
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-20-006
June 2020

A Faster Algorithm for
PropositionalModel
Counting Parameterized by
Incidence Treewidth

Friedrich Slivovsky and Stefan Szeider

This is the authors’ copy of a paper that will appear in the proceedings of SAT’20, the
23rd International Conference on Theory and Applications of Satisfiability Testing.
www.ac.tuwien.ac.at/tr



A Faster Algorithm for Propositional Model
Counting Parameterized by Incidence

Treewidth?

Friedrich Slivovsky and Stefan Szeider

TU Wien, Vienna, Austria
{fs,sz}@ac.tuwien.ac.at

Abstract. The propositional model counting problem (#SAT) is known
to be fixed-parameter-tractable (FPT) when parameterized by the width
k of a given tree decomposition of the incidence graph. The running time
of the fastest known FPT algorithm contains the exponential factor of
4k. We improve this factor to 2k by utilizing fast algorithms for comput-
ing the zeta transform and covering product of functions representing
partial model counts, thereby achieving the same running time as FPT
algorithms that are parameterized by the less general treewidth of the
primal graph. Our new algorithm is asymptotically optimal unless the
Strong Exponential Time Hypothesis (SETH) fails.

1 Introduction

Propositional model counting (#SAT) is the problem of determining the number
of satisfying truth assignments of a given propositional formula. The problem
arises in several areas of AI, in particular in the context of probabilistic reasoning
[2,15]. #SAT is #P-complete [18], even for 2-CNF Horn formulas, and it is
NP-hard to approximate the number of models of a formula with n variables
within 2n

1−ε

, for any ε > 0 [15].
Since syntactic restrictions do not make the problem tractable, research

generally focused on structural restrictions in terms of certain graphs associated
with the input formula, which is often assumed to be in CNF. Popular graphical
models are the primal graph (vertices are the variables, two variables are adjacent
if they appear together in a clause), the dual graph (vertices are the clauses, two
clauses are adjacent if they share a variable), and the incidence graph (vertices
are variables and clauses, a variable and a clause are adjacent if the variable
occurs in the clause). The structural complexity of a graph can be restricted in
terms of the fundamental graph invariant treewidth [14] By taking the treewidth
of the primal, dual, or incidence graph one obtains the primal treewidth, the
dual treewidth, and the incidence treewidth of the formula, respectively. If we
consider CNF formulas for which any of the three parameters is bounded by a

? Supported by the Austrian Science Fund (FWF) under grant P32441 and the Vienna
Science and Technology Fund (WWTF) under grants ICT19-060 and ICT19-065.

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



constant, the number of models can be computed in polynomial time. Indeed, the
order of the polynomial is independent of the treewidth bound, and so #SAT is
fixed-parameter tractable (FPT) when parameterized by primal, dual or incidence
treewidth.

Incidence treewidth is considered the most general parameter among the three,
as any formula of primal or dual treewidth k has incidence treewidth at most k+1.
However, one can easily construct formulas of constant incidence treewidth and
arbitrarily large primal and dual treewidth. Known model counting algorithms
based on incidence treewidth have to pay for this generality with a significant
larger running time: Whereas the number of models for formulas of primal or
dual treewidth k can be counted in time1 O∗(2k), the best know algorithm for
formulas of incidence treewidth k takes time O∗(4k).2 This discrepancy cannot
be accounted for by a loose worst-case analysis, but is caused by the actual size
of the dynamic programming tables constructed by the algorithms.

In this paper, we show that algebraic techniques can be used to bring down
the running time to O∗(2k). Specifically, we prove that the most time-consuming
steps can be expressed as zeta transforms and covering products of functions
obtained from partial model counts. Since there are fast algorithms for computing
these operations [3], we obtain the desired speedup.

2 Preliminaries

Treewidth. Let G = (V (G), E(G)) be a graph, T = (V (T ), E(T )) be a tree, and
χ be a labeling of the vertices of T by sets of vertices of G. We refer to the
vertices of T as “nodes” to avoid confusion with the vertices of G. The tuple
(T, χ) is a tree decomposition of G if the following three conditions hold:

1. For every v ∈ V (G) there exists a node t ∈ V (T ) such that v ∈ χ(t).
2. For every vw ∈ E(G) there exists a node t ∈ V (T ) such that v, w ∈ χ(t).
3. For any three nodes t1, t2, t3 ∈ V (T ), if t2 lies on the path from t1 to t3, then
χ(t1) ∩ χ(t3) ⊆ χ(t2).

The width of a tree decomposition (T, χ) is defined by maxt∈V (T ) |χ(t)| − 1. The
treewidth tw(G) of a graphG is the minimum width over all its tree decompositions.
For constant k, there exists a linear-time algorithm that checks whether a given
graph has treewidth at most k and, if so, outputs a tree decomposition of
minimum width [5]. However, the huge constant factor in the runtime of this
algorithm makes it practically infeasible. For our purposes, it suffices to obtain
tree decompositions of small but not necessarily minimal width. There exist

1 The O∗ notation omits factors that are polynomial in the input size [19].
2 Alternatively, one can convert a formula with incidence treewidth k into a 3-CNF

formula that has the same number of models and dual treewidth at most 3(k + 1), or
an equisatisfiable 3-CNF formula of primal treewidth at most 3(k + 1) [17]. Applying
one of these transformations followed by an algorithm for the corresponding width
parameter results in an overall running time of O∗(8k).

2

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



several powerful tree decomposition heuristics that construct tree decompositions
of small width for many cases that are relevant in practice [4,12], and the
single-exponential FPT algorithm by Bodlander et al. [6] produces a factor-5
approximation of treewidth.

In this paper we also consider a particular type of tree decompositions. The
triple (T, χ, r) is a nice tree decomposition of G if (T, χ) is a tree decomposition,
the tree T is rooted at node r, and the following three conditions hold [11]:

1. Every node of T has at most two children.
2. If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in that

case we call t a join node.
3. If a node t of T has exactly one child t′, then one of the following holds:

(a) |χ(t)| = |χ(t′)|+ 1 and χ(t′) ⊂ χ(t); in that case we call t an introduce
node.

(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget node.

It is known that one can transform efficiently any tree decomposition of
width k of a graph with n vertices into a nice tree decomposition of width at
most k and at most 4n nodes [11, Lemma 13.1.3].

Propositional Formulas. We consider propositional formulas F in conjunctive
normal form (CNF) represented as set of clauses. Each clause in F is a finite
set of literals, and a literal is a negated or unnegated propositional variable.
For a clause C we denote by var(C) the set of variables that occur (negated or
unnegated) in C; for a formula F we put var(F ) =

⋃
C∈F var(C). The size of a

clause is its cardinality. A truth assignment is a mapping τ : X → {0, 1} defined
on some set X of variables. We extend τ to literals by setting τ(¬x) = 1− τ(x)
for x ∈ X. A truth assignment τ : X → {0, 1} satisfies a clause C if for some
variable x ∈ var(C) ∩X we have x ∈ C and τ(x) = 1, or ¬x ∈ C and τ(x) = 0.
An assignment satisfies a set F of clauses if it satisfies every clause in F . For
a formula F , we call a truth assignment τ : var(F )→ {0, 1} a model of F if τ
satisfies F . We denote the number of models of F by #(F ). The propositional
model counting problem #SAT is the problem of computing #(F ) for a given
propositional formula F in CNF.

Incidence Treewidth. The incidence graph G∗(F ) of a CNF formula F is the
bipartite graph with vertex set F ∪var(F ); a variable x and a clause C are joined
by an edge if and only if x ∈ var(C). The incidence treewidth tw∗(F ) of a CNF
formula F is the treewidth of its incidence graph, that is tw∗(F ) = tw(G∗(F )).

Definition 1 (Zeta and Möbius Transforms). Let V be a finite set and let
f : 2V → Z be a function. The zeta transform ζf of f is defined as

(ζf)(X) =
∑

Y⊆X
f(Y ), (1)

and the Möbius transform µf of f is given by

(µf)(X) =
∑

Y⊆X
(−1)|X\Y |f(Y ). (2)

3

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



Theorem 1 (Kennes [10]). Let V be an k-element set and let f : 2V → Z be
a function. All values of ζf and µf can be computed using O(2kk) arithmetic
operations.

Definition 2. The covering product of two functions f, g : 2V → Z is a function
(f ∗c g) : 2V → Z such that for every Y ⊆ V ,

(f ∗c g)(Y ) =
∑

A∪B=Y

f(A)g(B). (3)

The covering product can be computed using zeta and Möbius transforms by
applying the following two results (see Aigner [1]).

Lemma 1. Given functions f, g : 2V → Z, the zeta transform of the covering
product of f and g is the pointwise product of the zeta-transformed arguments.
That is, for each X ⊆ V

ζ(f ∗c g)(X) = (ζf(X))(ζg(X)).

Theorem 2 (Inversion formula). Let f : 2V → Z. Then for every X ⊆ V

f(X) = (µζf)(X) = (ζµf)(X).

3 Faster Model Counting for Incidence Treewidth

Samer and Szeider presented an algorithm for #SAT with a running time
of O∗(4k) [16], where k is the width of a given tree decomposition of the incidence
graph. In this section, we are going to show how to improve this to O∗(2k).

Their algorithm proceeds by bottom-up dynamic programming on a nice tree
decomposition, maintaining tables that contain partial solution counts for each
node. For the remainder of this section, let F be an arbitrary but fixed CNF
formula, and let (T, χ, r) be a nice tree-decomposition of the incidence graph
G∗(F ) that has width k. For each node t of T , let Tt denote the subtree of T
rooted at t, and let Vt =

⋃
t′∈V (Tt)

χ(t′) denote the set of vertices appearing in
bags of Tt. Further, let Ft denote the set of clauses in Vt, and let Xt denote
the set of all variables in Vt. We also use the shorthands χc(t) = χ(t) ∩ F and
χv(t) = χ(t) ∩ var(F ) for the set of clauses and the set of variables in χ(t),
respectively. Let t be a node of T . For each assignment α : χv(t)→ {0, 1} and
subset A ⊆ χc(t), we define N(t, α,A) as the set of assignments τ : Xt → {0, 1}
for which the following two conditions hold:

1. τ(x) = α(x) for all variables x ∈ χv(t).
2. A is exactly the set of clauses in Ft that are not satisfied by τ .

We represent the values of n(t, α,A) = |N(t, α,A)| for all α : χv(t)→ {0, 1}
and A ⊆ χc(t) by a table Mt with |χ(t)| + 1 columns and 2|χ(t)| rows. The
first |χ(t)| columns of Mt contain Boolean values encoding α(x) for variables

4

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



x ∈ χv(t), and membership of C in A for clauses C ∈ χc(t). The last entry of
each row contains the integer n(t, α,A).

Samer and Szeider showed that the entries of the table Mt can be efficiently
computed for each node t. More specifically, they showed how Mt can be obtained
for leaf nodes t, and how Mt can be computed from the tables for the child nodes
of introduce, forget, and join nodes t. Since the running time for join and variable
introduce nodes are the bottleneck of the algorithm, we summarize the results
concerning correctness and running time for the remaining node types as follows.

Lemma 2 (Samer and Szeider [16]). If t ∈ T is a leaf node, or a forget or
clause introduce node with child t′ such that Mt′ has already been computed, the
table Mt can be obtained in time 2k|ϕ|O(1).

The table entries for a join node can be computed as a sum of products from
tables of its child nodes.

Lemma 3 (Samer and Szeider [16]). Let t ∈ T be a join node with chil-
dren t1, t2. For each assignment α : χv(t)→ {0, 1} and set A ⊆ χc(t) we have

n(t, α,A) =
∑

A1,A2⊆χc(t),
A1∩A2=A

n(t1, α,A1) n(t2, α,A2). (4)

A straight-forward algorithm for computing this sum requires an arithmetic
operation for each pair (A1, A2) where A1 ⊆ χc(t1), A2 ⊆ χc(t2), and thus
2k2k = 4k operations in the worst case. By using a fast algorithm for the covering
product, we can significantly reduce the number of arithmetic operations and
thus the running time. The key observation is that the sum of products in (4)
can be readily expressed as a covering product (3).

Lemma 4. Let t be a join node of T with children t1, t2 and let α : χv(t)→ {0, 1}
be a truth assignment. For i ∈ {1, 2} let fi : 2χc(ti) → Z be the function given
by fi(A) := n(ti, α, χc(t) \ A). Then n(t, α, χc(t) \ A) = (f1 ∗c f2)(A) for each
subset A ⊆ χc(t).

Proof. For S ⊆ χc(t), let Sc = χc(t) \ S. We have

(f1 ∗c f2)(A) =
∑

A1,A2⊆χc(t)
A1∪A2=A

f1(A1) f2(A2)

=
∑

A1,A2⊆χc(t)
Ac

1∩Ac
2=A

c

n(t1, α,A
c
1) n(t2, α,A

c
2) = n(t, α,Ac).

ut
For variable introduce nodes the table entry for each assignment and subset

of clauses can be computed as a sum over table entries of the child table.

5

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



Lemma 5 (Samer and Szeider [16]). Let t be an introduce node with child t′

such that χ(t) = χ(t′) ∪ {x} for a variable x. Then, for each truth assignment
α : χv(t

′)→ {0, 1} and set A ⊆ χc(t), we have

n(t, α ∪ {(x, 0)}, A) =





0 if ¬x ∈ C for some C ∈ A;

∑
B′⊆B

n(t′, α,A ∪B′) otherwise, where
B = {C ∈ χc(t) | ¬x ∈ C};

(5)

n(t, α ∪ {(x, 1)}, A) =





0 if x ∈ C for some C ∈ A;

∑
B′⊆B

n(t′, α,A ∪B′) otherwise, where
B = {C ∈ χc(t) | x ∈ C}.

(6)

A simple approach is to go through all 2k assignments α and subsets A and, if
necessary, compute the sums in (5) and (6). Since there could be up to 2k subsets
to sum over, this again requires 4k arithmetic operations in the worst case. The
following lemma observes that we can instead use the zeta transform (1).

Lemma 6. Let t be an introduce node with child t′ such that χ(t) = χ(t′)∪ {x}
for a variable x. Define f(S) = n(t′, α, S) for S ⊆ χc(t

′). Then, for each truth
assignment α : χv(t

′)→ {0, 1} and set A ⊆ χc(t), we have

n(t, α ∪ {(x, 0)}, A) =





0 if ¬x ∈ C for some C ∈ A;

(ζf)(A ∪B)− (ζf)(A)
otherwise, where
B = {C ∈ χc(t) | ¬x ∈ C};

(7)

n(t, α ∪ {(x, 1)}, A) =





0 if x ∈ C for some C ∈ A;

(ζf)(A ∪B)− (ζf)(A)
otherwise, where
B = {C ∈ χc(t) | x ∈ C}.

(8)

Proof. We can rewrite the sums in (5) and (6) as

∑

A⊆S⊆A∪B
f(S) =

∑

S⊆A∪B
f(S)−

∑

S⊆A
f(S) = (ζf)(A ∪B)− (ζf)(A).

ut
By Theorem 1, the zeta and Möbius transform of a function f : 2V → Z can

be computed using O(2kk) arithmetic operations, where k = |V | is the size of the
underlying set. In conjunction with Lemma 1 and Lemma 2, this lets us compute
the covering product of two functions f, g : 2V → Z with O(2kk) operations.

How this translates into running time depends on the choice of computational
model. Since the model count of a formula can be exponential in the number of
variables, it is unrealistic to assume that arithmetic operations can be performed
in constant time. Instead, we adopt a random access machine model where
two n-bit integers can be added, subtracted, and compared in time O(n), and
multiplied in time O(n log n) [8]. For the purposes of proving a bound of O∗(2k),
it is sufficient to show that the bit size of integers obtained as intermediate results
while computing the zeta and Möbius transforms is polynomially bounded by

6

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



the number of variables in the input formula. To verify that this is the case, we
present the dynamic programming algorithms used to efficiently compute these
transforms [3], following the presentation by Fomin and Kratsch [7].

Theorem 3. Let V be a k-element set and let f : 2V → Z be a function that can
be evaluated in time O(1) and whose range is contained in the interval (−2N , 2N ).
All values of ζf and µf can be computed in time 2k(k +N)O(1).

Proof. Let V = {1, . . . , k}. We compute intermediate values

ζj(X) =
∑

Y⊆X∩{1,...,j}
f(Y ∪ (X ∩ {j + 1, . . . , k})),

for j = 0, . . . , k. Note that ζk(X) = (ζf)(X). The values ζj can be computed as

ζj(X) =

{
ζj−1(X) when j /∈ X,

ζj−1(X) + ζj−1(X \ {j}) when j ∈ X.

For the Möbius transform, we compute intermediate values

µj(X) =
∑

Y⊆X∩{1,...,j}
(−1)|(X∩{1,...,j})\Y |f(Y ∪ (X ∩ {j + 1, . . . , k})).

Again we have µk(X) = (µf)(X), and the values µj can be computed as

µj(X) =

{
µj−1(X) when j /∈ X,

µj−1(X)− µj−1(X \ {j}) when j ∈ X.

In both cases, this requires k arithmetic operations for each set X ⊆ V , and the
intermediate values are contained in the interval (−2k2N , 2k2N ). ut
Corollary 1. Let V be an k-element set and let f, g : 2V → Z be functions
that can be evaluated in time O(1) and whose range is contained in the inter-
val (−2N , 2N ). All values of f ∗c g can be computed in time 2k(k +N)O(1).

Having obtained these bounds on the time required to compute the zeta transform
and the covering product, we can now state improved time bounds for obtaining
the entries of the tables Mt of join and variable introduce nodes t.

Lemma 7. The table Mt for a join node t ∈ T can be computed in time O∗(2k)
given the tables Mt1 and Mt2 of its child nodes t1 and t2.

Proof. Let p = |χv(t)| and q = |χc(t)|. For each assignment α : χv(t) → {0, 1},
we perform the following steps. For i ∈ {1, 2}, we first modify the table Mti

by flipping the values encoding membership of a clause C in the set A so
as to obtain a table M ′i containing the values fi(A) := n(ti, α, χc(t) \ A) for
each A ⊆ χc(t). Clearly, this can be done in time O∗(2p). By Lemma 4, the
values (f1 ∗c f2)(A) correspond to n(t, α, χc(t) \A). Each entry of the tables Mti

represents a partial model count that cannot exceed 2n, so we can compute all
values of the covering product f1∗cf2 in time 2q(q+n)O(1) by Corollary 1, where n
is the number of variables. Since q ≤ n this is in O∗(2q). There are at most 2p

assignments α : χv(t)→ {0, 1}, so the overall running time is in O∗(2k). ut

7

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



Lemma 8. The table Mt for a variable introduce node t ∈ T can be computed
in time O∗(2k) given the table Mt′ of its child node t′.

Proof. As before, let p = |χv(t′)| and q = |χc(t′)|. For each truth assignment
α : χv(t

′) → {0, 1}, we proceed as follows. We compute the value of the zeta
transform (ζf)(A) for all subsets A ⊆ χc(t′). Again, each entry of Mt′ represents a
partial model count that is bounded by 2n, so we can do this in time 2q(q+n)O(1)

by Theorem 1. Since q ≤ n this is in O∗(2q). Then, we iterate over all A ⊆ χc(t′)
and set the entries Mt(α,A) based on (7) and (8), using the values of ζf . This
can again be done in time O∗(2q) and is correct by Lemma 6. The number of
assignments α : χv(t)→ {0, 1} is 2p, so the overall running time is in O∗(2k). ut

Theorem 4. Given a CNF formula F and a nice tree decomposition of G∗(F ),
we can compute #(F ) in time O∗(2k), where k is the width of the decomposition.

Proof. Let (T, χ, r) be a nice tree decomposition of the incidence graph of F . We
compute the tables Mt for all nodes t of T , starting from the leaf nodes of T . By
Lemma 2, Lemma 7, and Lemma 8, each table can be computed in time O∗(2k).
We can compute #(F ) =

∑
α:χv(r)→{0,1} n(r, α, ∅) at the root r. ut

4 Discussion

The space requirements of the algorithm remain unchanged by the proposed
improvements. Each table Mt has at most 2k+1 entries, and each entry requires
up to n bits. By keeping as few tables in memory as possible and discarding
tables whenever they are no longer needed, no more than b1 + log2(N + 1)c tables
need to be stored in memory at any point, where N is the number of nodes in
the tree decomposition [16, Proposition 3].

Let sr := inf{ δ | there exists an O∗(2δn) algorithm that decides the satisfia-
bility of n-variable r-CNF formulas with parameter n } and let s∞ := limr→∞ sr.
Impagliazzo et al. [9] introduced the Strong Exponential Time Hypothesis (SETH),
which states that s∞ = 1. SETH has served as a very useful hypothesis for estab-
lishing tight bounds on the running time for NP-hard problems [13]. For instance,
an immediate consequence of the SETH is that the satisfiability of an n-variable
CNF formula cannot be solved in time O∗((2 − ε))n) for any ε > 0. However,
for the incidence graph of an n-variable CNF formula F = {C1, . . . , Cm} we
can always give a tree decomposition (T, χ) of width n (recall that the width
of a tree decomposition is the size of its largest bag minus one) by taking as
T a star with center t and leaves t1, . . . , tm, and by putting χ(t) = var(F ) and
χ(ti) = var(F ) ∪ {Ci}, for 1 ≤ i ≤ n. Thus, if the bound in Theorem 4 could
be improved from O∗(2k) to O∗((2− ε)k), we would have an O∗((2− ε)n) SAT-
algorithm, and hence a contradiction to the SETH. We can, therefore, conclude
that Theorem 4 is tight under the SETH.

8

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



Acknowledgements

We thank Andreas Björklund for the suggestion of using covering products to
improve the running time of SAT algorithms for instances of bounded incidence
treewidth.

References

1. Aigner, M.: Combinatorial theory. Springer Science & Business Media (2012)

2. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’03). pp. 340–351 (2003)

3. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA,
June 11-13, 2007. pp. 67–74. Assoc. Comput. Mach., New York (2007)

4. Bodlaender, H.L.: Discovering treewidth. In: Proceedings of the 31st Conference
on Current Trends in Theory and Practice of Computer Science (SOFSEM’05).
Lecture Notes in Computer Science, vol. 3381, pp. 1–16. Springer Verlag (2005)

5. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

6. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk,
M.: A ckn 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–
378 (2016)

7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer Verlag (2010)

8. Harvey, D., Van Der Hoeven, J.: Integer multiplication in time O(n logn). HAL
archives ouvertes (hal-02070778) (2019)

9. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. of Computer and System Sciences 63(4), 512–530 (2001)

10. Kennes, R.: Computational aspects of the mobius transformation of graphs. IEEE
Trans. Systems, Man, and Cybernetics 22(2), 201–223 (1992)

11. Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin
(1994)

12. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational
experiments. Electronic Notes in Discrete Mathematics 8 (2001)

13. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the European Association for Theoretical Computer
Science 105, 41–72 (2011)

14. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

15. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2),
273–302 (1996)

16. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

17. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J.
of Computer and System Sciences 76(2), 103–114 (2010)

18. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

9

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06



19. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Combina-
torial Optimization - Eureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th
International Workshop, Aussois, France, March 5-9, 2001, Revised Papers. Lecture
Notes in Computer Science, vol. 2570, pp. 185–208 (2003)

10

Tec
hn
ica
lRe
po
rtA
C-T
R-2
0-0
06


