
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-20-005
June 2020

Threshold Treewidth and
HypertreeWidth

Robert Ganian, André Schidler,
Manuel Sorge, and Stefan Szeider

This is the authors’ copy of a paper that will appear in the proceedings of IJCAI-
PRICAI’20, the 29th International Joint Conference on Artificial Intelligence and the
17th Pacific Rim International Conference on Artificial Intelligence.
www.ac.tuwien.ac.at/tr



Threshold Treewidth and Hypertree Width
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Abstract
Treewidth and hypertree width have proven to be
highly successful structural parameters in the con-
text of the Constraint Satisfaction Problem (CSP).
When either of these parameters is bounded by a
constant, then CSP becomes solvable in polynomial
time. However, here the order of the polynomial
in the running time depends on the width, and this
is known to be unavoidable; therefore, the problem
is not fixed-parameter tractable parameterized by
either of these width measures. Here we introduce
an enhancement of tree and hypertree width through
a novel notion of thresholds, allowing the associated
decompositions to take into account information
about the computational costs associated with solv-
ing the given CSP instance. Aside from introducing
these notions, we obtain efficient theoretical as well
as empirical algorithms for computing threshold
treewidth and hypertree width and show that these
parameters give rise to fixed-parameter algorithms
for CSP as well as other, more general problems.
We complement our theoretical results with experi-
mental evaluations in terms of heuristics as well as
exact methods based on SAT/SMT encodings.

1 Introduction
The utilization of structural properties of problem instances is
a key approach to tractability of otherwise intractable problems
such as Constraint Satisfaction, Sum-of-Products, and other
hard problems that arise in AI applications [Dechter, 1999;
Gottlob et al., 2002a]. The idea is to represent the instance
by a (hyper)graph and to exploit its decomposability to guide
dynamic programming methods for solving the problem. This
way, one can give runtime guarantees in terms of the decompo-
sition width. The most successful width measures for graphs
and hypergraphs are treewidth and hypertree width, respec-
tively [Gottlob et al., 2014].
Treewidth. The Constraint Satisfaction Problem (CSP) can
be solved in time dk · nO(1) for instances whose primal
graph has n vertices, treewidth k, and whose the variables
range over a domain of size d [Dechter, 1999; Freuder, 1982].
If d is a constant, then this running time gives rise to fixed-
parameter tractability w.r.t. the parameter treewidth [Gottlob

et al., 2002b]. However, without such a constant bound on the
domain size, it is known that CSP it W[1]-hard [Samer and
Szeider, 2010] and hence not fixed-parameter tractable.

In the first part of this paper, we propose a new framework
that allows fixed-parameter tractability even if some variables
range over large domains. The idea is to exploit tree decompo-
sitions with the special property that each decomposition bag
contains only a few (say, at most c) such high-domain variables
whose domain size exceeds a given threshold d. This results
in a new parameter for CSP that we call the threshold-d load-c
treewidth. We show that finding such tree decompositions
is fixed-parameter approximable, employing a replacement
method which allows us to utilize state-of-the-art algorithms
for computing treewidth such as Bodlaender et al.’s approx-
imation [2016]. We then show that for any fixed c and d,
CSP parameterized by threshold-d load-c treewidth is fixed-
parameter tractable, and that the same tractability result can
be lifted to other highly versatile problems such as the Sum-
of-Products problem [Dechter, 1999; Koller and Friedman,
2009], Valued CSP [Schiex et al., 1995; Živný, 2012], and the
Integer Programming (IP) problem [Schrijver, 1986].

Hypertree width. Bounding the treewidth of a CSP in-
stance automatically bounds the arity of its constraints. More
general structural restrictions that admit large-arity constraints
can be formulated in terms of the hypertree width of the
constraint hypergraph. It is known that for any constant k,
hypertree decompositions of width at most k can be found in
polynomial time, and that CSP instances of hypertree width k
can be solved in polynomial time. If k is a parameter and not
constant, then both problems become W[1]-hard and hence
not fixed-parameter tractable. We show that also in the context
of hypertree width, a more fine-grained parameter, which we
call threshold-d load-c hypertree width, can be used to achieve
fixed-parameter tractability. Here we distinguish between
heavy and light hyperedges, where a hyperedge is light if the
corresponding constraint is defined by a constraint relation
that contains at most d tuples. Each bag of a threshold-d
load-c hypertree decomposition of width k must admit an
edge cover that consists of at most k hyperedges, where at
most c of them are heavy. We show that for any fixed c and k,
we can determine for a given hypergraph in polynomial time
whether it admits a hypertree decomposition of width k where
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the cover for each bag consists of at most c heavy hyperedges1.
We further show that for any fixed c and d, given a width-k
threshold-d load-c hypertree decomposition of a CSP instance,
checking its satisfiability is fixed-parameter tractable when
parameterized by the width k.
Practical algorithms and experiments. The most popular
practical algorithms for finding treewidth and hypertree de-
compositions are based on characterizations in terms of elimi-
nation orderings. We show how these characterizations can be
extended to capture threshold treewidth and threshold hyper-
tree width. These then allow us to obtain practical algorithms
that we test on large sets of graphs and hypergraphs originat-
ing from real-world applications. In particular, we propose
and test several variants of the well-known min-degree heuris-
tics, as well as exact methods based on SMT-encodings for
computing threshold tree and hypertree decompositions. Our
experimental findings are significant, as they show that by opti-
mizing decompositions towards low load values we can obtain
in many cases decompositions that are expected to perform
much better in the dynamic programming phase than ordinary
decompositions that are oblivious to the weight of vertices or
hyperedges.
Related work. There are several reports on approaches for
tuning greedy treewidth heuristics to improve the performance
of particular dynamic programming (DP) algorithms. For
instance, Kask et al. [2011] optimized the state space of graph-
ical models for probabilistic reasoning, which corresponds in
our setting to minimizing the product of the domain sizes of
variables that appear together in a bag. Similar heuristics were
suggested by Bachoore and Bodlaender [2007] for treewidth.
Abseher et al. [2017] optimized heuristic tree decompositions
w.r.t. the sizes of DP tables when solving individual combinato-
rial problems such as 3-Colorability or Minimum Dominating
Set. Scarcello et al. [2007] presented a general framework
for minimizing the weight of hypertree decompositions of
bounded width. We discuss in Sections 3 and 4 how the above
notions give rise to complexity parameters for CSP and how
they compare to threshold treewidth and hypertree width.

2 Preliminaries
For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i]∪{0}.
We let N be the set of natural numbers, and N0 the set N∪{0}.
We refer to Diestel [2012] for standard graph terminology.

Similarly to graphs, a hypergraph H is a pair (V,E) where
V or V (H) is its vertex set and E or E(H) ⊆ 2V is its set
of hyperedges. An edge cover of S ⊆ V (in the hypergraph
(V,E)) is a set F ⊆ E such that for every v ∈ S there is some
e ∈ F with v ∈ e. The size of an edge cover is its cardinality.
For a (hyper)graph G, we will sometimes use V (G) to denote
its vertex set and E(G) to denote the set of its (hyper)edges.
Parameterized complexity. In parameterized algorith-
mics [Downey and Fellows, 2013; Niedermeier, 2006], the
running-time of an algorithm is studied with respect to a pa-
rameter k ∈ N0 and input size n. The basic idea is to find
a parameter that describes the structure of the instance such

1This is not fixed-parameter tractable for parameter k, as already
without the c restriction, the problem is W[2]-hard.

that the combinatorial explosion can be confined to this pa-
rameter. In this respect, the most favorable complexity class
is FPT (fixed-parameter tractable), which contains all prob-
lems that can be decided by an algorithm running in time
f(k) · nO(1), where f is a computable function. Algorithms
with this running-time are called fixed-parameter algorithms.
Treewidth. A tree decomposition T of a (hyper)graph G is
a pair (T, χ), where T is a tree and χ is a function that assigns
each tree node t a set χ(t) ⊆ V (G) of vertices such that the
following conditions hold:
(P1) For every (hyper)edge e ∈ E(G) there is a tree node t

such that e ⊆ χ(t).
(P2) For every vertex v ∈ V (G), the set of tree nodes t with

v ∈ χ(t) induces a non-empty subtree of T .
The sets χ(t) are called bags of the decomposition T , and χ(t)
is the bag associated with the tree node t. If G is a graph, then
the width of a tree decomposition (T, χ) is the size of a largest
bag minus 1. The treewidth of a graph G, denoted by tw(G),
is the minimum width over all tree decompositions of G.
Hypertree width. A generalized hypertree decomposition
of a hypergraph H is a triple D = (T, χ, λ) where (T, χ) is a
tree decomposition of H and λ is function mapping each t ∈
V (T ) to an edge cover λ(t) ⊆ E(H) of χ(t). The width of D
is the size of a largest edge cover λ(t) over all t ∈ V (T ), and
the generalized hypertree width ghtw(H) of H is the smallest
width over all generalized hypertree decompositions of H .

It is known to be NP-hard to decide whether a given hy-
pergraph has generalized hypertree width ≤ 2 [Fischl et al.,
2018]. To make the recognition of hypergraphs of bounded
width tractable, one needs to strengthen the definition of gen-
eralized hypertree width by adding a further restriction. A
hypertree decomposition [Gottlob et al., 2002a] of H is a gen-
eralized hypertree decomposition D = (T, χ, λ) of H where
T is a rooted tree that satisfies in addition to P1–P2 also the
following Special Condition (P3):
(P3) If t, t′ ∈ V (T ) are nodes such that t′ is a descendant of

t, then for each e ∈ λ(t) we have (e \ χ(t))∩ χ(t′) = ∅.
The hypertree width htw(H) of H is the smallest width over
all hypertree decompositions of H .
The constraint satisfaction problem. An instance of a
constraint satisfaction problem (CSP) I is a triple (V,D,C)
consisting of a finite set V of variables, a function D which
maps each variable v ∈ V to a set (called the domain of v),
and a set C of constraints. A constraint c ∈ C consists of a
scope S(c), which is a completely ordered subset of V , and
a relation R(c), which is a |S(c)|-ary relation on N. The size
of an instance I is |I| = |V |+ |D|+ ∑

c∈C |S(c)| · |R(c)|.
An assignment is a mapping θ : V → N which maps

each variable v ∈ V to an element of D(v); a partial as-
signment is defined analogously, but for V ′ ⊆ V . A con-
straint c ∈ C with scope S(c) = (v1, . . . , v|S(c)|) is sat-
isfied by a partial assignment θ if R(c) contains the tuple
θ(S(c)) = (θ(v1), . . . , θ(v|S(c)|)). An assignment is a solu-
tion if it satisfies all constraints in I. The task in CSP is to
decide whether the instance I has at least one solution.

The primal graph GI of a CSP instance I = (V,D,C) is
the graph whose vertex set is V and where two vertices v, w
are adjacent if and only if there exists a constraint whose
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scope contains both v and w. The hypergraph HI of I is the
hypergraph with vertex set V , where there is a hyperedge
E ⊆ V if and only if there exists a constraint with scope E.

3 Threshold Treewidth
The aim of this section is to define threshold treewidth for
CSP, but to do that we first need to introduce a refinement of
treewidth on graphs. LetG be a graph where V is bipartitioned
into a set of light vertices and a set of heavy vertices; we call
such graphs loaded. For c ∈ N0, a load-c tree decomposition
of G is a tree decomposition of G such that each bag χ(t)
contains at most c heavy vertices. It is worth noting that, while
every graph admits a tree decomposition, for each fixed c there
are loaded graphs which do not admit any load-c tree decompo-
sition (consider, e.g., a complete graph on c+1 heavy vertices).
The load-c treewidth of G is the minimum width of a load-c
tree decomposition of G or∞ if no such decomposition exists.

Let d, c ∈ N0 and I = (V,D,C) be a CSP instance. More-
over, let GdI be the primal graph such that v ∈ V is light if
and only if |D(v)| ≤ d. Then the threshold-d load-c treewidth
of I is the load-c treewidth of GdI . The following theorem
summarizes the key advantage of using the threshold-d load-c
treewidth instead of the “standard” treewidth of GI .

Theorem 1. Given d, c ∈ N, a CSP instance I and a load-c
tree decomposition of GdI of width k, it is possible to solve I
in time at most O(dk · |I|c+2).

Proof Sketch. The proof follows by applying the classical
algorithm for solving CSP by using the treewidth of the
primal graph GI [Freuder, 1982; Gottlob et al., 2002b].
The stated runtime follows from the bound on high-domain
variables imposed by the definition of load-c treewidth, which
implies a bound of dk · |I|c on the number of records stored
for each node in the dynamic program.

Bachoore and Bodlaender [2007] studied weighted
treewidth with the motivation to measure the table size of
dynamic programs directly as a weight of the decomposition.
However, the weighted treewidth implicitly upper-bounds
the domains of all variables. This is not the case for load-c
treewidth, which allows each bag to contain up to c variables
of arbitrarily large domains. Thus, load-c treewidth can be
thought of as a more general parameter (fixed-parameter
algorithms for it apply to a larger set of instances).

To apply Theorem 1 it is necessary to be able to compute
a load-c tree decomposition of a loaded graph efficiently.
While there is a significant body of literature on computing or
approximating optimal-width tree decompositions of a given
graph, it is not obvious at all how to directly enforce a bound
on the number of heavy vertices per bag in any of the known
state-of-the-art algorithms for the problem. Our next aim is to
show that in spite of this, it is possible to reduce the problem
of computing an approximate load-c tree decomposition to the
problem of computing an optimal-width tree decomposition
of a graph. This then allows us to use known results in order
to find a sufficiently good approximation of load-c treewidth.

Lemma 1. Given an n-vertex loaded graph G with m
edges and an integer k ≥ 1, it is possible to compute in

O((n+m) ·k2) time a graphG′ such that: (1) IfG has load-c
treewidth k thenG′ has treewidth at most ck+k, and (2) given
a tree decomposition of width ` of G′, in linear time we can
compute a load-(`/(k+1)) tree decomposition ofG of width `.

Proof Sketch. Consider the graph G′ constructed as follows:
(a) we add each light vertex in G into G′; (b) for each heavy
vertex v ∈ V (G), we add k+ 1 vertices v0, v1, . . . , vk into G′
(we call them images of v); (c) we add an edge between each
pair of images, say vi, vj ∈ V (G′), of some vertex v; (d) for
each vw ∈ E(G), we add into G′ the edge vw (if both v and
w are light), or the edges { vwi : i ∈ [k]0 } (if w was heavy
and v was light), or the edges { viwj : i, j ∈ [k]0 } (if both
v and w were heavy). Now it is not hard to show that every
tree decomposition of G can be turned into an appropriate tree
decomposition for G′, and vice-versa.

Lemma 1 and the algorithm of Bodlaender [1996] can be
used to approximate load-c treewidth:

Theorem 2. Given c ∈ N, a loaded graph G and k ∈ N,
in (ck)O((ck)3) · |V (G)| time it is possible to either correctly
determine that the load-c treewidth of G is at least k+ 1 or to
output a (ck + k)-width load-c tree decomposition of G .

By constructing the graph GdI and then computing a load-c
tree decomposition of GdI with width at most ck + k using
Theorem 2, in combination with Theorem 1, we obtain:

Theorem 3. Given c, d ∈ N, and a CSP instance I, we can
solve I in dO(ck) · |I|c+2 + (ck)O(ck)3 · |I|2 time where k is
the threshold-d load-c treewidth of I . Thus, for constant c and
d, CSP is fixed-parameter tractable parameterized by k.

Further applications. While our exposition here focuses
primarily on applications for the classical constraint satisfac-
tion problem, it is worth noting that load-c treewidth can be
applied analogously on many other prominent problems that
arise in the AI context. By modifying the algorithm of Theo-
rem 1 slightly, we can solve the following problems:

SUM-OF-PRODUCTS (SUMPROD) [Dechter, 1999]: In-
stead of ordinary constraints, we are given a set of weighted
constraints; a weighted constraint assigns to each tuple in
R(c)∪ {⊥} a real number (where ⊥ represents the case when
c is not satisfied). A weighted constraint c naturally assigns a
real number c(α) to each assignment α. The goal is to compute∑
α

∏
c∈C c(α) where the sum is taken over all assignments α

for the given instance. This generalizes #CSP.
VALUED CSP (VCSP) [Schiex et al., 1995; Živný, 2012]:

Like in SUMPROD, we are given weighted constraints instead
of ordinary ones, but now the goal is to find an assignment α
minimizing

∑
c∈C c(α). This generalizes MAXCSP.

INTEGER PROGRAMMING (IP) [Schrijver, 1986]: The gen-
eralization of the famous INTEGER LINEAR PROGRAMMING
problem to arbitrary polynomials. Herein, the primal graph
is defined via co-occurrence of variables in polynomial con-
straints. The resulting loaded graph based on domain thresh-
old can be defined in a similar way as for CSP. Differently
from above, we may adapt a dynamic programming algorithm
from the literature to use threshold-d load-c tree decomposi-
tions [Eiben et al., 2019].
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Proposition 1. Given c, d ∈ N, and an instance I of
SUMPROD, VCSP, or IP we can solve I in time dO(ck) ·
|I|c+2 + (ck)O(ck)3 · |I|2 where k is the threshold-d load-c
treewidth of I. Thus, for constant c, d, SUMPROD, VCSP,
and IP are fixed-parameter tractable parameterized by k.

4 Threshold Hypertree Width
In this section, we define threshold hypertree width for CSP,
show how to use it to obtain fixed-parameter algorithms, and
how to compute the associated decompositions. Similar to
threshold treewidth, we will first introduce an enhancement of
hypertree width for hypergraphs. Intuitively, the running time
of dynamic programs for CSP based on decompositions of
the corresponding hypergraph is strongly influenced by con-
straints, corresponding to hyperedges, whose relations contain
many tuples. We hence aim to distinguish these hyperedges.

Let H be a hypergraph where E = E(H) is bipartitioned
into a set EB of light hyperedges and a set ER of heavy
hyperedges. We call such hypergraphs loaded. Let c ∈ N0.
A load-c hypertree decomposition of H is a hypertree
decomposition (T, χ, λ) for H such that each edge cover
λ(v), v ∈ V (T ), contains at most c heavy hyperedges. The
width and the notion of load-c hypertree width (of H) are
defined in the same way as for hypertree decompositions.

Similar to threshold treewidth, for each fixed c there are
hypergraphs that do not admit a load-c hypertree decomposi-
tion. For example, consider a clique graph with at least c+ 2
vertices with heavy edges only, interpreted as a hypergraph.

We now apply the above notions to CSP. Let d, c ∈ N0 and
I = (V,D,C) be a CSP instance. Let Hd

I be the loaded hy-
pergraph of I wherein a hyperedge F ∈ E(Hd

I) is light if and
only if |R(γ)| ≤ d, for the constraint γ ∈ C corresponding
to F , i.e., S(γ) = F . Then, the threshold-d load-c hypertree
width of I is the load-c hypertree width of Hd

I . For threshold-
d load-c hypertree width, we also obtain a fixed-parameter
algorithm for CSP. Instead of building on hypertree decompo-
sitions in the above, we may also use generalized hypertree
decompositions, leading to the notion of generalized threshold-
d load- hypertree width and the associated decompositions.

Theorem 4. Given c, d ∈ N, a CSP instance I of (general-
ized) threshold-d load-c hypertree width, and the associated
decomposition of Hd

I , in O(dk · |I|c+2) time it is possible to
decide I and produce a solution if there is one.

In particular, for fixed c, d, CSP is fixed-parameter tractable
parameterized by k when a threshold-d load-c hypertree de-
composition of width k is given.

Proof Sketch. A usual approach used for ordinary hypertree
decompositions is to compute an equivalent CSP whose hyper-
graph is acyclic and then use an algorithm for acyclic CSPs
[Gottlob et al., 2002a]. We instead apply a direct dynamic
programming approach; the stated running-time bound then
follows from the upper bound on constraints with large number
of tuples imposed by the definition of load-c hypertree width.

Let (T, χ, λ) be the load-c hypertree decomposition of
Hd
I provided in the input. Root T arbitrarily and denote the

root by r. Define Vt to be the set of vertices in bag t and all

bags below t. A t-mapping is a mapping that assigns to each
variable v ∈ χ(t) a value from D(v).

The algorithm proceeds by dynamic programming, i.e.,
computing, for each node t ∈ V (T ) in a leaf-to-root fashion,
the set M(t) of all t-mappings θ with the following two
properties: (1), there exists some extension θ′ of θ to Vt which
maps each variable v ∈ Vt to an element of D(v) such that
each constraint γ with S(γ) ⊆ Vt is satisfied by θ′ and, (2),
for each constraint γ ∈ λ(t), mapping θ projected2 onto S(γ)
occurs as a tuple in γ projected onto χ(t).

It is not hard to prove that I is a YES-instance if and only if
M(r) 6= ∅; the solution can then be reconstructed by retracing
the dynamic program in a standard fashion. We omit the
details of computing M(t) and the correctness and running
time proofs. The main idea for the running time is the fact
that, due to property (2), each t-mapping θ ∈ M(t) arises
from combining tuples of the relations of constraints in the
cover λ(t) and hence |M(t)| ≤ dk−c · |I|c.

Similar to weighted treewidth, a weighted variant of
hypertreewidth has been proposed [Scarcello et al., 2007]
wherein the whole decomposition (T, χ, λ) is weighted
according to the estimated running time of running a dynamic
program similar to the above. The approach is, slightly
simplified, to weigh each hyperedge in the cover of a bag by
|R(c)| for the corresponding constraint c and then to minimize∑
t∈V (T ) Πc∈λ(t)|R(c)|. A drawback here again is that, using

this quantity as a parameter, it implicitly bounds the number
of tuples in each constraint |R(c)| and in turn all domain sizes.
This is not the case for threshold-d load-c hypertree width.

We now turn to computing the decomposition for the hyper-
graph of the CSP used in Theorem 4. A previous approach
for computing ordinary hypertree decompositions of width at
most k [Gottlob et al., 1999] can be modified to work also for
load-c hypertree decomposition of width at most k. Indeed,
this approach has previously been adapted within an even
more general framework [Scarcello et al., 2007], which allows
to compute hypertree decompositions of width at most k that
additionally optimize a weight function from a specific class
of functions. Applying this framework leads to the following.

Theorem 5. Given c, k ∈ N, and a loaded hypergraph H ,
in O(|E(H)|2k · |V (H)|2) time it is possible to compute a
load-c hypertree decomposition for H or correctly report that
no such decomposition exists.

Assuming FPT 6= W[2] the running time in Theorem 5 cannot
be improved to a fixed-parameter tractable one, even if c is
constant. This follows from the fact that the special case of de-
ciding whether a given hypergraph without heavy hyperedges
admits a load-0 hypertree decomposition of width at most k is
W[2]-hard with respect to k [Gottlob et al., 2005].

Bounding the threshold treewidth or threshold hypertree
width of a CSP instance constitutes a hybrid restriction and
not a structural restriction [Carbonnel and Cooper, 2016], as
these restrictions are formulated in terms of the loaded primal
graphs and the loaded hypergraphs, and not in terms of the

2The projection of a relation R onto a subset S of its variables is
the set resulting from taking each tuple of R and removing from this
tuple the entries for variables not in S.
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plain, unlabeled (hyper)graphs. However, as the loaded (hy-
per)graphs carry only very little additional information, we
would like to label such restrictions as semi-structural.

5 Elimination Orderings and Algorithms
Our algorithms rely on a different characterization of treewidth
and generalized hypertree width, which we describe below.

An elimination ordering ≺ of a graph G is a total ordering
≺ of V (G). Let us denote the i-th vertex in ≺ as vi, and let
G0 = G. For i ∈ [|V |], let the graph Gi be obtained from
Gi−1 by removing vi and adding edges between each pair
of vertices in the neighborhood of vi (i.e., the neighborhood,
NGi−1(vi), of vi in Gi−1 becomes a clique). The width of
vi w.r.t. ≺ is then defined as |NGi−1(vi)|, and the width of
≺ is the maximum width over all vertices in G w.r.t. ≺. It
is well known that width-k elimination orderings precisely
correspond to tree decompositions of width k [Kloks, 1994;
Bodlaender and Koster, 2010]. Generalized hypertree decom-
positions also have a corresponding elimination ordering char-
acterization: the only difference is that instead of the width
of vi, we consider its cover-width, which is the size of a min-
imum edge cover of |NGi−1

(vi)| in HI [Fichte et al., 2018].
It is relatively straightforward to adapt these notions of elim-

ination orderings to describe threshold treewidth and threshold
generalized hypertree width. In particular, one can show:

Theorem 6. (1) A CSP instance I has threshold-d load-c
treewidth k if and only if GdI admits an elimination ordering
of width k with the property that for each vi, NGd

I,i−1
(vi)

contains at most c heavy vertices. (2) A CSP instance I has
generalized threshold-d c-hypertree width k if and only if GdI
admits an elimination ordering of cover width k with the prop-
erty that for each vi,NGd

I,i−1
(vi) admits a hyperedge cover (in

HI) of size at most k containing at most c heavy hyperedges.

A (significantly more complicated) elimination ordering
characterization of hypertree width has been obtained by
Schidler and Szeider [2020]. This, too, can be translated
into a characterization of threshold-d load-c hypertree width.
However, experimental evaluations confirmed the expectation
that there was no practical benefit to using hypertree width
instead of generalized hypertree width.

Algorithms. An optimal elimination ordering without
taking heavy vertices into account for a given graph can be
computed using a SAT encoding [Samer and Veith, 2009];
below we call this algorithm TW-X-Obl. This encoding can
be extended to compute optimal generalized hypertree decom-
positions, by computing the necessary covers [Fichte et al.,
2018] using an SMT encoding, below denoted by HT-X-Obl.
We also call these methods (load) oblivious. The SMT
approach is highly robust and can be adapted to also compute
threshold-d load-c tree decompositions: analogously to the
existing cardinality constraints for bags/covers, we add new
constraints that limit the number of heavy vertices/hyperedges
(see Theorem 6). We use this to either aim for a decomposition
of optimal width and secondarily with minimum load (leading
to algorithms TW-X-W�L and HT-X-W�L), or one of
optimal load and secondarily with minimum width (leading
to algorithms TW-X-L�W and HT-X-L�W).

Since optimal elimination orderings of graphs are hard to
compute, heuristics are often used. The Min-Degree method
constructs an ordering in a greedy fashion by choosing vi
among the vertices of minimal degree inGi−1, and yields good
treewidth values overall [Bodlaender and Koster, 2011]; below
we call this algorithm TW-H-Obl and say it is oblivious. We
adapted this method into two new heuristics that consider load:
TW-H-L�W and TW-H-W�L. The former chooses all the
heavy vertices first, which leads to decompositions with low
loads but possibly larger width. The latter maintains a bound `
on the target load of the decomposition, and selects a vertex vi
of minimum degree among those with the property that they
contain at most ` heavy neighbors in Gi−1; if no such vertex
exists, the heuristic restarts with an incremented value of `.

Our heuristics for generalized hypertree width begin by
computing an elimination ordering for the primal graph using
min-degree [Dermaku et al., 2008]. The oblivious heuristic
now uses branch-and-bound to compute an optimal cover
for each bag, called HT-H-Obl below. We also use two
extensions for computing the covers while taking the load into
account: one that optimizes for load first and width second
(HT-H-L�W), and one that optimizes for width first and load
second (HT-H-W�L). In all three heuristics, the computed
covers are actually optimal for their respective objective.

6 Experiments
In this section we present experimental results using the algo-
rithms discussed in the previous section. We were particularly
interested in the difference in loads between oblivious (Obl)
and width-first load-second (W�L) methods, and the trade-off
between width-first (W�L) and load-first (L�W) methods.
Setup. We ran our experiments on a cluster, where each
node consists of two Xeon E5-2640 CPUs, each running
10 cores at 2.4 GHz and 160 GB memory. As solvers we
used minisat 2.2.0 (http://minisat.se/) and optimathsat 1.6.2
(http://optimathsat.disi.unitn.it/). The control code and
heuristics use Python 3.8.0. The nodes run Ubuntu 18.04. We
used a 8 GB memory limit and a 2 hour time limit per instance.
Plots. Most of our plots use a specific type of scatterplot.
The position of the marker shows the pairs of values of the
data point, while the size of the marker shows the number of
instances for which these values were obtained. The measured
quantities are noted in the plot caption. For example, the
data points in Figure 1a are, for each of the solved instances,
the pair of loads of the tree decompositions computed by the
TW-X-W�L and TW-X-Obl methods from Section 5.
Instances. For threshold-d load-c treewidth we used 2788
instances from the twlib3 benchmark set. For generalized
threshold-d load-c treewidth we used the 3071 hyperbench4

instances after removing self-loops and subsumed hyperedges.
We created our loaded instances by marking a certain percent-
age of all vertices or hyperedges as heavy. We ran experiments
for different ratios, but since the outcomes did not deviate
too much, here we only present the results for a ratio of 30%
heavy vertices/hyperedges (same as by Kask et al. [2011]).

3http://www.staff.science.uu.nl/∼bodla101/treewidthlib/
4http://hyperbench.dbai.tuwien.ac.at/
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Figure 1: Exact and heuristic treewidth computations: differences in values depending on the optimization strategy.

Since instances of low width are considered efficiently solv-
able, our presentation only focuses on high-width instances.
In particular, for treewidth and generalized hypertree width,
we disregarded instances of width below 13 and below 4, re-
spectively. We were not able to find solutions for all instances
and for this reason state the number of instances in the results.
Treewidth. Figures 1a to 1c show the results from running
the exact algorithms (methods TW-X; 168 instances could be
solved within the time limit). It shows that even by using
W�L methods, we can significantly improve the load without
increasing the treewidth. Further improvements in load can
be obtained by using TW-X-L�W, as seen in Figure 1c. In
Figure 1b we see that the trade-off (in terms of the treewidth)
required to achieve the optimal loads is often very small.

The results are different for heuristic methods. Figures 1d
and 1e show the results from the 2203 instances with high
width. While good estimates for load or width are possible,
finding good estimates for both at the same time is not possible
with the discussed heuristics: In Figure 1d we see that both
the TW-H-Obl and TW-H-W�L heuristics mostly fail to find
a good estimate for the load. On the other hand, Figure 1e
shows that TW-H-L�W tends to result in decompositions
with much higher treewidth than the optimum. These results
suggest that it may be non-trivial to obtain heuristics which
provide a good trade-off between load and width.
Generalized hypertree width. Figures 2a to 2c show the
results from 259 optimal decompositions computed within the
time limit. The general outlook is the same as for treewidth:
Even the HT-X-W�L algorithm significantly improves the
load without any trade-off (Figure 2a), and HT-X-L�W can
decrease the load even further (Figure 2a) while only slightly
increasing the generalized hypertree width (Figure 2c).

The results obtained by applying the HT-H-Obl and
HT-H-L�W heuristics on the 1624 instances with large width
can be seen in Figure 2d. There is a stark contrast to the
heuristics used for treewidth: The HT-H-W�L heuristic can
significantly reduce the load with no trade-off, as the width is
guaranteed to be the same (i.e. fixed after giving the ordering).

7 Concluding Remarks
We have introduced a novel way of refining treewidth and
hypertree width via the notion of thresholds, allowing us to
lift previous fixed-parameter tractability results for CSP and
other problems beyond the reach of classical width parame-
ters. Our new parameters have the advantage over the standard
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Figure 2: Exact and heuristic generalized hypertreewidth computa-
tions: differences in values depending on the optimization strategy.

“oblivious” variants of treewidth and hypertree width that they
can take more instance-specific information into account. A
further advantage of our new parameters is that decomposi-
tions that optimize our refined parameter can be used as the
input to existing standard dynamic programming algorithms,
resulting in a potential exponential speedup. Our empirical
findings show that in realistic scenarios, one can expect that
optimizing the loads requires only minimal overhead while
offering huge gains in further processing times.
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