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Abstract. A CNF formula is harder than another CNF formula with
the same number of clauses if it requires a longer resolution proof. The
resolution hardness numbers give for m = 1, 2, . . . the length of a shortest
proof of a hardest formula on m clauses. We compute the first ten resolu-
tion hardness numbers, along with the corresponding hardest formulas.
We achieve this by a candidate filtering and symmetry breaking search
scheme for limiting the number of potential candidates for formulas and
an efficient SAT encoding for computing a shortest resolution proof of a
given candidate formula.
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1 Introduction

Resolution is a fundamental proof system that can be used to certify the unsat-
isfiability of a propositional formula in conjunctive normal form (CNF). What
makes resolution particularly interesting is that the length of a shortest resolution
proof of a given CNF formula (called the resolution complexity of the formula)
provides an unconditional lower bound on the running time of modern SAT
solvers [17]. Since we know that there are classes of unsatisfiable CNF formulas
(such as the formulas based on the Pigeon Hole Principle) with exponential
resolution complexity [6], we have an exponential lower bound on the runtime. It
is a natural question to ask: which formulas are the hardest for resolution? i.e.,
which formulas have the highest resolution complexity? This is a quite intriguing
and hard question, which has been approached mainly in an asymptotic way by
propositional proof complexity [22].

We address this question by following a recent trend in tackling combinatorial
problems using SAT and CSP methods [2, 7, 8]. For small values of n and m, we
compute all the formulas (modulo isomorphisms) with n variables and m clauses
that are the hardest formulas for resolution. With these results, we can compute
the first few resolution hardness numbers (hm)m≥1, where hm gives the highest
resolution complexity of a CNF formula with m clauses.

We obtain our results by the combination of two techniques:

? The authors acknowledge the support by the FWF (projects P32441 and J-4361)
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1. A candidate filtering and symmetry breaking search scheme for limiting the
number of potential candidate formulas with m variables whose resolution
complexity is hm.

2. An efficient SAT encoding for computing the resolution complexity of a given
candidate formula.

In our search scheme, we reduce the candidate formulas to a certain class of
minimally unsatisfiable (MU) formulas that obey additional degree constraints.
We model these formulas by graphs of a particular kind. We generate these
graphs modulo symmetries by a special adaptation of the Nauty graph symmetry
package.

This still leaves us with a large number of formulas whose resolution complexity
we must determine algorithmically. For this task, we devised an efficient SAT
encoding that produces for a given candidate formula F and an integer s, a
CNF formula shorts(F ), which is satisfiable if and only if F admits a resolution
proof of length ≤ s. We determine the resolution complexity of F by feeding
shorts(F ) to a SAT solver with various choices of s. While a SAT encoding for
this problem has been proposed before [14], and we do take some inspiration from
it, we make crucial adaptations tailored towards minimally unsatisfiable formulas.
Furthermore, we introduce a symmetry-breaking scheme that fully breaks all
symmetries resulting from permutations of the sequence of clauses.

In addition to the values of the resolution hardness numbers, we can draw
a more detailed map of the hardest formulas with a particular number n of
variables and a particular number m of clauses.

Our theoretical results reveal the significance of regular saturated minimally
unsatisfiable (RSMU) formulas, which are unsatisfiable formulas that (i) become
satisfiable by adding any further literal to any clause, and (ii) where each literal
appears in at least two clauses. As a by-product of our computations, we obtain
a catalog of RSMU formulas with a small number of variables and clauses, which
may be of independent interest in the research on minimal unsatisfiability. For
instance, the computed formulas’ structure can possibly be used to come up with
infinite sequences of hard formulas, which can lead to tighter general bounds.

An alternative but not very interesting object of study would be vn, the
highest resolution complexity of formulas with n variables. It is not hard to see
that every unsatisfiable formula on n variables has a resolution refutation of
length ≤ 2n+1 − 1 and that indeed vn = 2n+1 − 1, witnessed by the formula
which contains all possible clauses of width n.

2 Preliminaries

Formulas. We consider propositional formulas in conjunctive normal form (CNF)
represented as sets of clauses. We assume an infinite set var of (propositional)
variables. A literal ` is a variable x or a negated variable ¬x; we write lit :=
{x,¬x | x ∈ var }. For a literal ` we put ` := ¬x if ` = x, and ` := x if ` = ¬x.
For a set of C literals we put C := { ` | ` ∈ C }. C is tautological if C ∩C 6= ∅. A
finite non-tautological set of literals is a clause; a finite set of clauses is a (CNF)
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formula. The empty clause is denoted by �. We write CNF(n,m) for the class of
all CNF formulas on n variables and m clauses, and CNF(m) =

⋃∞
n=0 CNF(n,m).

For a clause C, we put var(C) = { var(`) | ` ∈ C }, and for a formula F ,
var(F ) =

⋃
C∈F var(C). Similarly, we put lit(F ) := var(F ) ∪ var(F ). A formula

F is satisfiable if there is a mapping τ : var(F )→ {0, 1} such that every clause
of F contains either a literal x with τ(x) = 1 or a literal ¬x with τ(x) = 0,
and unsatisfiable otherwise. A formula is minimally unsatisfiable (MU) if it is
unsatisfiable, but every proper subset is satisfiable.

Resolution Proofs. If C1 ∩ C2 = {`} for clauses C1, C2 and a literal `, then the
resolution rule allows the derivation of the clause D = (C1 ∪C2) \ {`, `}; D is the
resolvent of the premises C1 and C2, and we say that D is obtained by resolving
on `. Let F be a formula and C a clause. A sequence P = L1, . . . , Ls of clauses
(proof lines) is a resolution derivation of Ls from F if for each i ∈ {1, . . . , s} at
least one of the following holds.

1. Li ∈ F (“Li is an axiom”);
2. Li is the resolvent of Lj and Lj′ for some 1 ≤ j < j′ < i (“Li is obtained by

resolution”).

We write |P | := s and call s the length of P . If Ls is the empty clause, then
P is a resolution refutation or resolution proof of F . A line Li in a resolution
derivation may have different possible “histories;” i.e., Li may be the resolvent
of more than one pair of clauses preceding Li, or Li may be both an axiom and
obtained from preceding clauses by resolution, etc. In the sequel, however, we
assume that an arbitrary but fixed history is associated with each considered
resolution derivation.

It is well known that resolution is a complete proof system for unsatisfiable
formulas; i.e., a formula F is unsatisfiable if and only if there exists a resolution
refutation of it. The resolution complexity or resolution hardness h(F ) of an
unsatisfiable formula F is the length of a shortest resolution refutation of F (for
satisfiable formulas we put h(F ) := −∞). For a nonempty set C of formulas, we
put h(C) = maxF∈C h(F ).

Isomorphisms of Formulas. Two formulas F and F ′ are isomorphic if there
exists a bijection ϕ : lit(F )→ lit(F ′) such that for each literal ` ∈ lit(F ) we have
ϕ(`) = ϕ(`) and for each C ⊆ lit(F ) we have C ∈ F if and only if ϕ(C) ∈ F ′.
For instance the formulas F = {{x, y}, {x, y}, {y}}, and F ′ = {{z, w}, {z, w},
{w}} are isomorphic.

Obviously, two isomorphic formulas have the same properties concerning
satisfiability, minimal unsatisfiability, and resolution proof length. For a set C of
formulas, we define Iso(C) to be an inclusion-maximal subset of C such that no
two elements of Iso(C) are isomorphic. In other words, Iso(C) contains exactly
one representative from each isomorphism class.

A 2-graph is an undirected graph G = (V,E) together with a partition of its
vertex set into two subsets V = V1 ] V2. Two 2-graphs G = (V1 ] V2, E) and
G′ = (V ′1 ]V ′2 , E′) are isomorphic if there exists a bijection ϕ : V1]V2 → V ′1 ]V ′2
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such that v ∈ Vi if and only if ϕ(v) ∈ V ′i , i = 1, 2, and {u, v} ∈ E if and only if
{ϕ(u), ϕ(v}} ∈ E′.

The clause-literal graph of a formula F is the 2-graph G(F ) = (V1]V2, E) with
V1 = lit(F ), V2 = F , and E = { {x, x} | x ∈ var(F ) } ∪ { {C, `} | C ∈ F, ` ∈ C }.

The following statement is easy to verify.

Proposition 1. Two formulas are isomorphic if and only if their clause-literal
graphs are isomorphic.

3 Theoretical Framework

We define the m-th resolution hardness number as the highest resolution com-
plexity among formulas with m clauses:

hm = max
F∈CNF(m)

h(F ) = h(CNF(m)).

In this section, we discuss various properties such that it suffices to consider only
formulas with these properties for computing hm.

Let H(n,m) = {F ∈ CNF(n,m) | h(F ) = hm } and H(m) =
⋃∞

n=0H(n,m);
thus h(CNF(n,m)) = h(H(n,m)), and h(CNF(m)) = h(H(m)).

Lemma 1. All formulas in H(m) are minimally unsatisfiable.

Proof. Suppose to the contrary, that there exists some F ∈ H(m) which is not
minimally unsatisfiable and choose any minimally unsatisfiable subset F ′ ( F
and let d = m − |F ′| ≥ 1. Pick a clause C ∈ F ′ and take new variables
x1, . . . , xd /∈ var(F ). We obtain a minimally unsatisfiable formula F ′′ from F ′

by replacing C by the clauses C ∪ {x1, . . . , xd}, {x1}, . . . , {xd}. From a shortest
resolution proof P ′′ of F ′′ we obtain a resolution proof P ′ of F ′. By construction,
|P ′| + d = |P ′′|, hence h(F ) ≤ h(F ′) + d ≤ h(F ′′), which is a contradiction to
h(F ′′) ≤ hm = h(F ), a contradiction. ut

A formula is saturated minimally unsatisfiable if it is unsatisfiable and adding
a literal to any of its clauses makes it satisfiable. Every saturated minimally
unsatisfiable formula is minimally unsatisfiable, since adding a pure literal to a
clause has the same effect as deleting the clause.

Lemma 2. H(m) contains a saturated minimally unsatisfiable formula.

Proof. Let F be an arbitrary formula in H(m). By Lemma 1, F is minimally
unsatisfiable. Assume now that F is not saturated, and we can add to some
clause C of F a literal `, obtaining a minimally unsatisfiable formula F ′. We
claim that h(F ′) ≥ h(F ) = hm. Take a shortest proof P of F ′. Delete ` from
the axiom C ∪ {`} in P and propagate this deletion through P to other clauses.
This way, we obtain a sequence P ′ of clauses, which contains as a subsequence a
resolution proof of F . Hence indeed h(F ′) ≥ h(F ) = hm, and so F ′ ∈ H(m). ut

A literal ` is called r-singular in a formula F if there is exactly one clause in
F that contains `, and there are exactly r clauses in F that contain `. A literal
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is singular in F if it is r-singular for some r ≥ 0 [21]. We also say a literal is
≥ r-singular if it is r′-singular for some r′ ≥ r.

We denote by MU(n,m) the class of minimally unsatisfiable formulas with n
variables and m clauses, and by SMU(n,m) ⊆ MU(n,m) the subclass consisting
of saturated formulas. RSMU(n,m) denotes the subclass of SMU(n,m) containing
only formulas without singular variables. We call such formulas regular. We also
use the shorthand SSMU(n,m) = SMU(n,m) \ RSMU(n,m).

Consider a formula F and a variable x of F . Let DPx(F ) denote the formula
obtained from F after adding all possible resolvents that can be obtained from
clauses in F by resolving on x and removing all clauses in which x occurs [21].
We say that DPx(F ) is obtained from F by Davis-Putnam reduction or short
DP-reduction on x [3]. We will mainly use DP-reduction in the opposite direction,
starting with a formula F and generating a formula F ′ such that F = DPx(F ′).
We then say that F ′ has been obtained from F by DP-lifting.

The following result by Kullmann and Zhao [12, Lemma 12] establishes
an important link between DP-reduction on a singular variable and saturated
minimal unsatisfiability.

Lemma 3 (Kullmann and Zhao [12]). Let F be a formula and x an r-singular
literal of F such that C0 is the only clause of F containing x and C1, . . . , Cr

are the only clauses of F containing x. Then F ∈ SMU(n,m) if and only if the
following three conditions hold: (i) DPx(F ) ∈ SMU(n− 1,m− 1), (ii) C0 \ {x} =⋂r

i=1 Ci \ {x}, and (iii) for every C ′ ∈ F \ {C0, . . . , Cr} there is some literal
` ∈ C0 \ {x} which does not belong to C ′.

The next lemma, a direct consequence of the preceding one, states that in
the context of saturated minimally unsatisfiable formulas, DP-lifting is uniquely
determined by a subset of the lifted formula.

Lemma 4. Let n ≥ 2 and let F ′ ∈ SMU(n − 1,m − 1). Then each formula
F ∈ SSMU(n,m) which can be obtained from F ′ by DP-lifting on a singular
literal x of F , can be generated by selecting r clauses C ′1, . . . , C

′
r ∈ F ′ such that⋂r

i=1 C
′
i 6⊆ C for any C ∈ F \ {C ′1, . . . , C ′r}, and replacing them by the r + 1

clauses C0, . . . , Cr where C0 =
⋂r

i=1 C
′
i ∪ {x} and Ci = C ′i ∪ {x}.

The next lemma is useful when we know hm−1, have a lower bound on hm,
and want to show that a formula F containing singular literals does not require
longer proofs than our current bound on hm, without laboriously computing a
shortest proof of F .

Lemma 5. Let F ∈ MU(n,m) with an r-singular variable. Then h(F ) ≤ hm−1 +
r + 1.

Proof. We perform DP-reduction on the r-singular variable using r + 1 axioms,
then refute the resulting formula on m− 1 remaining clauses. ut

The deficiency δ(F ) of a formula F is defined as |F | − |var(F )|. By a lemma
attributed to Tarsi [1], all minimally unsatisfiable formulas have a positive
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deficiency. That means that a minimally unsatisfiable formula with a fixed number
of clauses cannot have too many variables. It is easy to see that it cannot have too
few variables either: each clause must be falsified by an assignment that satisfies
every other clause, whence we infer that the number of assignments bounds the
number of clauses. Putting the two inequalities together yields Lemma 6.

Lemma 6 (Aharoni and Linial [1]). Let F be a minimally unsatisfiable for-
mula. Then log2 |F | ≤ |var(F )| < |F |.

The structure of saturated minimally unsatisfiable formulas of deficiencies
1 and 2 is well understood [11]. In particular, it is known that for m > 1, each
F ∈ SMU(m−1,m) has a 1-singular literal. It is also known that |Iso(RSMU(m−
2,m))| = 1 form ≥ 4 [10] (otherwise, there are no minimally unsatisfiable formulas
of deficiency 2). We pick the unique representative F2

m for Iso(RSMU(m− 2,m)),
which consists of the clauses {x1, x2}, . . . , {xn−1, xn}, {xn, x1}, {x1, . . . , xn}, and
{x1, . . . , xn}, n = m− 2.

Due to their simple structure, we can determine the resolution hardness of
SMU(m− 1,m) and RSMU(m− 2,m) formulas without any computation.

Proposition 2. For every m ≥ 1, h(SMU(m− 1,m)) = 2m− 1.

Proof. Apart from the formula {�}, every formula from SMU(m−1,m) contains
a 1-singular variable [4, Theorem 12], so the statement follows by induction from
Lemma 5 and the fact that 2m− 1 is the shortest possible proof length. ut

Proposition 3. For every m ≥ 4, h(RSMU(m− 2,m)) = h(F2
m) = 3m− 5.

Proof. F2
m consists of binary strict Horn clauses (BSH —one negative and one

positive literal) and the full positive and full negative clause. Resolving any pair
of BSH clauses produces a BSH clause again. Resolving a BSH clause with a
positive (negative) clause produces a positive (negative) clause, which is at most
one shorter. Hence, to get to a positive (negative) unit clause, one must shorten
the full positive (negative) clause at least n− 1 = m− 3 times. In total, we have
m axioms plus 2(m− 3) shortening steps plus a final resolution step, altogether
3m− 5 proof lines. It is easy to see that such proof exists for every m. ut

Propositions 2 and 3, together with Lemma 6, give us a lower bound for hm.

Corollary 1. For m ≤ 3, hm = 2m− 1. For m ≥ 4, hm ≥ 3m− 5.

Proof. For m ≤ 3 Lemma 6 rules out formulas with deficiency higher than 1,
showing h1 = 1, h2 = 3, and h3 = 5. The rest is a direct consequence of
Proposition 3. ut

For other formulas, we will need to generate the formulas and compute their
shortest proofs. Our general approach for computing Iso(H(m)) and in turn hm
is to compute the sets Iso(SMU(n,m)) for n = dlog2(m)e, . . . ,m− 1, and test for
each F ∈ Iso(SMU(n,m)) its resolution hardness h(F ) using the SAT encoding,
which we describe in Sections 4 and 5.

We split the computation of Iso(SMU(n,m)) into two parts. We first generate
Iso(RSMU(n,m)) for dlog2(m)e ≤ n < m. Due to Proposition 1, we can do this by
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enumerating non-isomorphic 2-graphs, which correspond to clause-literal graphs
of formulas in RSMU(n,m). We can limit ourselves to 2-graphs G = (V1 ] V2, E)
where |V1| = 2n and |V1| = m, and where every vertex in V1 has exactly one
neighbor in V1 and at least two neighbors in V2. We use a tailor-made adaptation
of the graph symmetry package Nauty [13] to enumerate such graphs; further
details can be found in Section 6.

If n and m are such that 2n−1 < m−1, we know there cannot be any formulas
in SSMU(n,m) because singular DP-reduction would turn them into minimally
unsatisfiable formulas on n− 1 variables with 2n−1 < m− 1 clauses, but no such
formulas exist. Hence, in those cases RSMU(n,m) = SMU(n,m), and we already
have Iso(SMU(n,m)). From these starting points, we repeatedly apply Lemma 4
to every formula in Iso(SMU(n,m)) to obtain Iso(SSMU(n+ 1,m+ 1)). Together
with Iso(RSMU(n+ 1,m+ 1)) we then obtain Iso(SMU(n+ 1,m+ 1)).

The rationale for splitting the computation of SMU(n,m) into two pieces is
the following. Enumerating non-isomorphic clause-literal graphs by Nauty for
given parameters n and m is the hardest part of our computation. We often need
to enumerate a significantly larger set than SMU(n,m). Therefore, we need to
prune the enumeration phase as much as possible. When focusing on regular
formulas, we can introduce additional bounds for Nauty, which significantly
speed up the search. Applying then Lemma 4 inductively to the rather small set
SMU(n,m) is computationally affordable (as long as the set SMU(n,m) remains
reasonably small).

Since we are interested only in saturated minimally unsatisfiable formulas, we
need to filter the graphs that we generate, which requires multiple calls to a SAT
solver for every graph generated. Re-initializing the SAT solver with different
formulas for different tests is expensive. Therefore it is desirable to bundle as many
SAT calls together either by adding clauses incrementally or by using assumptions.
While incrementally testing minimal unsatisfiability without solving multiple
different formulas is relatively straightforward (via clause selector variables), it is
not immediately clear how to do the same for saturation. We devised an algorithm
that decides saturated minimal unsatisfiability using assumption-based calls to a
SAT solver without the need to solve multiple different formulas. As a bonus,
the formula for the saturation test contains all the clauses of the formula used
for the minimality test, so both tests can proceed incrementally. The following
lemma is the basis for our algorithm (a satisfiability test precedes the saturation
test in our implementation, so it is safe to assume that the formula tested is
unsatisfiable).

Lemma 7. Let F be an unsatisfiable formula, C a clause of F , and x 6∈ C a
literal. The formula E = F ∪ (C ∪ {x}) \ C, where the clause C was extended
with the literal x, is unsatisfiable if and only if the formula G = F ∪ {{x}} \C is
unsatisfiable.

Proof. If E is unsatisfiable, so is G because every clause in G is a subset of
some clause in E. Conversely, assume that E is satisfiable with the assignment τ .
Because τ satisfies F \C, and F is unsatisfiable, τ must falsify C, and so it must
satisfy x. Hence, it satisfies G. ut
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Lemma 7 gives rise to the following algorithm: for all C ∈ F and every literal
x 6∈ C, check whether F ∪ {x} \ C is unsatisfiable. If so, the clause C can be
extended with x preserving unsatisfiability, meaning that F is not saturated.
This can be implemented in an assumption-based fashion with a single formula
by augmenting F with all possible unit clauses, adding selector variables to every
clause, and turning clauses on and off as necessary using assumptions.

4 Encoding for Shortest Resolution Proofs

This section gives the details of our SAT encoding computing the shortest
resolution proof of an input formula. We aim to encode the following question.

Given a formula F with the clauses (axioms) A1, . . . , Am and var(F ) = V =
{x1, . . . , xn}, does there exist a resolution refutation of F of length at most s,
i.e., does there exist a sequence P = L1, . . . , Ls of s lines (clauses), such that
each Li is either some axiom Aj or a resolvent of two previous Li′ , Li′′ , i

′, i′′ < i,
and Ls is empty. We denote this problem by SHORT(F, s).

It is easy to see that SHORT(F, s) is coNP-hard (s given in binary): since each
unsatisfiable formula F with n variables has a resolution refutation of length
at most 2n+1 − 1, we have UNSAT(F) = SHORT(F, 2n+1 − 1). Therefore, using
a SAT-based approach is indeed justified. On the other hand, membership in
NEXPTIME can easily be seen as well: guess a refutation of length s and verify
that it is correct. The precise complexity of SHORT(F, s) is an open problem—our
intuition, based on our inability to construct a deterministic single-exponential-
time algorithm for SHORT(F, s), is that it might be NEXPTIME-complete.

The basic idea of our encoding is to have variables pos[i, v] and neg[i, v] that
determine whether v and v occur in Li, and variables arc[i, j], which hold the
information about the structure of the resolution steps in the proof. Together,
these variables fully determine a candidate resolution proof sequence P . We
additionally use auxiliary variables to express certain constraints more succinctly.
Table 1 lists the core variables used by the encoding.

We drew inspiration from a similar encoding proposed by Marques-Silva
and Menćıa [14] (henceforth referred to as MSM), but took several departures,
afforded by the fact that we focus on minimally unsatisfiable formulas. One of the
strongest points of MSM, enumerating minimal correction subsets (MCSes, i.e.,
inclusion-minimal sets of clauses whose deletion renders the formula satisfiable)
in a preprocessing step, becomes trivial for minimally unsatisfiable formulas:
the MCSes are precisely all singletons by definition of minimal unsatisfiability.
Instead, we require that every axiom of the input formula is used in the proof.

On the other hand, we extend the encoding with powerful symmetry breaking
predicates. These predicates, explained in detail in Section 5, completely break all
symmetries resulting from different permutations of the same sequence of clauses,
and as such, they constitute a valuable theoretical contribution. Moreover, thanks
to this additional symmetry breaking, we were able to compute shortest proofs
of several formulas, for which MSM failed to produce an answer in hours of
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running time. This symmetry breaking uses further auxiliary variables, which
are introduced in Section 5.

Another novelty of our encoding is the capacity to reject a partially constructed
proof early based on a counting argument involving the number of times a clause
is used in resolution steps. We give the details at the end of this section.

variable meaning how many

pos[i, v] v ∈ Li O(ns)

neg[i, v] v ∈ Li O(ns)

piv[i, v] v is the pivot variable for the resolvent Li O(ns)

ax[i, j] Li = Aj O(ms)

isax[i] ∃j : Li = Aj O(s)

arc[i, j] Li is a premise of Lj O(s2)

upos[i, v] v occurs in at least one premise of Li O(ns)

uneg[i, v] v occurs in at least one premise of Li O(ns)

poscarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

negcarry[i, j, v] v ∈ Li and Li is a premise of Lj O(ns2)∗

Table 1. Variables used by the shortest-proof encoding. The symbol v is understood to
range over V , while the symbols i, j range over the set {1, . . . , s} with i < j, except for
ax[i, j], where j ranges over {1, . . . ,m} instead. The ∗-marked terms are asymptotically
dominating (m ≤ s).

In the following subsections, we list the clauses of the encoding, using complex
Boolean expressions where convenient, and implicitly assuming that those are
translated into a logically equivalent CNF in the natural way. Sometimes we
write pos|neg to save space, meaning that the surrounding expression should be
interpreted twice, with pos and neg substituted. We will also use cardinality
constraints of the form

∑
x∈X x ≤ k, which can be encoded using an arbitrary

CNF cardinality-constraint encoding. We use the sequential counter [19], which
seemed to perform best in our tests.

Definitions. First, we list all the clauses that provide definitions for the variables
ax, isax, {pos|neg}carry, the union of premises via u{pos|neg}, and piv.

∧

1≤i≤s
1≤j≤m

ax[i, j]→


 ∧

v∈Aj

pos[v, i]
∧

v∈Aj

neg[v, i]
∧

v 6∈var(Aj)

pos[v, i] ∧ neg[v, i]


 ,
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∧

1≤i≤s


isax[i] =

∨

1≤j≤m
ax[i, j]


 ,

∧

1≤i,j≤s;v∈V
{pos|neg}carry[i, j, v] = {pos|neg}[i, v] ∧ arc[i, j],

∧

1≤j≤s;v∈V

(
u{pos|neg}[j, v] =

∨

1≤i<j

{pos|neg}carry[i, j, v]

)
,

∧

1≤i≤s;v∈V
piv[i, v] = upos[i, v] ∧ uneg[i, v].

Essential Constraints. The final clause is empty:
∧

v∈V pos[i, v] ∧ neg[i, v].

Axioms have no incoming arcs:
∧

1≤i<j≤s isax[j]→ arc[i, j].

Clauses are non-tautological:
∧

1≤i≤s
v∈V

pos[i, v] ∨ neg[i, v].

Non-pivot literals are retained after resolution.
∧

1≤i≤s;v∈V
piv[i, v] ∧ u{pos|neg}[i, v]→ {pos|neg}[i, v]

No new literals are introduced into resolvents.∧

1≤i≤s;v∈V
isax[i] ∧ {pos|neg}[i, v]→ u{pos|neg}[i, v]

Every resolvent has a pivot:
∧

1≤i≤s

(
isax[i]→ ∨

v∈V piv[i, v]
)

, and the pivot is

unique:
∧

1≤i≤s
v 6=v′∈V

piv[i, v] ∨ piv[i, v′]. Every clause has exactly two premises3.

∧

3≤j≤s

∑

1≤i<j

arc[i, j] = 2

Redundant Constraints. If we search for the proof by iteratively incrementing
the bound s, we know that every clause must be used:

∧
1≤i<s

∨
i<j≤s arc[i, j].

Axioms, do not have pivots:
∧

1<i≤s
v∈V

isax[i]→ piv[i, v]. We require that the axioms

are placed at the beginning of the proof
∧

1≤i<s isax[i+ 1]→ isax[i], and in the

same order as they appear in the original formula
∧

1≤i≤s;1≤j1≤j2≤m ax[i, j2] ∨
ax[i+ 1, j1]. Hence, Aj can appear no later than as Lj , expressed by the unit

clauses ax[i, j] for 1 < i ≤ s and 1 ≤ j ≤ min(i− 1,m). When considering only
MU formulas, we can omit the above and directly place all axioms at the start in
a fixed order:

∧m
i=1 ax[i, i]

∧s
i=m+1 isax[i].

3 It would be enough to specify the at-most-two constraint here: the presence of at least
two premises for resolvents is already enforced by the existence of a pivot and because
the clauses are non-tautological: the pivot appears in both polarities in the union of
premises (upos and uneg), which could not happen with one premise. Nevertheless,
including both constraints appears to improve performance.
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Counting the In- and Out-Degrees. For every sequence of clauses P = L1, . . . , Ls

that constitutes a resolution proof we can define a directed acyclic graph (DAG)
G(P ) whose vertices are the clauses of P and which has the arcs (Li, Lk) and
(Lj , Lk) if Lk is a resolvent of Li and Lj . Using the redundant constraints from
above and assuming minimal unsatisfiability of F , we will show how one can place
an additional redundant constraint on the proof DAG structure. This feature
is based on the simple identity

∑
L∈G dout(L) =

∑
L∈G din(L), which holds in

every directed graph G. In a proof DAG G(P ) of size s, axioms have in-degree
0 and resolvents have in-degree 2, so

∑
L∈G(P ) din(L) = 2(s−m). At the same

time, every clause except for the last has out-degree at least 1. Therefore, at any
time of the search, with d′out(Li) ≥ 0 outgoing arcs already added to Li in the
partial DAG, it must hold that

s−1∑

i=1

max(d′out(Li), 1) ≤ 2(s−m) ⇐⇒
s−1∑

i=1

max(d′out(Li)− 1, 0) ≤ s− 2m+ 1.

We encode the latter inequality as a cardinality constraint. To capture the value of
max(d′out(Li)− 1, 0), we introduce the notion of an extra arc: for a clause Li ∈ P
with multiple outgoing arcs to clauses Lj1 , . . . , Ljk , j1 < · · · < jk, we say that
the arcs to Lj2 , . . . , Ljk are extra. 4 Hence, max(dout(Li)− 1, 0) is precisely the
number of extra outgoing arcs from Li. We define the variables exarc[i, j] whose
meaning is that arc[i, j] is an extra arc and enforce the cardinality constraint on
them.

∧

1≤i<j<k≤s
arc[i, j]∧arc[i, k]→ exarc[i, k];

∑

1≤i<j≤s
exarc[i, j] ≤ s−2m+1.

Since the cardinality constraint is unsatisfiable if the right-hand side is
negative, we additionally get that s ≥ 2m − 1; indeed, a shorter proof could
not use all m axioms. In other words, any proof of an MU formula must be
“read-at-least-once.”

5 Symmetry Breaking

Consider the proof DAG G(P ) of a resolution proof P . Any proof P is simply a
topological sort of its DAG G(P ). If two sequences P1 and P2 share the same
DAG G(P1) = G(P2) = G, then P1 and P2 are essentially the same proof. Our
aim now is to make sure that for each candidate proof DAG G, exactly one
topological sort is accepted by the encoding.

A directed acyclic graph can be topologically sorted by repeatedly picking
and deleting from G a source vertex, i.e., one with no incoming arcs, as the next
vertex in the resulting topologically sorted sequence. In the event that several
sources are available, any one can be picked, which is why a given DAG, in
general, has many topological sorts. We define a canonical topological sort of a

4 This includes symmetry breaking: the single non-extra arc is the first one.
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given DAG G in the following way. Let ≤∗ be an arbitrary total order on the
vertices of G. The canonical topological sort of G is the topological sort that
results from always picking the greatest source vertex under ≤∗. The idea for
this symmetry breaking is due to Schidler and Szeider [18] who introduced it in a
different context; Fichte et al. [5] further studied this technique under the name
LexTopSort.

To verify that a given sequence P is the canonical topological sort of G(P ),
we need to check that for every pair of vertices Li, Lj , i < j, if Lj was a source
already at the time when Li was inserted, then Lj ≤∗ Li. We can check whether
Lj was a source simultaneously with Li by checking that there is no arc (Lk, Lj)
with i ≤ k. This is the role of the variables sim[i, j].

We also need to reason about the order ≤∗ on clauses. We define the following
order on the literals x1 < x1 < · · · < xn < xn, and order clauses of the proof
lexicographically based on this order: Li <

∗ Lj if there is a literal l ∈ Lj such that
l 6∈ Li and {l′}∩Li = {l′}∩Lj for all l′ < l. We represent ≤∗ using the variables
equal[i, j, l], which say that the clauses Li and Lj are equal up to position l in
the ordering of the literals, and the corresponding constraints below.

∧

1≤i<j≤s
equal[i, j, x1] = (pos[i, x1] ⇐⇒ pos[j, x1])

∧

1≤i<j≤s; 1<k≤n
equal[i, j, xk] = equal[i, j, xk−1] ∧ (pos[i, xk] ⇐⇒ pos[j, xk])

∧

1≤i<j≤s; 1≤k≤n
equal[i, j, xk] = equal[i, j, xk] ∧ (neg[i, xk] ⇐⇒ neg[j, xk])

Definition of sim: for 1 ≤ i < s, sim[i, i+ 1] = arc[i, i+ 1], and

∧

1≤i<j−1≤s
sim[i, j] = sim[i+ 1, j] ∧ arc[i, j].

The following constraint enforces that the sequence is the canonical topological
sort (for resolvents only, the order of axioms is handled differently—see Section 4).

∧

1≤i<j≤s

(
sim[i, j] ∧ ax[i]

)
→ (pos[i, x1] ≥ pos[j, x1])

∧

1≤i<j≤s
1≤k≤n

(
sim[i, j] ∧ ax[i] ∧ equal[i, j, xk]

)
→ (neg[i, xk] ≥ neg[j, xk])

∧

1≤i<j≤s
1≤k<n

(
sim[i, j] ∧ ax[i] ∧ equal[i, j, xk]

)
→ (pos[i, xk+1] ≥ pos[j, xk+1])

∧

1≤i<j≤s
equal[i, j, xn]

The following theorem summarizes the properties of our encoding.
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Theorem 1. Let F be a propositional formula on n variables and m clauses and
let shorts(F ) be the formula defined above. Then the following statements hold:

1. the size of shorts(F ) is polynomial in max(n,m, s) (s can be exponential in
the input length);

2. shorts(F ) is satisfiable if and only if F has a resolution refutation of length
s in which every clause is used to derive the empty clause;

3. any model of shorts(F ) can naturally be interpreted as a sequence of clauses
P that constitutes a valid resolution proof of F ;

4. P is the canonical topological sort of G(P ).

Theorem 1 gives rise to a simple algorithm. Start with s = 1, and increment s by
one while shorts(F ) is unsatisfiable. As soon as shorts(F ) becomes satisfiable,
s is the length of a shortest resolution refutation of F , and the refutation itself
can be extracted from a model of shorts(F ). An improvement is possible for
MU formulas, by starting not at s = 1, but s = 2m− 1, as described in Section 4.

6 Experiments

In this section, we describe how we performed our computations. We will refer to
formulas and graphs interchangeably throughout this section, saying for instance
that a graph is minimally unsatisfiable. In such cases, it is understood that we
are using the correspondence between formulas and graphs sketched in Section 3,
and implicitly mean the corresponding object.

To generate Iso(RSMU(n,m)), we run a modified version of the genbg utility5

from the graph automorphism package Nauty [13], which enumerates isomorph-
free 2-graphs. The modification is that the graphs generated are not bipartite as
in genbg, but V1 induces a matching, i.e., the graph is a clause-literal graph as
defined in Section 2. We run genbg with the parameters -cAtd3:2 2n m, meaning
we are interested in connected (-c) triangle-free (-t) 2-graphs G = (V1 ] V2, E),
such that V1 has 2n vertices (the literals) whose minimum degree is 3 (every
literal should occur twice, plus the edge between the two literals of a variable),
and V2 has m vertices (the clauses) with minimum degree 2 (a unit clause would
imply a singular literal, so we can skip such graphs), and such that no two
vertices V2 have neighborhoods that are subsets of one another (-A). This gives
us a set S of graphs that contains Iso(RSMU(n,m)), and such that all graphs
in S represent formulas without tautological clauses (triangle-freeness), without
singular literals (degree bounds), and without subsumed clauses (-A). Hence
it remains to filter the output of genbg for saturated minimal unsatisfiability.
For that purpose we use CryptoMiniSAT [20] via its C API, in essentially the
natural way of testing for saturated minimal unsatisfiability, however, with some
technical optimizations worth mentioning.

5 We gratefully acknowledge the help of Brendan McKay, author of Nauty, who provided
a modification of genbg for our purpose.
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It turns out that for small values of n and m, the vast majority of graphs
generated are satisfiable6. This, in turn, means that the vast majority of time is
spent checking satisfiability, which happens to be relatively expensive due to the
need to compute an explicit representation of the clauses and to re-initialize the
solver for every graph from scratch. Upon realizing this limitation, we implemented
a carefully tuned and highly cache-performant brute-force satisfiability test that
uses Nauty’s data structures directly and simply checks every assignment, and
observed an orders-of-magnitude speed-up.

To check minimal unsatisfiability of a formula F , we construct F ′ = {C ∪
{xC} | C ∈ F } with the fresh selector variables xC , and solve all formulas F ′[τC ],
where τC sets xC to 0 and all other xC′ to 1, via assumptions.

If F passes the minimal unsatisfiability test, we build F ′′ = F ′ ∪ { {`, x`} |
` ∈ lit(F ) } by adding the extra clauses to F ′, which is already loaded in the SAT
solver, and test for saturation by solving the formulas F ′′[τC,`], where τC,` sets
xC and x` to 0 (turns off the clause C and turns on the unit clause {`}) and all
other auxiliary variables to 1, again via assumptions.

Once we have generated Iso(RSMU(n,m)), which is equal to Iso(SMU(n,m))
for values of n,m where MU(n− 1,m− 1) is empty, we use Lemma 4 to compute
SMU(n+ 1,m+ 1). Whenever we have computed SMU(n+ 1,m+ 1), we simply
run our encoding on every formula, incrementally increasing the proof length
bound s, and compute all shortest proofs.

We implemented the encoding and the iterative search for a shortest proof in
Python using the PySAT framework [9]. We concluded from our initial tests that
among the SAT solvers available in PySAT, CaDiCaL 7 performed best, and we
decided to stick with it.

Table 2 lists the length of the longest shortest proof required by an SMU(n,m)
formula, and, by taking the maximum in each column, also values of hm. In
particular, we obtain the first ten resolution hardness numbers:

(hm)m≥1 = 1, 3, 5, 7, 10, 13, 16, 19, 22, 26, . . .

We observe the interesting phenomenon that all computed formulas attaining
the maximum hardness hm are regular.

It is known that every MU(n,m) formula has a proof of length at most
2m−n−1n+m [11, Section 11.3], and, along with the existence of formulas which
require exponentially long proofs, this implies that maximum hardness cannot
forever be attained by formulas of any bounded deficiency m− n. Our compu-
tations reveal that m = 10 is the tipping point where formulas of deficiency 2
“drop out of the race,” as there is no longer a hardest formula of deficiency 2, see
Table 2. Up to isomorphism, there are exactly three hardest formulas for m = 10,
all of which are of deficiency 4. Figure 1 shows the clause-literal graphs of these
three formulas.

Our encoding [16] and our catalog of SMU formulas [15] are publicly available.

6 As an example, for n = 5 and m = 9, a total of 9356316116 out of the 9360503942
generated graphs were satisfiable. The proportion was similar for other parameters.

7 https://fmv.jku.at/cadical
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n\m 1 2 3 4 5 6 7 8 9 10

0 1 - - - - - - - - -

1 - 3 - - - - - - - -

2 - - 5 7(1) - - - - - -

3 - - - 7 10(1) 11(3) 13(1) 15(1) - -

4 - - - - 9 13(1) 15(1) 19(1) 20(1) 21(5)

5 - - - - - 11 16(1) 18(3) 22(1) 25(1)

6 - - - - - - 13 19(1) 22(3) 26(3)

7 - - - - - - - 15 22(1) 25(5)

8 - - - - - - - - 17 25(1)

9 - - - - - - - - - 19

Table 2. Values of h(H(n,m)), and in parenthesis the number of formulas in
RSMU(n,m), up to isomorphism, that require resolution proofs of length h(H(n,m)).
For all 3 ≤ n ≤ 9 and n + 2 ≤ m ≤ 10, we found H(n,m) ⊆ RSMU(n,m), except for
H(7, 10) which also contains 19 singular formulas up to isomorphism. By Proposition 2,
h(H(m− 1,m)) = 2m− 1 and so, no computation is necessary. By Lemma 6, there are
no minimally unsatisfiable formulas in the areas marked by a hyphen.

Fig. 1. Clause-literal graphs of the three hardest formulas with 10 clauses.

7 Conclusion

We conducted an extensive computational investigation into resolution hardness.
First, we developed theoretical foundations that allowed us to pinpoint classes of
formulas of maximum resolution hardness. Then, using a tight graph represen-
tation of formulas and carefully tuned generation procedures, we computed all
candidates for hardest formulas for up to ten clauses. With this information, and
using a SAT encoding for the computation of shortest resolution proofs targeted
towards minimally unsatisfiable formulas and with powerful novel symmetry
breaking, we calculated the first ten resolution hardness numbers. Our results
indicate that regular saturated minimally unsatisfiable formulas achieve the
highest hardness. It remains as an interesting theoretical question whether the
hardest formulas are always regular.
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