vertices (LQ-T) seems
to have a slight advantage over going for the largest clique (LQ), the differences
are minor. The fact that k-hyperclique performs best was, however, surprising.
On the other hand, if one also considers the variant LuH for preferring cliques
with the largest number of used hyperedges, it seems that k-hypercliques might
form a good compromise. Notably, if also considering LexTopSort, the situation
changes slightly. It turns out that the variant LQ-T performs better than using
the k-hyperclique, followed by LQ.

Combining RootClique with LexTopSort. Before we discuss the combination of
RootClique with LexTopSort, we briefly elaborate on the performance of the
variants of LexTopSort without RootClique. It seems that especially dynamic
LexTopSort worsens the picture. In more detail, both static and dynamic LexTop-
Sort without RootClique show a rather bad performance, which is sometimes even
worse than the vanilla configuration frasmt z3. This observation is underlined by
Figure 2, which shows a cactus plot of variants of LexTopSort and combinations
with variants of RootClique. The best variants use full static symmetry breaking
only (s-LT, s-RQ). While the result for frasmt z3 suggests not much difference
between full static symmetry breaking and static RootClique only (s-RQ), the

4 For comparability with frasmt, we used k = 6 (the option reported best [16]).

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-2
0-
01
0



800 1600 17001000 1200 1400 1500
number of instances

0

1000

2000

3000

4000

5000

6000

7000
w

al
l c

lo
ck

 ti
m

e 
[s

]

frasmt_vbest
frasmt_z3+om s-LT s-RQ(LQ-T)
frasmt_z3 s-LT s-RQ(LQ-T)
triangulator-msc
frasmt_z3 s-LT s-RQ(k-Hy)
frasmt_z3 s-RQ(LQ-T)
frasmt_om s-LT s-RQ(LQ-T)
frasmt_om s-RQ(LQ-T)
frasmt_z3 d-LT s-RQ(LQ-T)
frasmt_om s-LT d-RQ
frasmt_z3 s-LT d-RQ
frasmt_z3
frasmt_z3 d-LT
frasmt_z3 d-LT d-RQ

Figure 2. A cactus plot showing (combinations of) both RootClique and LexTopSort
symmetry breaking, where the x-axis refers to the number of instances, and the y-axis
depicts wall clock runtimes in seconds. Runtimes are sorted in ascending order for
each solver configuration individually. Solver “frasmt vbest” refers to the virtually
best solver by taking for each instance the best result among all displayed frasmt
configurations. The legend is ordered from best to worst (from right to left in the plot).

results for frasmt om reveal that indeed with static LexTopSort, one can further
improve the results obtained by static RootClique only. This might also be
emphasized due to the fact that the combination of solvers z3 and optimathsat
provides significant improvements compared to both single configurations. No-
tably, triangulator-msc is very fast, but overall frasmt z3 solves more instances.
Table 2 reports on the number of solved instances and total runtimes for the
larger benchmark sets, where timeouts count as 7200 seconds, and results are
detailed and grouped by fractional hypertree width.

Static vs. Dynamic Symmetry Breaking. The results of the previous paragraphs
seem to be rather bad for the dynamic variants of symmetry breaking. However,
this is not too surprising if one considers that the encoding size of dynamic
LexTopSort is in O(n3) and that for RootClique the encoding is in O(n2), where n
is the number of vertices contained in the hypergraph. Still, against all odds the
cactus plot of Figure 2 already depicts dynamic variants, whose curve is sometimes
below other static variants and even below our best variant frasmt z3+om.
Further, Figure 3 shows two scatter plots comparing runtimes instance-by-instance
of the best variant of the previous paragraph (frasmt z3+om, x-axis) with (y-axis)
both the best variant (left) of dynamic symmetry breaking and the worst dynamic
variant (right). Both dynamic variants show that, while frasmt z3+om performs
better on plenty of instances, there are still instances on the bottom left of the
plots, where the dynamic variants are faster. Further, some instances on the
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Figure 3. Scatter plots comparing runtimes of instances (in seconds) one-by-one of our
best configuration (x-axis) with the best dynamic symmetry breaking method (y-axis,
left) and with the worst dynamic configuration (y-axis, right).

bottom right of both plots cannot be solved by frasmt z3+om, which are solved
by dynamic variants.

5 Conclusion and Future Work

In this work, we analyzed different strategies for symmetry breaking in charac-
terizations of fractional hypertree width. While we focused on this particular
width parameter, the overall idea of our methods immediately apply to the
computation of other width parameters, such as treewidth. Hence, we expect that
our findings can be used to gain significant improvements for other ordering-based
encodings [34]. Our two methods RootClique and LexTopSort for eliminating
symmetries seem to be good companions, since a combination of both state-
of-the-art SMT solvers z3 [32] and optimathsat [36] reached the virtually best
configuration. Still, we only considered the best variant of RootClique in this
configuration, and it seems there is potential for algorithm selection involving
machine-learning tools like autofolio [31]. Overall, we perceived static symmetry
breaking strategies as superior to dynamic techniques. While this might not be
too surprising, we observed that some instances could still be solved faster with
dynamic techniques. We see future work in analyzing the impact of fractional
hypertree width for practical solving (counting) similar to treewidth [13,14,27]
and in the context of other measurements such as bag size and domain size.
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Set Solver
∑ fhtw range group

time[h]
max(fhtw) 0-2 3-4 >4

cs
p

o
th

er

frasmt vbest 46 7.0 28 5 13 103.57
frasmt z3 s-RQ(LQ-T) 44 6.0 28 5 11 104.62
frasmt z3 s-LT s-RQ(LQ-T) 43 6.0 27 5 11 106.09
frasmt z3 s-LT s-RQ(k-Hy) 43 6.0 27 5 11 106.69
frasmt z3 43 6.0 28 5 10 110.17
frasmt z3 s-LT d-RQ 41 6.0 27 5 9 111.02
frasmt z3+om s-LT s-RQ(LQ-T) 40 7.0 27 5 8 112.63
frasmt z3 d-LT s-RQ(LQ-T) 37 6.0 26 4 7 118.04
frasmt om s-LT s-RQ(LQ-T) 37 7.0 26 3 8 118.76
frasmt om s-RQ(LQ-T) 36 6.0 26 3 7 119.69
frasmt z3 d-LT 36 6.0 26 4 6 124.27
frasmt om s-LT d-RQ 34 6.0 26 3 5 123.96
frasmt z3 d-LT d-RQ 34 6.0 25 4 5 125.89
triangulator-msc 25 5.3̄ 17 4 4 139.92

cs
p

a
p

p
li

ca
ti

o
n

frasmt vbest 674 7.0 43 397 234 775.44
frasmt z3 s-LT s-RQ(LQ-T) 648 7.0 43 396 209 835.76
frasmt z3 s-RQ(LQ-T) 646 7.0 43 396 207 824.72
frasmt z3 s-LT s-RQ(k-Hy) 641 7.0 43 396 202 842.05
frasmt z3+om s-LT s-RQ(LQ-T) 640 7.0 43 396 201 827.50
frasmt z3 559 7.0 43 370 146 974.08
frasmt z3 s-LT d-RQ 554 7.0 43 365 146 980.45
frasmt om s-LT s-RQ(LQ-T) 552 7.0 41 310 201 1003.93
triangulator-msc 551 7.0 43 288 220 973.13
frasmt z3 d-LT s-RQ(LQ-T) 549 7.0 40 326 183 997.30
frasmt om s-RQ(LQ-T) 535 7.0 40 293 202 1040.55
frasmt z3 d-LT 498 7.0 40 312 146 1113.74
frasmt z3 d-LT d-RQ 498 7.0 40 312 146 1114.50
frasmt om s-LT d-RQ 482 7.0 38 293 151 1146.85

cs
p

ra
n

d
o
m

triangulator-msc 860 6.6̄ 54 39 767 203.21
frasmt vbest 835 9.0 54 39 742 365.57
frasmt om s-RQ(LQ-T) 830 9.0 54 38 738 444.29
frasmt z3+om s-LT s-RQ(LQ-T) 826 9.0 54 39 733 419.60
frasmt om s-LT s-RQ(LQ-T) 824 9.0 54 37 733 424.79
frasmt z3 s-LT s-RQ(LQ-T) 757 9.0 54 39 664 478.49
frasmt z3 d-LT s-RQ(LQ-T) 755 9.0 54 39 662 488.93
frasmt z3 s-LT s-RQ(k-Hy) 747 9.0 54 39 654 478.59
frasmt z3 s-RQ(LQ-T) 734 9.0 54 39 641 490.29
frasmt om s-LT d-RQ 670 9.0 54 31 585 691.12
frasmt z3 s-LT d-RQ 590 9.0 54 23 513 808.34
frasmt z3 d-LT d-RQ 585 9.0 54 19 512 830.63
frasmt z3 d-LT 584 9.0 54 19 511 830.89
frasmt z3 582 9.0 54 18 510 824.62

∑

frasmt vbest 1706 9.0 271 446 989 1247.01
frasmt z3+om s-LT s-RQ(LQ-T) 1657 9.0 270 445 942 1362.19
frasmt z3 s-LT s-RQ(LQ-T) 1600 9.0 270 445 885 1423.34
triangulator-msc 1585 7.0 259 336 990 1322.97
frasmt z3 s-LT s-RQ(k-Hy) 1583 9.0 270 445 868 1430.35
frasmt z3 s-RQ(LQ-T) 1576 9.0 271 445 860 1422.65
frasmt om s-LT s-RQ(LQ-T) 1564 9.0 267 355 942 1549.95
frasmt om s-RQ(LQ-T) 1553 9.0 266 339 948 1607.00
frasmt z3 d-LT s-RQ(LQ-T) 1493 9.0 266 374 853 1607.46
frasmt om s-LT d-RQ 1337 9.0 264 332 741 1966.01
frasmt z3 s-LT d-RQ 1336 9.0 270 398 668 1903.86
frasmt z3 1335 9.0 271 398 666 1912.94
frasmt z3 d-LT 1269 9.0 266 340 663 2073.04
frasmt z3 d-LT d-RQ 1268 9.0 265 340 663 2075.15

Table 2. Detailed results on the number of solved instances grouped by fractional
hypertree width of the solved instance. Runtimes are cumulated wall clock times in
hours, where timeouts count as 7200 seconds.
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