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Abstract. Treedepth is an increasingly popular graph invariant. Many
NP-hard combinatorial problems can be solved efficiently on graphs of
bounded treedepth. Since the exact computation of treedepth is itself
NP-hard, recent research has focused on the development of heuristics
that compute good upper bounds on the treedepth.

In this paper, we introduce a novel MaxSAT-based approach for improving
a heuristically obtained treedepth decomposition. At the core of our
approach is an efficient MaxSAT encoding of a weighted generalization
of treedepth arising naturally due to subtree contractions. The encoding
is applied locally to the given treedepth decomposition to reduce its
depth, in conjunction with the collapsing of subtrees. We show the local
improvement method’s correctness and provide an extensive experimental
evaluation with some encouraging results.

Keywords: Tree-depth · Elimination-tree Height · SAT Encoding ·
MaxSAT · Computational Experiments

1 Introduction

The treedepth [29,30] of a connected graph G is the smallest integer k such that
G is a subgraph of the transitive closure [T ] of a tree T of height k. The transitive
closure [T ] is obtained from T by adding all edges uv whenever u is an ancestor
of v in T (see Fig. 1 for an example). We call T a treedepth decomposition of G
of depth k. The notion of treedepth was first investigated employing elimination
trees (e-trees) and elimination height [18,20,22,34]. 1-partition trees [16] and
separation game [23] are some other names used in literature for alternative
approaches to treedepth.
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Fig. 1: Left: graph P7. Right: treedepth decomposition of P7 of depth 3.
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Treedepth has algorithmic applications for several problems where treewidth
cannot be used [8,10,15]. It admits algorithms for these problems whose running
times are exponential in the treedepth but polynomial (of constant order) in the
input size. These results request methods for computing treedepth decompositions
of small (ideally minimal) depth, which is generally an NP-hard task [36].

Exact algorithms for computing the treedepth of graphs have been suggested
in theoretical work [6,38]. Until recently, only very few practical implementations
of algorithms that compute treedepth decompositions have been reported in the
literature. Villaamil [42] discussed several heuristic methods based on minimal
separators, and Ganian et al. [9] suggested two exact methods based on SAT-
encodings. In general, exact methods are limited to small graphs (up to around 50
vertices [9]), whereas heuristic methods apply to large graphs but can get stuck
at suboptimal solutions.

Contribution. In this paper, we propose the novel MaxSAT-based algorithm
TD-SLIM that provides a crossover between exact and heuristic methods, taking
the best of two worlds. The basic idea is to take a solution computed by a
heuristic method and apply an exact (MaxSAT-based) method locally to parts
of the solution, chosen small enough to admit a feasible encoding size. Although
the basic idea sounds compelling and reasonably simple, its realization requires
several conceptual contributions and novel results.

At the heart of our approach, local parts of the treedepth decomposition must
reflect certain properties of the global decomposition. That way, an improved local
decomposition can be fit back into the global one. This additional information
gives rise to the more general decomposition problem, namely the treedepth
decomposition of weighted graphs with ancestry constraints, for which we present
a partition-based characterization, which leads to an efficient MaxSAT encoding.
As the weights can become large, a distinctive feature of our encoding is that its
size remains independent of the weights appearing in the instance.

We establish the correctness of our local-improvement method and provide
an experimental evaluation on various benchmark graphs. Thereby, we compare
different parameter settings and configurations and the effect of replacing several
SAT calls by one MaxSAT call.

Our findings are significant, as they show that an improvement in the initial
decomposition is feasible in practically all cases. The best configuration could,
on average, almost reduce the depth of the initial treedepth decomposition by
a half (52%) for a simple heuristic (DFS) and by a third (29%) when starting
from a more elaborate heuristic (Sep). Somewhat surprisingly, it turned out that
on smaller instances, that admit a single SAT encoding, the SAT-based local
improvement method outperforms a single SAT call, achieving a similar depth in
a tenth of the time.

2 Related Work

The idea of using SAT encodings for computing a decompositional graph invari-
ant is due to Samer and Veith [39]. They proposed an ordering-based encoding
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for treewidth, which provides the basis for several subsequent improved en-
codings [1,2]. Heule and Szeider [13] proposed a SAT encoding for clique-width,
thereby introducing a first partition-based encoding. These two general approaches
(ordering-based and partition-based encodings) have been worked out and com-
pared for several other decompositional graph invariants (also known as width
parameters) [9,25]. Recently, several papers have proposed SMT-encodings for
decompositional hypergraph parameters [4,40].

All the encodings mentioned above suffer from the limitation that the encoding
size is at least cubic in the size of the input graph or hypergraph, which limits
the practical applicability of these methods to graphs or hypergraph whose size
is in the order of several hundred vertices. Lodha et al. [24,26] introduced the
SAT-based local improvement method (SLIM), which extends the applicability of
SAT-encodings to larger inputs. So far, there have been three concrete approaches
that use SLIM, one for computing branchwidth (in the papers cited above [24,26]),
one for computing treewidth [5], and very recently one for treewidth-bounded
Bayesian network structure learning [33]. SLIM is a meta-heuristic that, similarly
to Large Neighborhood Search [35], tries to improve a current solution by exploring
its neighborhood of potentially better solutions. As a distinctive feature, SLIM
defines neighboring solutions in a structurally highly constrained way and uses a
complete method (SAT) to identify a better solution.

The comprehensive thesis by Villaamil [42] discusses four heuristics for comput-
ing treedepth. The first heuristic is based on computing a depth-first search (DFS)
spanning tree of the given graph, which happens to be a valid treedepth de-
composition. The remaining three heuristics are all based on finding minimal
separators. Two of them are greedy local-search techniques while the third one
makes use of a spectral algorithm to compute the separators, providing better
decompositions at the expense of longer running times [37]. Several algorithms
have been proposed for minimizing the height (among other metrics) of e-trees in
the context of matrix factorizations [11,19,21,28]. More specifically, treedepth has
been studied in the area of CSP under the name pseudo-tree height [3,7,17,19].
However, only few papers focus on minimizing the treedepth alone, they usually
minimize a secondary measure such as fill-in. Very recently, due to the PACE
Challenge 20201, the implementations of several new heuristics for computing
treedepth decompositions became available.

3 Preliminaries

All considered graphs are finite, simple, and undirected. Let G be a graph. V (G)
and E(G) denote the vertex set and the edge set of G, respectively. The size
of the graph, denoted by |G|, is the number of vertices, i.e., |V (G)|. We denote
an edge between vertices u and v by uv (or equivalently by vu). The subgraph
of G induced by a set S ⊆ V (G), denoted by G[S], has as vertex set S and
as edge set {uv ∈ E(G) | u, v ∈ S }. As a shorthand, we sometimes use G[H]

1 https://pacechallenge.org/2020
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to represent G[V (H)], where G,H are graphs. For a set S ⊆ V (G) we define
G− S = G[V (G) \ S].

For a rooted tree T and a vertex v ∈ V (T ), we let Tv denote the subtree
of T rooted at v. The vertex v is the parent of vertex u if v is the first vertex
(after u) on the path from u to the root of the tree. A vertex v is an ancestor
of vertex u if v lies on the path from u to the root of the tree and v 6= u. We
use r(T ) to denote the root of a tree T . The height of a vertex v in a rooted
forest T , denoted by heightT (v), is 1 plus the length of a longest path from v to
any leaf not passing through any ancestor (the height of a leaf is 1). The height
of a rooted tree T is then heightT (r(T )), i.e., the height of the root. Naturally,
the height of a rooted forest is the maximum height of its constituent trees. The
depth of a vertex v in a tree T , denoted by depthT (v), is the length of the path
from r(T ) to v (the depth of r(T ) is 1). The transitive closure [T ] of a rooted
forest T is the undirected graph with vertex set V (T ) having an edge between
two vertices if and only if one is an ancestor of the other in T .

The treedepth of an undirected graph G, denoted by td(G), is the smallest
integer k such that there is a rooted forest T with vertex set V (G) of height k
for which G is a subgraph of [T ]. A forest T for which G is a subgraph of [T ] is
also called a treedepth decomposition, whose depth is equal to the height of the
forest. Informally, a graph has treedepth at most k if it can be embedded in the
closure of a forest of height k. If G is connected, then it can be embedded in the
closure of a tree instead of a forest.

Alternatively, letting C(G) denote the set of connected components of a
graph G, the treedepth of G can be defined recursively as follows [29]:

td(G) =





1 if |V (G)| = 1;

maxG′∈C(G) td(G′) if |C(G)| > 1;

1 + minv∈V (G) td(G− v) otherwise.

Based on this definition, it is clear that when we want to compute a treedepth
decomposition T of a graph G, we can assume without loss of generality, that G
is connected, and that the decomposition T is a rooted tree.

4 Local Improvement

In this section, we lay out the theoretical foundations of our approach. Due to
space constraints, we have omitted some proofs. For this section, let us fix a
connected graph G for which we would like to obtain a treedepth decomposition.
We assume that G is too large to admit a practically feasible SAT encoding.
Hence, we can use a heuristic method (i.e., a global solver) to obtain a possibly
suboptimal treedepth decomposition T . Now we would like to use a SAT-based
encoding (i.e., a local solver) to possibly improve the decomposition T and reduce
its depth. We refer to this approach as the SAT-based Local Improvement Method
for Treedepth (TD-SLIM).

In our description of the procedure, we use a stack data-structure, which is
essentially an ordered set allowing constant-time access, insertion, and deletion
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at the last position. We denote an empty stack by ∅. Inserting a new element
at the last position is called pushing. Retrieving and deleting the last element is
called popping. Finally, we denote the last element of a stack S by last(S).

A first idea is to select subtrees Tv at nodes v of T that are located low
enough in T such that G[Tv] is small enough to admit a SAT encoding but
G[Tu] is not, where u is the parent of v. This way, we could try all such v and
successively replace subtrees Tv with new subtrees T ′v of possibly lower height as
long as [T ′v] contains all the edges of the induced graph G[Tv]. All other edges
of G, in particular those with one end in Tv and one end outside Tv, still remain
included in the overall closure. This simple procedure, however, can only improve
those parts of T that are close to the leaves, therefore, leaving large parts of T
untouched.

In order to overcome this limitation, we use an operation that contracts an
entire subtree Tv of T into the single node v, and we label v with the depth
of Tv. With such contractions, we can successively eliminate lower parts of T , so
that eventually all parts of T become accessible to a potential local improvement.
This requires the local solver not only to deal with weighted vertices, but now,
the edges outside the induced graph G[Tv] are “not safe” anymore, and one
must take special care for that. We accomplish this by labeling v with a set A(v)
of ancestors, which are all the vertices u ∈ V (G) \ V (Tv), which are adjacent
in G with a vertex w ∈ V (Tv) \ {v}. Since T is a treedepth decomposition, all
ancestors of v lie on the path between the root of T and v. We add two more
labels to v: d(v) holding the weighted depth of Tv (which we formally define
in the next subsection) and S(v) which is a stack maintaining the sequence of
subtrees rooted at v that were contracted, i.e., after contracting Tv, we push Tv
onto S(v) so that we can reverse the contraction later. We refer to the process of
storing or associating a decomposition with a particular vertex as “tagging.”

For uniformity, we assume that already at the beginning, for all vertices v
of G, we have the trivial labels A(v) = ∅, S(v) = ∅, and d(v) = 0 and consider G
as a (trivially) labeled graph. We frequently deal with pairs of the form (G,T )
where G is a labeled graph, and T is a treedepth decomposition of G.

4.1 Treedepth of Labeled Graphs

The above considerations lead us to the following recursive definition of treedepth
for labeled graphs. Let G = (V,E, d,A, S) be a labeled graph. Importantly, when
we delete a vertex and obtain G − v, the vertex v is also deleted from all the
ancestor sets A(u) for all u ∈ V (G− v).

td(G) =





1 + d(v) if |V (G)| = 1;

maxG′∈C(G) td(G′) if |C(G)| > 1;

1 + minv∈V (G) with A(v)=∅max(td(G− v), d(v)) otherwise.

Now, T is a treedepth decomposition of the labeled graph G of weighted
depth D if all the following properties hold:
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T1 T is a treedepth decomposition of the unlabeled graph (V,E),
T2 for every v ∈ V , d(v) + depthT (v) ≤ D,
T3 for every v ∈ V and u ∈ A(v), u is an ancestor of v in T .

Given a labeled graph G, the weighted depth of a rooted tree T , denoted
by depth(T ), with V (T ) ⊆ V (G) is maxv∈V (T ) depthT (v) + d(v). Since our
definitions extend smoothly to the unlabeled case by means of trivial labels, we
may sometimes refer to “weighted depth” simply as “depth.”

4.2 Contracting Subtrees

For a labeled graph G and a vertex v ∈ V (G), we denote the operation of
contracting the subtree Tv in the decomposition T of graph G by (G,T ) ↑ v =
(G′, T ′), yielding a new graph G′ and a decomposition T ′. G′ is obtained by
identifying the vertices V (Tv) in G and updating the labels as follows: we set
d(v) = depth(Tv), we push Tv onto S(v), we add to the set A(v) the set of
vertices u ∈ V (G) \ V (Tv) which are adjacent to some w ∈ V (Tv) \ {v}, and we
tag the newly added elements in A(v) with the decomposition Tv. T ′ is obtained
by deleting the vertices V (Tv)\{v} from the decomposition T . It is easy to verify
that T ′ is a treedepth decomposition of G′.

4.3 Expanding Subtrees

Let (G′, T ′) be a pair consisting of a labeled graph and the corresponding de-
composition obtained from (G,T ) by a sequence of contractions. Let v ∈ V (G′)
be a vertex with a nontrivial label S(v); v is not necessarily a leaf of T ′.
From (G′, T ′) we obtain a labeled graph G∗ and a decomposition T ∗ by the
operation of expanding the vertex v in the decomposition T ′ of graph G′ denoted
as (G′, T ′) ↓ v = (G∗, T ∗). G∗ is obtained as follows: we delete from A(v) the
elements tagged with Tv, we pop Tv from S(v), we set d(v) = depth(last(S(v))),
and we add to G′ all the vertices from V (Tv) \ {v} and all the edges uw ∈ E(G)
with u ∈ V (Tv) \ {v}, w ∈ V (G) \ V (Tv). Although the tree T ′ can be very
different from the original T we started with, we can still extend it with Tv,
just adding it as a subtree of v (possibly next to some existing subtree in T ′),
obtaining a new tree T ∗.

Lemma 1. If (G′, T ′) ↓ v = (G∗, T ∗) is obtained by the process described above,
then T ∗ is a treedepth decomposition of G∗.

4.4 Improving a Subtree

Let G = (V,E, d,A, S) be a labeled graph and T a treedepth decomposition
of G. Let v ∈ V (G) and Tv a treedepth decomposition of the induced labeled
graph G[Tv]. Let T ′′ be a different treedepth decomposition of G[Tv] of weighted
depth not exceeding that of Tv (note that the root of T ′′ need not necessarily
be v). Finally, let T ′ be the tree obtained from T by replacing Tv by T ′′.

Lemma 2. T ′ is a treedepth decomposition of G of weighted depth not larger
than the weighted depth of T .
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4.5 The Improvement Procedure

Input : Graph G, decomposition T of G, budget β,
timeout τ (in seconds), contraction size κ

Output : Decomposition T ′ of G such that td(T ′) ≤ td(T )

1 begin
2 (G′, T ′)←− (G,T )

// Contraction Phase

3 repeat
4 v ←− GetNode(T ′, β)
5 Improve T ′

v (either by using SAT-solver or Lemma 4)
6 while contraction condition do
7 u←− GetNode(T ′, κ)
8 (G′, T ′)←− (G′, T ′) ↑ u // contract at u

9 end

10 until r(T ) ∈ T ′
v

// Expansion Phase

11 while there exists u with nontrivial S(u) do
12 (G′, T ′)←− (G′, T ′) ↓ u // expand at u
13 end
14 return T ′

15 end

Algorithm 1: Pseudocode for TD-SLIM

We now provide a high-level overview of the local improvement procedure (see
Alg. 1). The procedure takes as input a (possibly labeled) graph G, a starting
treedepth decomposition T of G, and returns a treedepth decomposition T ′ of G
such that depth(T ′) ≤ depth(T ). It requires three parameters:

– budget β which indicates a conservative estimate of the maximum size of
instances that is practically feasible for a SAT-solver to solve reasonably
quickly (within a few seconds),

– timeout τ (in seconds) for each each individual SAT (or MaxSAT) call,
– contraction size κ which denotes the maximum size of subtrees that can be

contracted.

One individual pass of the procedure consists of a contraction phase during
which only improvement and contraction operations occur and an expansion
phase during which the contracted treedepth decomposition is expanded to
obtain a treedepth decomposition for the original graph G. The contraction phase
terminates when we encounter, as the instance to be improved, a local instance
containing the root of the starting decomposition T . The contraction condition
on Line 6 determines how many contractions to perform and is only relevant
when κ < β. We stop contracting when the size (or depth) of the contracted
subinstance falls below a threshold (see partial contraction strategy in Sec. 6.3).
The local improvement procedure itself can be repeated any number of times and
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the potentially improved treedepth decomposition T ′ returned by one iteration
can be used as the starting decomposition for the next iteration. Each individual
iteration requires polynomial time in addition to the time required for the SAT
(or MaxSAT) call.

At the heart of the contraction phase of the improvement procedure is the
GetNode subroutine, which is responsible for finding nontrivial sub-instances
which can be improved and then contracted. This subroutine takes as input
a treedepth decomposition T and a budget β. It first tries to find a nonleaf
vertex v ∈ V (T ) such that |Tv| ≤ β. If no such vertex exists, it instead returns
a vertex u ∈ V (T ) such that heightT (u) is 2 and u has at least β children, the
existence of which is proven by the following lemma.

Lemma 3. Given an integer k and a rooted tree T such that |T | ≥ 2, at least
one of the following conditions is true:

1. There exists a nonleaf vertex v ∈ V (T ) such that |Tv| ≤ k and |Tp| > k
where p is the parent of v in T .

2. There exists a vertex u ∈ V (T ) such that heightT (u) is 2 and u has at least k
children.

Proof. Let us assume for the sake of contradiction that both conditions are
false. Let v be a deepest leaf in T and let u be the parent of v in T . Note that
heightT (u) = 2, otherwise v would not be a deepest leaf. Since by our assumption,
the second condition is false, p can have at most k − 1 children and since its
height is 2, p’s children are its only descendants. Hence |Tp| ≤ k, implying that
the first condition is true, thus contradicting our assumption. ut

When we are unable to find a nonleaf vertex v such that |Tv| ≤ β, it means
that there are no subinstances remaining which can be improved and hence the
contraction phase of the algorithm would have to terminate abruptly. It is also
worth noting that any improvement in the depth of the final decomposition T ′, as
compared the initial decomposition T , can be traced back to the contraction phase.
Thus, an early termination of this phase means a narrower scope for improvement.
But as can be seen in Lemma 3, whenever we are unable to find a reasonably-sized
subinstance, we can use this fact—it must be due to a high-degree parent—to
our advantage by tackling this case separately.

Lemma 4. Given a labeled graph G which is a star on n vertices, the treedepth
of G can be determined in time O(n log n).

5 MaxSAT Encoding

Ganian et al. [9], introduced and compared two SAT-encodings for treedepth, one
explicitly guessing the tree-structure of a treedepth decomposition and one using
a novel partition-based characterization of treedepth, the latter outperforming the
former significantly. In both cases, given an unlabeled graph G and an integer k, a
CNF formula F (G, k) is produced, which is satisfiable if and only if the treedepth
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of G is at most k. By trying out different values of k one can determine the exact
treedepth of G.

In this section, we build upon Ganian et al.’s [9] partition-based encoding
and describe extensions required to employ the SAT encoding for labeled graphs
thereby addressing the problem of computing treedepth decomposition of weighted
graphs with ancestry constraints. We further explain how the encoding can be
lifted to MaxSAT, yielding a significant speedup.

5.1 Partition-based Formulation

A weak partition of a set S is a set P of nonempty disjoint subsets of S. The
elements of P are called equivalence classes. Let P, P ′ be two partitions of S,
then P ′ is a refinement of P if any two elements x, y ∈ S that are in the same
equivalence class of P ′ are also in the same equivalence class of P . Given a set S,
a derivation P of length ` is a sequence (P1, P2, . . . , P`) of weak partitions of S.
Pi is called the i-th level of P. For some 2 ≤ i ≤ `, we say that a set c ∈ Pi−1 is
a child of a set p ∈ Pi if c ⊆ p. We denote by ciP(p) the set of all children of p at
level i. Further, χi

P(p) denotes the set p \⋃c∈ciP(p) c. Finally, the shorthand
⋃
Pi

denotes the set
⋃

p∈Pi
p. Given a labeled graph G, a derivation P of G is a

sequence (P1, . . . , P`) of weak partitions of the set V (G) satisfying the following
properties:

D1 P1 = ∅ and P` = {V (G)};
D2 for every 1 ≤ i ≤ `− 1, Pi is a refinement of Pi+1;
D3 for every 1 ≤ i ≤ ` and p ∈ Pi, |χi

P(p)| ≤ 1;
D4 for every edge uv ∈ E(G), there is a p ∈ Pi for some 1 ≤ i ≤ ` such

that u, v ∈ p and χi
P(p) ∩ {u, v} 6= ∅;

D5 for every v ∈ V (G) and 1 ≤ i ≤ `, if v ∈ ⋃
Pi then d(v) + 2 ≤ i; and

D6 for every v ∈ V (G) and u ∈ A(v), there is a p ∈ Pi for some 1 ≤ i ≤ ` such
that u, v ∈ p and u ∈ χi

P(p); together with D3 that implies χi
P(p) = {u}.

Theorem 1. Let G = (V,E, d,A, S) be a labeled graph and D an integer. G has
a treedepth decomposition of weighted depth at most D if and only if G has a
derivation of length at most D + 1.

Proof. Let T be a treedepth decomposition of G of weighted depth D. Let P
be the derivation consisting of weak partitions (P1, . . . , PD+1) where P1 = ∅,
Pi = {V (Tu) | u ∈ V (T ) and depthT (u) = D − i+ 2 } for every 2 ≤ i ≤ D + 1.
It is easy to see that P is a derivation of the unlabeled graph (V,E) and the
length of P is D + 1. For any vertex v ∈ V (G), let 2 ≤ i ≤ D + 1 such that
v ∈ ⋃

Pi, thus, by construction of P, we get depthT (v) ≥ D − i + 2. Since T
is a treedepth decomposition of the labeled graph G, it satisfies property T2,
meaning D ≥ d(v) + depthT (v) ≥ d(v) +D − i+ 2 which implies i ≥ d(v) + 2,
which is precisely property D5. To show property D6, let v ∈ V (G) and u ∈ A(v),
let k = D − depthT (u) + 2. We observe that there exists p ∈ Pk such that u ∈ p,
and since u is an ancestor of v (from property T3), v ∈ Tu therefore v ∈ p. We
further observe that u /∈ ⋃

Pk−1 meaning u ∈ χk
P(p), hence property D6 holds.
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Towards showing the converse, let P be a derivation of length D + 1 of
the labeled graph G. Note that w.l.o.g we can assume χi

P(p) 6= ∅ for every
1 ≤ i ≤ D + 1 and p ∈ Pi, because otherwise we could replace p with all its
children without increasing the length of the derivation and retaining all the
properties. For every v ∈ V (G) there exists exactly one 1 ≤ i ≤ D+ 1 and p ∈ Pi

such that χi
P(p) = {v}; in that case we say that the set p introduces v. Now we

construct the treedepth decomposition T with vertex set V (G) by adding an edge
between u, v ∈ V (G) if the set introducing u is a child of the set introducing v
or vice versa. It can be seen that T is a treedepth decomposition of depth at
most D of the unlabeled graph (V,E).

Towards showing T2, let v ∈ V (G) and 1 < i ≤ D + 1 such that v ∈ ⋃
Pi

and v /∈ ⋃
Pi−1; in other words, i is the smallest index such that v ∈ ⋃

Pi.
By construction of T , this implies that v is introduced in the i-th layer, mean-
ing depthT (v) = D − i + 2. Combining this with property D5, we get d(v) +
depthT (v) ≤ D, thus satisfying property T2. Now, to show T3, since P satis-
fies property D6, let 2 ≤ i ≤ D + 1 such that u, v ∈ p for some p ∈ Pi and
χi
P(p) = {u}. Thus p introduces u. Further, v ∈ ciP(p) since v /∈ χi

P(p), meaning u
is an ancestor of v in T , therefore satisfying property T3. Hence T is indeed a
treedepth decomposition of the labeled graph G. ut

We note that the treedepth of a labeled graph G = (V,E, d,A, S) can be as
large as |V |+ maxv∈V d(v). Since the above proof explicitly encodes the weight
labels d(v) in the derivation, the treedepth D affects the number of layers in the
derivation, which in turn affects the size of the encoding. Thus, for graphs with
large d(v), the encoding size is also large. A neat observation can however remedy
this: the derivation of G does not need to have any more than |V |+ 1 layers.

Observation 1 Let G = (V,E, d,A, S) be a labeled graph and D > |V | be
an integer. Let G′ = (V,E, d′, A, S) where d′(v) := max(0, d(v) − (D − |V |))
for v ∈ V (G). G has a derivation of length at most D+ 1 if and only if G′ has a
derivation of length at most |V |+ 1.

5.2 Encoding of a Derivation

We now tersely describe the encoding of the formulation discussed in the previous
subsection.

Theorem 2. Given a labeled graph G and an integer D, one can construct in
polynomial time, a CNF formula F (G,D) that is satisfiable if and only if G has
a derivation of length at most D.

The remainder of this section describes the clauses constituting the formula F .
We have a set variable s(u, v, i), for every u, v ∈ V (G) with u ≤ v and every i
with 1 ≤ i ≤ D. The variable s(u, v, i) indicates whether vertices u and v appear
in the same equivalence class of Pi, and s(u, u, i) indicates whether u appears in
some equivalence class of Pi. The following clauses ensure D1 and D2:

¬s(u, v, 1) ∧ s(u, v,D) for u, v ∈ V (G), u ≤ v, and
¬s(u, v, i) ∨ s(u, v, i+ 1) for u, v ∈ V (G), u ≤ v, 1 ≤ i ≤ D.
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The following clauses ensure D3 and D4:

¬s(u, v, i) ∨ s(u, u, i− 1) ∨ s(v, v, i− 1) for u, v ∈ V (G), u < v, 2 ≤ i ≤ D,
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(u, u, i− 1) ∨ s(u, v, i)
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(v, v, i− 1) ∨ s(u, v, i)

for uv ∈ E, u < v, 2 ≤ i ≤ D.

The following clauses ensure the semantics of the set variables of the form
s(u, u, i) as well as the transitivity of the set variables:

(¬s(u, v, i) ∨ s(u, u, i)) ∧ (¬s(u, v, i) ∨ s(v, v, i))
for u, v ∈ V (G), u < v, 2 ≤ i ≤ D,

(¬s(u, v, i) ∨ ¬s(u,w, i) ∨ s(v, w, i))
∧(¬s(u, v, i) ∨ ¬s(v, w, i) ∨ s(u,w, i))
∧(¬s(u,w, i) ∨ ¬s(v, w, i) ∨ s(u, v, i))

for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ D.

Finally, the following clauses ensure D5 and D6:

¬s(u, u, i) for u ∈ V (G), 2 ≤ i ≤ D, if |V (G)|+ d(v) ≥ D and i < d(v) + 2,
¬s(v, v, i) ∨ s(u, u, i) for v ∈ V (G), u ∈ A(v) and 2 ≤ i ≤ D.

This concludes the description of the SAT encoding. Note that, due to Obs. 1,
without loss of generality, we may assume that D ≤ |V |+ 1.

We now extend the above encoding to a Partial MaxSAT formulation F ′(G,D)
containing soft clauses. An optimal solution for F ′(G,D) satisfies µ soft clauses
if and only if G has treedepth D − µ + 1. First, all the clauses from the SAT
encoding are added as hard clauses into F ′. Then we introduce a free layer
variable fi for 1 ≤ i ≤ D, which is false if some vertex appears in the i-th layer,
i.e., u ∈ ⋃

Pi for some u ∈ V (G). Further, if the i-th layer is free then all the
lower layers must also be free. These conditions are encoded via the following
hard clauses:

¬fi ∨ ¬s(u, u, i) for u ∈ V (G) and 2 ≤ i ≤ D,
¬fi ∨ fi−1 for 2 ≤ i ≤ D.

Additionally, we need to take special care in the case of labeled graphs, as the
depth labels could mean that even though no vertices appear in a layer, they are
still occupied by a subtree represented by the depth labels. In other words, a
vertex v must not only “occupy” its own layer but also d(v) many layers below
its own layer. The following hard clause captures this condition:

¬s(u, u, i) ∨ ¬fi−j for u ∈ V (G), 2 ≤ i ≤ D and 1 ≤ j ≤ min(d(v), i).

Finally, we introduce a soft unit clause fi for 1 ≤ i ≤ D. This sets the objective
of the MaxSAT solver to maximize the number of free layers, which consequently,
minimizes the depth of the decomposition. This concludes the description of the
MaxSAT encoding.
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6 Experimental Evaluation

6.1 Experimental Setup

We ran all our experiments on a 10-core Intel Xeon E5-2640 v4, 2.40 GHz CPU,
with each process having access to 8GB RAM. We used Glucose 4.02 as the
SAT-solver and UWrMaxSat as the MaxSAT-solver, both with standard settings.
We use UWrMaxSat primarily due to its anytime nature (i.e., it can be terminated
anytime, and it outputs the current best possibly suboptimal result). We also
tried other solvers like RC2 and Loandra from the 2019 MaxSAT Evaluation
contest, but UWrMaxSat worked better for our use case. The details of all the
MaxSAT solvers can be found on the 2019 MaxSAT Evaluation webpage3.

We implemented the local improvement algorithm in Python 3.6.9, using the
Networkx 2.4 graph library [12] and the PySAT 0.1.5 library [14] for the MaxSAT
solver RC2. The source code of our implementation is available online [32]. Our
experiments aim to demonstrate the benefit of applying local improvement to
any external heuristic, and not to provide a comparison between our approach
coupled with the two considered heuristics and other standalone algorithms.

6.2 Instances

We tested our implementation on subsets of the public benchmark instances used
by the PACE Challenge 2020, from both the Exact Track (smaller instances on
average) and the Heuristic Track. We formed two datasets as follows: (i) Dataset A
consists of all the instances on which the heuristic algorithms were able to compute
a solution within 2 hours. This yielded 140 instances in the range |V | ∈ [10, 4941],
|E| ∈ [15, 86528]. This dataset is meant to serve as a comprehensive dataset with
a large variance in the graph sizes. (ii) Dataset B consists of 30 instances from
the Exact Track (27–85). This dataset represents the set of instances that we
expect to lie in the practically feasible zone of SAT-solvers (or MaxSAT solvers).
The resulting graphs lie in the range |V | ∈ [30, 72], |E| ∈ [48, 525].

6.3 Experiment 1

We evaluate the quality of the solution in terms of the improvement in depth,
where absolute improvement (or simply improvement) refers to the difference
between the starting heuristic depth and the final reported depth, and relative
improvement (RI) refers to the absolute improvement expressed as a percentage
of the starting heuristic depth. Our implementation of the algorithm can be
configured using the following parameters:

– budget β, can either be a single value or a sequence of budget values (we
denote by Multibudget the sequence (5 + (5i mod 40))i≥0 where the next
budget value is used when the current value fails to provide any improvement),

2 https://www.labri.fr/perso/lsimon/glucose/
3 https://maxsat-evaluations.github.io/2019/descriptions.html
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– timeout τ ,
– contraction ratio γ which determines the contraction size κ = γβ,
– partial contraction strategy which determines when we switch from contrac-

tion to improvement—either when the local instance’s size has been reduced
by half or when the local instance’s unweighted depth has been reduced by 2,

– target solver, i.e., SAT or MaxSAT,
– random seed, and
– global timeout.

Since the number of possible parameter configurations is huge, we first ran
a preliminary experiment on a small number of instances with a large number
of parameter configurations to narrow down the better performing configura-
tions. We gathered a smaller set of configurations from this initial run, which
we then tested rigorously on Dataset A. We tried β ∈ {20,Multibudget}, τ = 20,
γ ∈ {0.5, 1}, partial contraction by depth, target solver MaxSAT, and random
seed ∈ {1, 2, 3}. For the starting decomposition, we compared two heuristics
proposed by Villaamil [42]—a randomized variant of the DFS heuristic and one of
the separator-based heuristics (denoted by Sep). Given a treedepth heuristic algo-
rithm X, we denote by TD-SLIM(X) the algorithm obtained by running the local
improvement procedure on top of the heuristic solution provided by algorithm X.
The implementation of Sep was kindly provided to us by Oelschlägel [31]. We
precomputed the heuristic solutions for Dataset A with a 2-hour timeout and
then ran the improvement procedure for 30 minutes.

We use three solvers or configurations to present the performance data and
convey the likelihood of the different results:

– Virtual Best Solver (VBS): the hypothetical solver which, for each instance,
knows the configuration that yields the best improvement,

– Single Best Solver (SBS): the solver with the configuration that resulted in
the best improvement on average across all instances,

– Average Solver (AS): the hypothetical solver representing the average perfor-
mance across all the configurations for a particular instance.

The average relative improvements (including the cases with no improvement)
for AS, SBS, and VBS were 45.9%, 52.2%, and 53.0% when starting from the
DFS heuristic and 21.9%, 29.2%, and 30.2% when starting from the Sep heuristic,
respectively. Table 1 shows the instances from Dataset A with the best relative
improvement. The parameter combination to achieve the best average relative
improvement across all the 140 instances across both heuristics (i.e., SBS) was
(Multibudget, MaxSAT, γ = 0.5, partial contraction by depth). In the experiment,
we observed a rather robust performance over all considered configurations.

Out of the 140 instances solved by both heuristics, TD-SLIM(DFS) provided
a strictly lower depth than TD-SLIM(Sep) for 48 instances and strictly higher
depth for 38 instances. In the remaining 54 instances, both TD-SLIM(DFS) and
TD-SLIM(Sep) reached the same depth value. Thus, TD-SLIM is often capable of
achieving a comparable or even lower depth despite starting from a significantly
worse heuristic decomposition, but there are also cases that show that TD-
SLIM is capable of utilizing and building upon a better starting decomposition.
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Table 1: Top 15 instances from Experiment 1 sorted by best relative improvement
among both heuristics. Start and Final refer to the starting heuristic depth and the
final reported depth, respectively Imp. refers to the absolute improvement.

Instance |V | |E| DFS heuristic SEP heuristic

Start Final Imp. RI (%) Start Final Imp. RI (%)

heur 055 590 668 92 18 74 80.43 27 17 10 37.04
heur 033 255 507 129 34 95 73.64 155 34 121 78.06
heur 071 1023 2043 486 108 378 77.78 657 418 239 36.38
exact 165 176 186 49 11 38 77.55 17 10 7 41.18
exact 193 449 2213 128 29 99 77.34 151 75 76 50.33
heur 021 195 340 100 23 77 77.00 43 22 21 48.84
exact 173 198 692 69 16 53 76.81 57 50 7 12.28
exact 169 181 253 77 18 59 76.62 44 20 24 54.55
exact 195 451 587 131 31 100 76.34 74 23 51 68.92
exact 157 163 195 49 12 37 75.51 27 13 14 51.85
exact 103 92 131 57 14 43 75.44 24 16 8 33.33
heur 025 212 257 67 17 50 74.63 36 19 17 47.22
exact 177 204 248 34 9 25 73.53 16 11 5 31.25
exact 107 95 121 41 11 30 73.17 23 13 10 43.48
exact 185 276 1187 63 20 43 68.25 85 23 62 72.94

Comparing these depths with the lowest known depths from the PACE challenge,
TD-SLIM(DFS) matches the lowest depth on 53 instances and is off by one on 20
instances. TD-SLIM(Sep) matches the lowest depth on 41 instances and is off by
one on 17 instances.

Very recently the results for the PACE challenge were announced and
the implementations of the solvers were made available. Consequently, we
tested TD-SLIM on top of the winning heuristic ExTREEm [41]. We ran the
heuristic for 15 minutes and then TD-SLIM on top of the solution provided
by the heuristic for 15 minutes, using the same total time limit of 30 min-
utes as used in the PACE challenge. Somewhat surprisingly, we observed that
for 6 instances, TD-SLIM(ExTREEm) was able to compute better decomposi-
tions than simply running ExTREEm for 30 minutes. For 3 of these instances,
TD-SLIM(ExTREEm) was even able to find a better decomposition than all
the 55 participating heuristic solvers.

6.4 Experiment 2

We tested the effectiveness of TD-SLIM over a one-shot SAT or MaxSAT encoding
where the entire instance is passed to the solver. To give the one-shot SAT or
MaxSAT a massive advantage, we chose Dataset B, which contains much smaller
instances, and we set the global timeout for TD-SLIM to 30s, whereas for SAT
and MaxSAT we chose 300s. For this experiment, we used DFS as the starting
heuristic. We observed that TD-SLIM performs comparably to SAT in terms
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Fig. 2: TD-SLIM vs SAT

of the final depth achieved, computing the best upper bound for 18 instances
while SAT arrives at the best upper bound for 22 instances. Nevertheless, when it
comes to slightly larger instances, TD-SLIM even outperforms SAT in 7 instances
despite only having a tenth of the time. We also noticed that MaxSAT tends to
perform significantly worse than SAT. We suspect this might be the case because
the MaxSAT solver spends time improving the lower bounds, which is of little
use in this case.

As a part of Experiment 2, we also compared the trajectory of improvement
over time of TD-SLIM and SAT. We use graphs ‘exact 031.gr’ and ‘dolphin.gml’
(from [27]) as typical examples. As can be seen in Fig. 2a and Fig. 2b, TD-SLIM
is much faster than SAT. Another interesting observation is that TD-SLIM
is able to achieve depth values which were previously not possible, e.g., for
the graph ‘B10Cage’, TD-SLIM improved the previously known upper bound
from 23 [9] to 22 with a runtime of around 50s.

7 Concluding Remarks

Our (Max)SAT-based local improvement approach to treedepth provides a com-
pelling showcase for demonstrating how (Max)SAT encodings can be scaled to
large inputs, thus widening the scope of potential applications for exact constraint-
based methods. Our experiments show that in many cases, our approach allows
a significant improvement over heuristically obtained treedepth decompositions.
We observed that TD-SLIM is able to improve even over strong heuristics like the
winning heuristic from the PACE challenge. Rather unexpected is the finding that
on smaller instances, the local improvement method significantly outperforms a
one-shot (Max)SAT encoding.

In future work, we plan to systematically study the effect of postprocessing for
different types of heuristics, as have been made available by the PACE challenge.
Other topics for future work include the utilization of incremental solving tech-
niques for the SAT-based optimization of treedepth, and its comparison to the
MaxSAT approach, as well as the development of symmetry breaking methods
for further speeding up the encoding.
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