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Abstract

Branch decomposition is a prominent method for structurally decomposing a graph, a hypergraph or a propo-
sitional formula in conjunctive normal form. The width of a branch decomposition provides a measure of how
well the object is decomposed. For many applications, it is crucial to computing a branch decomposition whose
width is as small as possible. We propose an approach based on Boolean Satisfiability (SAT) to finding branch
decompositions of small width. The core of our approach is an efficient SAT encoding which determines with a
single SAT-call whether a given hypergraph admits a branch decomposition of a certain width. For our encoding,
we propose a natural partition-based characterization of branch decompositions. The encoding size imposes a
limit on the size of the given hypergraph. In order to break through this barrier and to scale the SAT approach
to larger instances, we develop a new heuristic approach where the SAT encoding is used to locally improve a
given candidate decomposition until a fixed-point is reached. This new SAT-based local improvement method
scales now to instances with several thousands of vertices and edges.

Keywords: branchwidth, carving-width, SAT encoding, heuristic search

1 Introduction
Background Branch decomposition is a prominent method for structurally decomposing a graph or hyper-
graph. This decomposition method was originally introduced by Robertson and Seymour 1991a in their Graph
Minors Project and has become a key notion in discrete mathematics and combinatorial optimization. Branch de-
compositions can be used to decompose other combinatorial objects such as matroids, integer-valued symmetric
submodular functions, and propositional formulas in conjunctive normal form (CNF) [Robertson and Seymour
1991b, Oztok and Darwiche 2014]. The width of a branch decomposition provides a measure of how well it
decomposes the given object; the smallest width over its branch decompositions denotes the branchwidth of an
object. Many hard computational problems can be solved efficiently by means of dynamic programming along
a branch decomposition of small width. Prominent examples include the traveling salesman problem [Cook
and Seymour 2003], the #P-complete problem of propositional model counting [Bacchus et al. 2003], and the
generation of resolution refutations for unsatisfiable CNF formulas [Alekhnovich and Razborov 2002]. Branch
decompositions also form the basis of several width-parameters employed in Knowledge Compilation and Rea-
soning [Darwiche 2009], where they are known as dtrees. In fact, all decision problems on graphs that can be
expressed in monadic second order logic can be solved in linear time on graphs that admit a branch decomposition
of bounded width [Courcelle 1990, Grohe 2008].

A bottleneck for all these algorithmic applications is the space requirement of dynamic programming, which
is typically single or double exponential in the width of the given branch decomposition. Hence it is crucial to
compute first a branch decomposition whose width is as small as possible. This is very similar to the situation
in the context of treewidth, where the following was noted about inference on probabilistic networks of bounded
treewidth [Kask et al. 2011]:
∗Dedicated to the memory of Helmut Veith (1971–2016).

A preliminary and shortened version appeared in the proceedings of SAT’16, The 19th International Conference on Theory and Applications
of Satisfiability Testing.
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[. . . ] since inference is exponential in the tree-width, a small reduction in tree-width (say by even by
1 or 2) can amount to one or two orders of magnitude reduction in inference time.

Hence small improvements in the width can change a dynamic programming approach from unfeasible to feasible.
The boundary between unfeasible and feasible width values strongly depends on the considered problem and the
currently available hardware. For instance, Cook and Seymour 2003 mention a threshold of 20 for the traveling
salesman problem. Today one might consider a higher threshold. Computing an optimal branch decomposition,
i.e., a branch decomposition of minimum width, is NP-hard [Seymour and Thomas 1994].

Contribution In this paper we propose a practical SAT-based approach to finding a branch decompositions of
small width. At the core of our approach is an efficient SAT encoding which takes a hypergraph H and an inte-
ger w as input and produces a propositional CNF formula which is satisfiable if and only if H admits a branch
decomposition of width w. By multiple calls of the solver with various values of w we can determine the smallest
w for which the formula is satisfiable (i.e., the branchwidth of H), and we can transform the satisfying assign-
ment into an optimal branch decomposition. Our encoding is based on a natural partition-based characterization
of branch decompositions in terms of certain sequences of partitions of the set of edges, similar to the “binary
mergings” introduced by Gu and Tamaki 2008. This characterization—together with clauses that express cardi-
nality constraints–gives rise to an efficient SAT encoding that scales up to instances with about a hundred edges.
The computationally most expensive part in this procedure is to determine the optimality of w by checking that
the formula corresponding to a width of w − 1 is unsatisfiable. If we do not insist on optimality and aim at good
upper bounds, we can scale the approach to larger hypergraphs with over two hundred edges.

The number of clauses in the formula is polynomial in the size of the hypergraph and the given width w,
but the order of the polynomial can be quintic, hence there is a firm barrier to the scalability of the approach
to larger hypergraphs. In order to break through this barrier, we developed a new SAT-based local improvement
method (SLIM) where the encoding is not applied to the entire hypergraph but to certain smaller hypergraphs that
represent local parts of a current candidate branch decomposition. The overall procedure thus starts with a branch
decomposition obtained by a heuristic method and then tries to improve it locally by multiple SAT-calls until a
fixed-point (or timeout) is reached. This method scales now to instances with several thousands of vertices and
edges and branchwidth upper bounds well over hundred. We believe that a similar approach using a SAT-based
local improvement method could also be developed for other (hyper)graph width measures.

Encouraged by the good performance of our partitioned-based encoding for branchwidth, we explored whether
a similar encoding can be used for other width parameters. We succeeded to develop a similar encoding for
carving-width, which is a decompositional parameter closely related to branchwidth [Seymour and Thomas 1994]
with applications to graph drawing [Biedl and Vatshelle 2012, Biedl 2014]. We will mainly focus on branchwidth
and provide a brief description on how similar techniques can be applied to carving-width.

Implementations of our encodings, as well as the local improvement algorithm, are publicly available under
https://www.ac.tuwien.ac.at/research/branchlis/.

Related Work Previously, SAT techniques have been proposed for other graph width measures: Samer and
Veith 2009 proposed a SAT encoding for treewidth, based on a characterization of treewidth in terms of elimina-
tion orderings (that is, the encoding entails variables whose truth values determine a permutation of the vertices,
and the width of a corresponding decomposition is then bounded by cardinality constraints). This approach was
later improved by Berg and Järvisalo 2014 and Bannach et al. 2017. Heule and Szeider 2015 developed a SAT
approach for computing the clique-width of graphs. For this purpose, they developed a novel partition-based char-
acterization of clique-width. Our encoding of branchwidth was inspired by this. However, the two encodings are
different as clique-width and branchwidth are entirely different notions. Recently our partition-based encoding
has inspired similar encodings for special treewidth and pathwidth [Lodha et al. 2017] as well as treecut width and
treedepth [Ganian et al. 2019]. Moreover, our local improvement approach has been adapted for treewidth [Fichte
et al. 2017].

For finding branch decompositions of smallest width, Robertson and Seymour 1991a suggested an exponential-
time algorithm based on the combinatorial notion of tangles which was later implemented by Hicks 2005. Further
exponential-time algorithms have been proposed (see, for instance [Fomin et al. 2009, Hliněný and Oum 2008])
but there seem to be no implementations. Ulusal 2008 proposed several encodings to integer linear programming
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(ILP). In Subsection 7.1 we provide an experimental comparison of our SAT encoding with the tangles-based
algorithm as well as Ulusal’s ILP encodings. The evaluation shows that our SAT encoding is superior to Ulusal’s
ILP encodings, but in most cases inferior to Hicks’ tangles-based algorithm. Nevertheless, our SAT encoding
provides several advantages over the tangles-based algorithm that are essential for its use within our local im-
provement procedure:

• The current implementation of the tangles-based algorithm does not support the computation of branch-
width for hypergraphs. Since hypergraphs naturally arise as the local parts in the local improvement pro-
cedure, the support for hypergraphs is an essential feature for the use of our encoding within the local im-
provement procedure. Moreover, even though there is a reduction from hypergraphs to graphs conserving
the branchwidth, this reduction increases both the number of vertices and the number edges significantly,
which makes our approach more efficient than the tangles-based approach.

• In contrast to the SAT-based approach, the tangles-based approach cannot compute upper bounds for the
branchwidth of a (hyper-)graph. Computing upper bounds is however crucial when used inside the local
improvement algorithm, as the local hypergraphs are too large to be solved exactly by any known method.
In particular, as our experiments show, the local improvement method performs best when the number of
hyperedges in the local hypergraphs is around 200.

• As also pointed out by Hicks [2005] the space and time requirements of the tangles-based approach grow
exponentially with the branchwidth, hence this approach is not applicable to (hyper-)graphs with high
branchwidth. Such hypergraphs are encountered during local improvement. In contrast, the space require-
ments of our SAT encoding grows only linearly with the branchwidth.

One could also find suboptimal branch decompositions based on the related notion of tree decompositions;
however, finding an optimal tree decomposition is again NP-hard, and by transforming it into a branch decompo-
sition one introduces an approximation error factor of up to 50% [Robertson and Seymour 1991a] which makes
this approach prohibitive in practice. For practical purposes, one therefore mainly resorts to heuristic methods
that compute suboptimal branch decompositions [Cook and Seymour 2003, Hicks 2002, Overwijk et al. 2011,
Smith et al. 2012].

2 Preliminaries
Formulas and Satisfiability We consider propositional formulas in Conjunctive Normal Form (CNF formulas,
for short), which are conjunctions of clauses, where a clause is a disjunction of literals, and a literal is a proposi-
tional variable or a negated propositional variables. A CNF formula is satisfiable if its variables can be assigned
true or false, such that each clause contains either a variable set to true or a negated variable set to false. The
satisfiability problem (SAT) asks whether a given formula is satisfiable.

Graphs and Branchwidth We consider finite hypergraphs and undirected graphs. For basic terminology on
graphs, we refer to a standard textbook [Diestel 2000]. For a hypergraph H we denote by V (H) the vertex set
of H and by E(H) the edge set of H . If E ⊆ E(H), we denote by H \ E the hypergraph with vertices V (H)
and edges E(H) \ E. We denote by ∆(H) the maximum degree of any vertex in H , i.e., the maximum number
of edges containing a particular vertex of H . Let G be a simple undirected graph. The radius of G, denoted by
rad(G), is the minimum integer r such that G has a vertex from which all other vertices are reachable via a path
of length at most rad(G). The center of G is the set of vertices v such that all other vertices of G can be reached
from v via a path of length at most rad(G). We will often consider various forms of trees, i.e., connected acyclic
graphs, as they form the backbone of branch decompositions. Let T be an undirected tree. We will always assume
that T is rooted (in some arbitrary vertex r) and hence the parent and child relationships between its vertices are
well-defined. We say that T is ternary if every non-leaf vertex of T has degree exactly three. We will write pT (t)
(or just p(t) if T is clear from the context) to denote the parent of t ∈ V (T ) in T . We also write Tt to denote the
subtree of T rooted in t, i.e., the component of T \ {{t, pT (t)}} containing t. For a tree T , we denote by h(T ),
the height of T , i.e., the length of a longest path between the root and any leaf of T plus one. It is well-known
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Figure 1: A hypergraph H (left) and an optimal branch decomposition (T, γ) of H (right). The labels of the
leaves of T are the edges assigned to them by γ and the labels of the edges of T are the load vertices of that edge.

that every tree has at most two center vertices, moreover if it has two center vertices then they form the endpoints
of an edge in the tree.

Let H be a hypergraph. Every subset E of E(H) defines a separation of H , i.e., the pair (E,E(H) \ E).
We denote by δH(E) (or just δ(E) if H is clear from the context) the set of load vertices of E in H , i.e., δ(E)
contains all vertices incident to both an edge in E and an edge in E(H) \E. The order of a separation (given by
the edge set E) is the number of load vertices, i.e., |δH(H)|. Note that δ(E) = δ(E(H) \ E).

A branch decomposition B(H) of H is a pair (T, γ), where T is a ternary tree and γ : L(T ) → E(H) is
a bijection between the edges of H and the leaves of T (denoted by L(T )). For simplicity, we write γ(L) to
denote the set { γ(l) | l ∈ L } for a set of leaves L of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a
subtree T of T ′. For an edge e of T , we denote by δB(e) (or simply δ(e) if B is clear from the context), the set
of guard vertices of e, i.e., the set δ(T ′), where T ′ is any of the two components of T \ {e}. Observe that δB(e)
consists of the set of all vertices v such that there are two leaves l1 and l2 of T in distinct components of T \ {e}
such that v ∈ γ(l1) ∩ γ(l2). The width of an edge e of T is the number of load vertices of e, i.e., |δB(e)| and
the width of B is the maximum width of any edge of T . The branchwidth of H is the minimum width over all
branch decompositions of H (or 0 if |E(G)| = 0 and H has no branch decomposition). We also define the depth
of B as the radius of T . Fig. 1 illustrates a branch decomposition of a small hypergraph. In the figure and in
the remainder of the paper we will often denote a set {1, 2, 3, A} of vertices as 123A. We will use the following
well-known property of branch decompositions (see e.g. [Ulusal 2008]), which informally says that there is a
natural one to one correspondence between the nodes of any two branch decompositions of the same hypergraph,
which consequently only differ in terms of their edges.

Observation 2.1. Let B := (T, γ) and B′ := (T ′, γ′) be two branch decompositions of the same hypergraph H .
Then there is bijection α : V (T ) → V (T ′) between the vertices of T and T ′ such that l ∈ L(T ) if and only if
α(l) ∈ L(T ′) and moreover γ(l) = γ′(α(l)) for every l ∈ L(T ).

Proof. Because B and B′ are branch decompositions of the same hypergraphH , it holds that |L(T )| = |L(T ′)| =
|E(H)|. Moreover, because all inner vertices of T and T ′ are ternary, it holds that |V (T )| = |V (T ′)| =
2|E(H)| − 2. Hence, the bijection α can be obtained by setting α(l) to be the leaf l′ of T ′ with γ(l) = γ′(l′) for
every leaf l of T and choosing an arbitrary bijection between the remaining (inner) vertices of T and T ′.

(Weak) Partitions As (weak) partitions play an important role in our reformulation of width parameters, we
recall some basic terminology. A weak partition of a set S is a family P of nonempty subsets of S such that any
two sets in P are disjoint. We denote by U(P ) the union of all sets in P . If additionally S = U(P ), then P is
a partition. The elements of P are called equivalence classes. Let P, P ′ be weak partitions of S. Then P ′ is a
refinement of P if U(P ) ⊆ U(P ′) and any two elements x, y ∈ S that are in the same equivalence class of P ′

are not in distinct equivalence classes of P (this entails the case P = P ′). Moreover, we say that P ′ is a k-ary
refinement of P if additionally, it holds that for every p ∈ P there are p1, . . . , pk in P ′ such that p ⊆ ⋃1≤i≤k pi.
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3 Branchwidth
In this section, we introduce our encoding for branchwidth. The encoding is based on a partition-based reformu-
lation of branchwidth in terms of derivations, which will also lead to an efficient encoding for the related notion
of carving-width.

3.1 Partition-based Reformulation of Branchwidth
One might be tempted to think that the original characterization of branch decompositions as ternary trees leads
to a very natural and efficient SAT encoding for the existence of a branch decomposition of a certain width. In
particular, in the light of Observation 2.1 one could encode the branch decomposition as a formula by fixing all
vertices of the tree (as well as the bijection on the leaves) and then employing variables to guess the children
for each inner vertex of the tree. We have tried this approach, however, to our surprise the performance of the
encoding based on this characterization of branch decomposition was very poor. We, therefore, opted to develop
a different encoding based on a new partition-based characterization of branch decomposition which we will
introduce next. Compared to this, the original encoding was clearly inferior, resulting in an encoding size that
was always at least twice as large and overall solving times that were longer by a factor of 3-10, even after several
rounds of fine-tuning and experimenting with natural variants.

Let H be a hypergraph. A derivation P of H of length l is a sequence (P1, . . . , Pl) of partitions of E(G)
such that:

(D1) P1 = { {e} | e ∈ E(H) } and Pl = {E(H)} and

(D2) for every i ∈ {1, . . . , l − 2}, Pi is a 2-ary refinement of Pi+1 and

(D3) Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(S) over all sets S ∈ ⋃1≤i<l Pi. We will refer to Pi as the i-th level
of the derivation P and we will refer to elements in

⋃
1≤i≤l Pi as sets of the derivation. Characterizing branch

decompositions in this way is very natural, similar concepts have been considered by Gu and Tamaki 2008 in
terms of binary mergings. The main purpose of introducing derivations here is to provide a clean tailor-made
characterization of branch decompositions that is best suited to be employed by our encodings.

We will show that any branch decomposition can be transformed into a derivation of the same width and also
the other way around. The following example illustrates the close connection between branch decompositions
and derivations.

Example 3.1. Consider the branch decomposition B given in Fig. 1. Then B can, e.g., be translated into the
derivation P = (P1, . . . , P5) defined by:

P1 =
{{

129
}
,
{

35
}
,
{

45
}
,
{

3A
}
,
{

14
}
,
{

28
}
,
{

38
}
,
{

29
}}

P2 =
{{

129
}
,
{

35
}
,
{

45, 3A
}
,
{

14
}
,
{

28
}
,
{

38
}
,
{

29
}}

P3 =
{{

129
}
,
{

35, 45, 3A
}
,
{

14
}
,
{

28, 38
}
,
{

29
}}

P4 =
{{

129
}
,
{

35, 45, 3A, 14
}
,
{

28, 38, 29
}}

P5 =
{{

129, 35, 45, 3A, 14, 28, 38, 29
}}

The width of B is equal to the width of P . Note that every set S in
⋃

1≤i≤5 Pi naturally corresponds to a node t
of B, and its elements are all edges assigned to leaves below t in B. Moreover, Pi contains all sets corresponding
to nodes of B at the same level, i.e., two nodes of B are at the same level if their maximum distance to any leaf
below them in B is equal. For instance, P1 contains all sets corresponding to the leaves of B and P2 contains all
sets corresponding to inner nodes of B that have only leaves as children. Conversely, given the derivation P one
can easily construct the branch decomposition B as follows: First one adds a leaf for every set in P1, then for
every set in P2 that is the union of two sets S and S′ in P1 one adds a new node whose children are the leaves
corresponding to S and S′. This process then continues in the same manner until one reaches P5 for which one
adds the root node of B whose children are the three nodes corresponding to the sets in P4.
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Using the same ideas as provided in the example, we can now show the following theorem.

Theorem 3.1. Let H be a hypergraph and w and d integers. H has a branch decomposition of width at most w
and depth at most d if and only if H has a derivation of width at most w and length at most d.

Proof. Towards showing the forward direction of the theorem, let B := (T, γ) be a branch decomposition of
width at most w and depth at most d. Moreover, let r be an arbitrary node of degree three at the center of T and
assume in the following that T is rooted in r. Observe that because r is in the center of T , it holds that h(Tr) = d.
Let t be a node of T . We define E(t) to be the set of all edges of H represented by the leaves of the subtree Tt,
i.e., E(t) := γ(L(Tt)). We claim that P := (P1, . . . , Ph(Tr)), where Pi := {E(t) | t ∈ V (T ) and h(Tt) = i },
is a derivation of H of width at most w and length at most d. Because in every tree, the set of all subtrees of T of
a fixed height partitions the leaves of T , we obtain that Pi is a partition of E(H) for every i with 1 ≤ i ≤ h(Tr).
Because P1 = {E(l) | l ∈ L(T ) } = { γ(l) | l ∈ L(T ) }, Ph(Tr) = {E(r)} = {E(H)}, and B is a branch
decomposition, we obtain that P satisfies (D1). Because every node of T apart from r has at most two children
and r has exactly three children, we obtain that Pi is a 2-ary refinement of Pi+1 for every iwith 1 ≤ i < h(Tr)−1
and Ph(Tr)−1 is a 3-ary refinement of Ph(Tr), which shows that P satisfies (D2) and (D3). Hence, P is a derivation
ofH and because h(Tr) = d, as observed in the beginning of the proof, we obtain that the length ofP is at most d.

It remains to show that the width of P is at most w. To see this let E ∈ ⋃1≤i<d Pi. Then E = E(t) for some
t ∈ V (T ) \ {r}. Hence, δH(E) is equal to δB({t, p(t)}), which is at most w because the width of B is at most w.

Towards showing the backward direction of the theorem, let P := (P1, . . . , Pd) be a derivation of H of width
at most w. We will first show that w.l.o.g. we can assume that |Pd−1| = 3. Since we can assume that P is
a minimal derivation, i.e., every subsequence of P is not a derivation, we obtain that Pd−1 6= Pd and hence
|Pd−1| ≥ 2. Suppose that |Pd−1| = 2. Because we can assume thatH has at least three edges there is a p ∈ Pd−1
and a level i with 1 ≤ i < d− 1 such that p is the union of two elements p′ and p′′ in Pi and p occurs in every Pj

with i < j ≤ d − 1. Then the derivation obtained from P after replacing p with p′ and p′′ in every level j with
i < j ≤ d− 1 satisfies |Pd−1| = 3. Hence, for the remainder of the proof we will assume that |Pd−1| = 3.

We claim that B := (T, γ) with T and γ as defined below is a branch decomposition of H of width at most
w and depth at most d. The tree T contains one node tp for every p ∈ ⋃1≤i≤d Pi and T has an edge between
tp and tp′ if and only if there is an i with 1 ≤ i < d such that p ∈ Pi, p′ ∈ Pi+1, and p ( p′. Moreover, the
bijection γ is defined by setting γ(tl) = l for every l ∈ P1. It is straightforward to verify that B is indeed a branch
decomposition of H with width at most w and depth at most d.

One important parameter influencing the size of the encoding is the length of the derivation. The next theorem
shows a tight upper bound on the length of any derivation obtained from some branch decomposition. Observe
that a simple caterpillar (i.e., a path where each inner vertex has one additional “pending” neighbor) shows that
the bound given below is tight. The main observations behind the following theorem are that every branch
decomposition has depth at most b|E(H)|/2c and moreover one can further reduce the depth of the branch
decomposition by replacing small subtrees at the bottom of the branch decomposition, i.e., subtrees for which no
edge has maximum width, with complete binary subtrees of smaller depth.

Theorem 3.2. Let H be a hypergraph, e the maximum size over all edges of H , and w a positive integer. Then
the branchwidth of H is at most w if and only if H has a derivation of width at most w and length at most
b|E(H)|/2c − dw/ee+ dlogbw/ece.

Proof. The backward direction of the claim follows immediately from Theorem 3.1.
Towards showing the forward direction we first show that every branch decomposition of width at most w

can be transformed into a branch decomposition of the same width and whose depth is at most b|E(H)|/2c −
dw/ee+ dlogbw/ece. The claim then follows from Theorem 3.1.

Let B := (T, γ) be a branch decomposition of H of width at most w. Because T is a ternary tree with exactly
|E(H)| leaves, we obtain that its radius is at most b|E(H)|/2c. Assume in the following that T is rooted in one
of the (at most two) center vertices, say r, of T . The main idea to obtain the exact bound on the radius of T given
in the statement of the theorem is now to replace every subtree of T rooted at some node, say t, that contains at
most bw/ec edges of H and whose height is maximal with respect to this property with a binary tree (containing
the same leaf nodes) of height at most dlogbw/ece. Because every edge in the obtained binary tree has width at
most (w/e)e = w, this replacement does not increase the width of B and it is straightforward to verify that the
depth of the obtained branch decomposition is at most b|E(H)|/2c − dw/ee+ dlogbw/ece.
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3.2 Encoding
Let H be a hypergraph with m edges and n vertices, and let w and d be positive integers. We will assume that
the vertices of H are represented by the integers from 1 to n and the edges of H by the integers from 1 to m.
Thus, when we say an edge e is smaller than another edge f (e < f ) we refer to their representation by integers.
The aim of this section is to construct a formula F (H,w, d) that is satisfiable if and only if H has a derivation
of width at most w and length at most d. Because of Theorem 3.2 (after setting d to the value specified in the
theorem) it holds that F (H,w, d) is satisfiable if and only if H has branchwidth at most w. To achieve this aim
we first construct a formula F (H, d) that is satisfiable if and only if H has a derivation of length at most d and
then we extend this formula by adding constraints that restrict the width of the derivation to w.

3.2.1 Encoding of a Derivation of a Hypergraph

The formula F (H, d) uses the following variables. A set variable s(e, f, i), for every e, f ∈ E(H) with e < f
and every i with 0 ≤ i ≤ d. Informally, s(e, f, i) is true whenever e and f are contained in the same set at level
i of the derivation. A leader variable l(e, i), for every e ∈ E(H) and every i with 0 ≤ i ≤ d. Informally, the
leader variables will be used to uniquely identify the sets at each level of a derivation, i.e., l(e, i) is true whenever
e is the smallest edge in a set at level i of the derivation.

We now describe the clauses of the formula. The following clauses ensure (D1) and that the derivation is a
sequence of refinements.

(¬s(e, f, 0)) ∧ (s(e, f, d)) ∧ (¬s(e, f, i) ∨ s(e, f, i+ 1)) for e, f ∈ E(H), e < f , 1 ≤ i < d

The following clauses ensure that the relation of being in the same set is transitive.

(¬s(e, f, i) ∨ ¬s(e, g, i) ∨ s(f, g, i))
∧(¬s(e, f, i) ∨ ¬s(f, g, i) ∨ s(e, g, i))
∧(¬s(e, g, i) ∨ ¬s(f, g, i) ∨ s(e, f, i)) for e, f, g ∈ E(H), e < f < g, 1 ≤ i ≤ d

The following clauses ensure that l(e, i) is true if and only if e is the smallest edge contained in some set at level
i of a derivation.

(l(e, i) ∨
∨

f∈E(H),f<e

s(f, e, i))

︸ ︷︷ ︸
A

∧
∧

f∈E(H),f<e

(¬l(e, i) ∨ ¬s(f, e, i))

︸ ︷︷ ︸
B

for e ∈ E(H), 1 ≤ i ≤ d

Part A ensures that e is a leader or it is in a set with an edge which is smaller than e; part B ensures that if e is
not in the same set with any smaller edge, then it is a leader. The following clauses ensure that at most two sets
in the partition at level i can be combined into a set in the partition at level i + 1, i.e., together with the clauses
above it ensures (D2).

¬l(e, i) ∨ ¬l(f, i) ∨ ¬s(e, f, i+ 1) ∨ l(e, i+ 1) ∨ l(f, i+ 1)

for e, f ∈ E(H), e < f , 1 ≤ i < d− 1

The following clauses ensure that at most three sets in the partition at level d − 1 can be combined into a set in
the partition at level d , i.e., together with the clauses above it ensures (D3).

¬l(e, d− 1) ∨ ¬l(f, d− 1) ∨ ¬l(g, d− 1) ∨ ¬s(e, f, d) ∨ ¬s(e, g, d)
∨l(e, d) ∨ l(f, d) ∨ l(g, d) for e, f, g ∈ E(H), e < f < g

All of the above clauses together ensure (D1), (D2), and (D3). We also add the following redundant clauses.

l(e, i) ∨ ¬l(e, i+ 1) for e ∈ E(H), 1 ≤ i < d

These clauses use the observation that if an edge is not a leader at level i then it cannot be a leader at level i+ 1.
The formula F (H, d) contains O(m2d) variables and O(m3d) clauses.
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3.2.2 Encoding of a Derivation of Bounded Width

Next, we describe how F (H, d) can be extended to restrict the width of the derivation. The main idea is to first
identify the set of load vertices for the sets in the derivation and then restrict their sizes. To this end, we first
need to introduce new variables (and later clauses), which allow us to identify load vertices of edge sets in the
derivation. In particular, we introduce a load variable c(e, u, i) for every e ∈ E(H), u ∈ V (H) and i with
1 ≤ i ≤ d. Informally, c(e, u, i) is true if u is a load vertex of the set containing e at level i of the derivation. In
order to restrict the size of the sets of load vertices later on we do not need the backward direction of the previous
statement. Recall that a vertex u is a load vertex for some set p of the derivation if there are two distinct edges
incident to u such that one of them is contained in p and the other one is not.

Defining the Load Vertices In the following, we will present an encoding that has turned out to give the best
results in our case. The main idea behind the encoding is to only define the variables c(e, u, i) for the leading
edges e in the current derivation.

The following clauses ensure that whenever two edges incident to a vertex are not in the same set at level i of
the derivation, then the vertex is a load vertex for every leading edge of the sets containing the incident edges.

¬l(e, i) ∨ c(e, u, i) ∨ s(min{e, f},max{e, f}, i) ∨ ¬s(min{e, g},max{e, g}, i)

for e, f, g ∈ E(H), e 6= f , e 6= g, u ∈ V (H), u ∈ f , u ∈ g, 1 ≤ i ≤ d
¬l(e, i) ∨ s(min{e, f},max{e, f}, i) ∨ c(e, u, i)

for e, f ∈ E(H), e 6= f , u ∈ V (H), u ∈ e, u ∈ f , 1 ≤ i ≤ d
Additionally, we add the following redundant clauses that ensure the “monotonicity” of the load vertices, i.e.,

if u is a load vertex for a set at level i and for the corresponding set at level i + 2, then it also has to be a load
vertex at level i+ 1.

¬l(e, i) ∨ ¬l(e, i+ 1) ∨ ¬l(e, i+ 2) ∨ ¬c(e, u, i) ∨ ¬c(e, u, i+ 2) ∨ c(e, u, i+ 1))
for e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d− 2

The definition of load vertices adds O(mnd) variables and O(m3nd) clauses.

Restricting the Order of the Separations Next, we describe how to restrict the size of all sets of load vertices
to w and thereby complete the encoding of F (H,w, d). In particular, our aim is to restrict the number of vertices
u ∈ V (H) for which a variable c(e, u, i) is true for some e ∈ E(H) and 1 ≤ i ≤ d. In this paper, we
will only present the sequential counter approach [Samer and Veith 2009] since this approach has turned out to
provide the best results in our setting. We also considered the order encoding [Heule and Szeider 2015] with
less promising results. For the sequential counter, we will introduce a counter variable #(e, u, i, j) for every
e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d, 1 ≤ j ≤ w.

The idea of the sequential counter is illustrated in Table 1. Informally, #(e, u, i, j) is true if u is the lexico-
graphically j-th load vertex of the edge e. We need the following clauses.

(¬#(e, u− 1, i, j) ∨ #(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u− 1, i, j − 1))
∨#(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u− 1, i, w))

for e ∈ E(H), 2 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d, 1 ≤ j ≤ w
¬c(e, u, i) ∨ #(e, u, i, 1) for e ∈ E(H), 1 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d

This completes the construction of the formula F (H,w, d). In total F (H,w, d) has O(m2d + mndw) ⊆
O(m3 +m2n2) variables and O(m3nd+mndw) ⊆ O(m4n+m2n2) clauses. By construction, F (H,w, d) is
satisfiable if and only H has a derivation of width at most w and length at most d. Because of Theorem 3.1, we
obtain the following.

Theorem 3.3. The formula F (H,w, d) is satisfiable if and only ifH has a branch decomposition of width at most
w and depth at most d. Moreover, a corresponding branch decomposition can be constructed from a satisfying
assignment of F (H,w, d) in time that is linear in the number of variables of F (H,w, d).
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u c(e, u, i)
j

1 2 3 4
1 0 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 0 1 1 0 0
5 1 1 1 1 0
6 0 1 1 1 0

Table 1: An illustration of the behavior of the sequential counter for the case thatH has six vertices (labeled from
1 to 6) and w = 4. The first column identifies the vertex u, the second column gives the value of the variable
c(e, u, i) for a fixed edge e and a fixed level i and the last four columns give the values of the variables #(e, u, i, j).
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Figure 2: A hypergraph H (left) and an optimal carving (T, γ) of H (right). The labels of the leaves of T are the
vertices assigned to them by γ and the labels of the edges of T are the cut edges of that edge.

4 Carving-width
In this section, we introduce our encoding for carving-width. Carving-width is a decompositional parameter that
is closely related to branchwidth and has been introduced by Seymour and Thomas 1994. They showed that,
given a graph G and an integer k, deciding whether G has carving-width ≤ k is NP-complete, but can be decided
in polynomial time if G is planar. If k is a constant and not part of the input, then it can be decided in linear time
whether G has carving-width ≤ k [Thilikos et al. 2000]. Interestingly, the known polynomial-time algorithm for
computing the branchwidth of a planar graph is based on the corresponding algorithm for carving-width and uses
the fact that the carving-width of the so-called medial graph of a planar graph is exactly twice the branchwidth of
the original graph.

Carving decompositions (or simply carvings) are defined similarly to branch decompositions with two im-
portant differences: (i) the leaves of a carving are in correspondence to the vertices instead of the edges of the
hypergraph and (ii) the width of an edge (and in consequence the width of a carving) is measured in terms of the
number of edges of the hypergraph with at least one endpoint in both components of the carving decomposition
obtained after deleting the edge.

Let H = (V,E) be a hypergraph and V ′ ⊆ V . We denote by δ(V ′) the set of edges e ∈ E that have at
least one endpoint in V ′ and outside of V ′, i.e., e ∩ V ′ 6= ∅ and e \ V ′ 6= ∅. A carving C(H) of a hypergraph
H = (V,E) is a pair (T, γ), where T is a ternary tree and γ : L(T ) → V is a bijection between the vertices of
H and the leaves of T (denoted by L(T )). For simplicity, we write γ(L) to denote the set { γ(l) | l ∈ L } for
a set L of leaves of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a subtree T of T ′. For an edge e of
T , we denote by δC(e) (or simply δ(e) if C is clear from the context) the set of cut edges of e, i.e., the set δ(T ′),
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where T ′ is any of the two components of T \ {e}. The width of an edge e of T is the number of cut edges of e,
i.e., |δC(e)| and the width of C is the maximum width of any edge of T . The carving-width of H is the minimum
width over all carvings of H (or 0 if |V (H)| = 1 and H has no carving). We also define the depth of C as the
radius of T . Fig. 2 illustrates a carving of a small hypergraph.

4.1 Partition-based Reformulation of Carving-width
LetH = (V,E) be a hypergraph. A carving derivation P ofH of length l is a sequence (P1, . . . , Pl) of partitions
of V such that:

(D1) P1 = { {v} | v ∈ V } and Pl = {V } and

(D2) for every i ∈ {1, . . . , l − 2}, Pi is a 2-ary refinement of Pi+1 and

(D3) Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(V ) over all sets V ∈ ⋃1≤i<l Pi. We will refer to Pi as the i-th level
of the carving derivation P and we will refer to elements in

⋃
1≤i≤l Pi as sets of the carving derivation. We will

show that any carving can be transformed into a carving derivation of the same width and also the other way
around. The following example illustrates the close connection between carvings and carving derivations.

Example 4.1. Consider the carving decomposition C given in Fig. 2. Then C can, e.g., be translated into the
derivation P = (P1, . . . , P5) defined by:

P1 =
{{

2
}
,
{

9
}
,
{

1
}
,
{

4
}
,
{
A
}
,
{

3
}
,
{

8
}
,
{

5
}}

P2 =
{{

2, 9
}
,
{

1, 4
}
,
{
A, 3

}
,
{

8
}
,
{

5
}}

P3 =
{{

2, 9, 1, 4
}
,
{
A, 3, 8

}
,
{

5
}}

P4 =
{{

2, 9, 1, 4, A, 3, 8, 5
}}

The width of C is equal to the width of P .

The following theorem shows that derivations provide an alternative characterization of carving decomposi-
tions. Since the proof uses the same construction and is also otherwise very similar to the proof of Theorem 3.1,
we will not repeat it here.

Theorem 4.1. Let H be a hypergraph and w and d integers. H has a carving of width at most w and depth at
most d if and only if H has a carving derivation of width at most w and length at most d.

As in the case of branchwidth, it will be beneficial for our encoding to obtain a tight bound on the length of a
carving derivation. The next theorem shows a tight upper bound on the length of any carving derivation obtained
from some carving decomposition. The main ideas are similar to the ideas used for branch decompositions
(Theorem 3.2), however, there are some subtle differences. Observe that a simple caterpillar (i.e., a path where
each inner vertex has one additional “pending” neighbor) shows that the bound given below is tight.

Theorem 4.2. Let H be a hypergraph with maximum degree ∆ and w an integer. Then the carving-width of
H is at most w if and only if H has a carving derivation of width at most w and length at most b|V (H)|/2c −
dw/∆e+ dlogbw/∆ce.

Proof. The backward direction of the claim follows immediately from Theorem 4.1.
Towards showing the forward direction we first show that every carving of width at mostw can be transformed

into a carving of the same width and whose depth is at most b|V (H)|/2c − dw/∆e + dlogbw/∆ce. The claim
then follows from Theorem 4.1.

Let C := (T, γ) be a carving of H of width at most w. Because T is a ternary tree with exactly |V (H)|
leaves, we obtain that its radius is at most b|V (H)|/2c. Assume in the following that T is rooted in one of the (at
most two) center vertices, say r, of T . The main idea to obtain the exact bound on the radius of T given in the
statement of the theorem is now to replace every subtree of T rooted at some node, say t, that contains at most
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Figure 4: A branch decomposition B of the graph H given in Fig. 3 together with an example of a local branch
decomposition BL (highlighted by thicker edges) chosen by our algorithm.

bw/∆c vertices of H and whose height is maximal with respect to this property with a binary tree (containing
the same leaf nodes) of height at most dlogbw/∆ce. Because every edge in the obtained binary tree has width at
most (w/∆)∆ = w, this replacement does not increase the width of C and it is straightforward to verify that the
depth of the obtained carving decomposition is at most b|V (H)|/2c − dw/∆e+ dlogbw/∆ce.

4.2 Encoding
The encoding for carving derivations is very similar (actually almost identical) to the encoding we presented
for branch decompositions in Section 3.2. In particular, one can use the exact same encoding for the formulas
F (H,w, d) and F (H,w, d) as for derivations after switching the role that the vertices and edges of the hypergraph
play in the encoding. For instance, the set variables s(e, f, i) that were defined for all edges e, f ∈ E(H) with
e < f in the encoding for branchwidth, will now be defined for all vertices e, f ∈ V (H) with e < f . Similarly,
the cut variables c(e, u, i) that were defined for all edges e ∈ E(H) and vertices u ∈ V (H), will now be defined
for all vertices e ∈ V (H) and all edges u ∈ E(H).

5 Local Improvement For Branch decompositions

A

1

0
3 2

5
4

7

6

9
8

Figure 3: The graph H used to illustrate the main idea behind our local improvement procedure.

The encoding presented in Section 3.2 allows us to compute the exact branchwidth of hypergraphs up to a certain
size. Due to the intrinsic difficulty of the problem, one can hardly hope to go much further beyond this size barrier
with an exact method. In this section, we therefore propose a local improvement approach that employs our
SAT encoding to improve small parts of a heuristically obtained branch decomposition. Our local improvement
procedure can be seen as a kind of local search procedure that at each step tries to replace a part of the branch
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Figure 5: The improved branch decomposition B′ obtained from B after replacing the local branch decomposition
BL of H(TL) with an optimal branch decomposition B′L of H(TL) obtained from our SAT encoding. See Fig. 4
for an illustration of B and BL.

decomposition with a better one found by means of the SAT encoding and repeats this process until a fixed-point
(or timeout) is reached.

Let H be a hypergraph and B := (T, γ) a branch decomposition of H . For a connected ternary subtree
TL of T we define the local branch decomposition BL := (TL, γL) of B by setting γL(l) = δB(e) for every
leaf l ∈ L(TL), where e is the (unique) edge incident to l in TL. We also define the hypergraph H(TL) as the
hypergraph that has one hyperedge γL(l) for every leaf l of TL and whose vertices are defined as the union of
all these edges. We observe that BL is a branch decomposition of H(TL). The main idea behind our approach,
which we will formalize below, is that we can obtain a new branch decomposition of H by replacing the part
of B formed by BL with any branch decomposition of H(TL). In particular, by replacing BL with a branch
decomposition of H(TL) of lower width, we will potentially improve the branch decomposition B. This idea is
illustrated in Fig. 4 and Fig. 5.

input : A hypergraph H
output: A branch decomposition of H

B ← BDHeuristic(H) // (B := (T, γ))
improved← true
while improved do

M ← “the set of edges e of B whose width (|δB(e)|) is maximum”
C ← “the set of components of T [M ]”
improved← false
for C ∈ C do
BL ← LocalBD (B, C)
B′L ← ImproveLD (BL)
if B′L 6= NULL then
B ← Replace (B, BL, B′L)
improved← true

else
break

return B

Algorithm 1: Local Improvement
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input : A branch decomposition B := (T, γ) of H and a component C of T
output: A local branch decomposition of B

1 w ← “the width of B”
2 TL ← C
3 for c ∈ V (C) with degC(c) = 2 do
4 “add the unique third neighbor and its edge incident to c to TL”
/* Q is a first-in-first-out queue data-structure defining the usual

functions ‘‘push’’ and ‘‘pop’’. */
5 Q← “the set of leaves of TL”
6 while Q 6= ∅ and |TL| ≤globalbudget −2 do
7 l← Q.pop()
8 if “l is not a leaf of T” then
9 c, c′ ← “the two neighbors of l in T which are not neighbors of l in TL”

10 if δB({l, c}) < w and δB({l, c′}) < w then
11 “add c and c′ together with their edges incident to l to TL”
12 Q.push(c)
13 Q.push(c′)
14 return “the local branch decomposition of B represented by TL”

Algorithm 3: Local Selection (LocalBD).

input : A branch decomposition BL := (TL, γL) of H(TL)
output: An “improved” branch decomposition of H(TL)

if |TL| >globalbudget then
return NULL

w ← “the width of BL”
repeat
BD ← SATSolve(H(TL), w)
if BD 6= NULL then
B′L ← BD

w ← w − 1

until BD == NULL
return B′L

Algorithm 2: ImproveLD
A general outline of our algorithm is given in Algorithm 1. The algorithm uses two global parame-

ters: globalbudget gives an upper bound on the size of the local branch decomposition and the function
length(H,w), which is only used by the function SATSolve explained below, provides an upper bound on
the length of a derivation which will be considered by our SAT encoding.

Given a hypergraph H , the algorithm first computes a (not necessarily optimal) branch decomposition B :=
(T, γ) of H using, e.g., the heuristics from [Cook and Seymour 2003, Hicks 2002]. The algorithm then computes
the set M of maximum cut edges of T , i.e., the set of edges e of T with |δ(e)| = w, where w is the width of B.
It then computes the set C of components of T [M ], where T [M ] is the forest with vertex set V (T ) and edge
set M , and for every component C ∈ C it calls the function LocalBD to obtain a local branch decomposition
BL := (TL, γL) of B, which contains (at least) all the edges ofC. The function LocalBD is given in Algorithm 3
and will be described later. Given BL the algorithm tries to compute a branch decomposition B′L := (T ′L, γ

′
L) of

H(TL) with smaller width than BL using the function ImproveLD, which is described later. If successful, the
algorithm updates B by replacing the part of B represented by TL with B′L according to Theorem 5.1 and proceeds
with line 4. If on the other hand BL cannot be improved, the algorithm proceeds with the next component C of
T [M ]. This process is repeated until none of the components C of T [M ] lead to an improvement.

The function LocalBD, which is given in Algorithm 3, computes a local branch decomposition BL :=
(TL, γL) of B that contains at least all edges in the component C and which should be small enough to ensure
solvability by our SAT encoding as follows. In the beginning, TL is set to the connected ternary subtree of T
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obtained from T [C] after adding the (unique) third neighbor of any vertex v of C that has degree exactly two
in T [C]. It then proceeds by processing the (current) leaves of TL in a breadth first search manner, i.e., in the
beginning, all the leaves of TL are put in a first-in first-out queue Q. If l is the current leaf of TL, which is not a
leaf of T , the algorithm adds the two additional neighbors of l in T to TL and adds them to Q. It proceeds in this
manner until the number of edges in TL reaches the global budget.

The function ImproveLD tries to compute a branch decomposition of H(TL) with lower width than BL
using our SAT encoding. In particular, if the size of TL does not exceed the global budget (in which case it
would be highly unlikely that a lower width branch decomposition can be found using our SAT encoding), the
function calls the function SATSolve with decreasing widths w until SATSolve does not return a branch
decomposition any more. Here, the function SATSolve uses the formula F (H(TL), w, d) from Theorem 3.3
with d set to length(H,w) to test whether H(TL) has a branch decomposition of width at most w and depth
at most d. If so (and if the SAT solver solves the formula within a predefined timeout) SATSolve returns the
corresponding branch decomposition; otherwise, it returns NULL.

Last but not least the function Replace replaces the part of B represented by BL with the new branch
decomposition B′L according to Theorem 5.1.

Let H be a hypergraph, B := (T, γ) a branch decomposition of H , TL a connected ternary subtree of T ,
BL := (TL, γL) the local branch decomposition of B corresponding to TL, and let B′L := (T ′L, γ

′) be any branch
decomposition of H(TL). Note that because BL and B′L are branch decompositions of the same hypergraph
H(TL), we obtain from Observation 2.1 that we can assume that V (TL) = V (T ′L) and γ = γ′. We define the
locally improved branch decomposition, denoted by B(BL

B′
L

), to be the branch decomposition obtained from B by
replacing the part corresponding to BL with B′L, i.e., the tree of B′ is obtained from T by removing all edges of
TL from T and replacing them with the edges of T ′L and the bijection of B′ is equal to γ.

Theorem 5.1. B(BL

B′
L

) is a branch decomposition of H , whose width is the maximum of the width of B′L and the
maximum width over all edges e ∈ E(T ) \ E(TL) in B.

Proof. It is easy to verify that B(BL

B′
L

) is indeed a branch decomposition of H .

Towards showing that the width of B(BL

B′
L

) is equal to the maximum of the width of B′L and the maximum
width of any edge e ∈ E(T ) \ E(TL) in B, we first give an alternative definition for γL.

Let F be the forest obtained from T after deleting all edges of TL, i.e., F is the forest T \ E(TL). Then
every leaf of TL and also every leaf of T is contained in exactly one component of F . Moreover, because T
is a tree every component of F contains at most one leaf of TL. Let Lcut : L(TL) → L(T ) be the mapping
that assigns to every leaf l of T the set of all leaves of T that are contained in the same component as l in F .
Note that Lcut naturally associates every leaf l of TL to the cut (γ(Lcut(l)), E(H) \ γ(Lcut(l))). Note that
δH(γ(Lcut(l))) = δB(e) for every l ∈ L(TL), where e is the (unique) edge in TL incident to l. Hence, in the
following we will assume that γL(l) is equal to δH(γ(Lcut(l))).

We are now ready to prove the statement of the theorem concerning the width of B(BL

B′
L

). Observe that it is
sufficient to show that for every edge e of T ′ either δB′(e) = δbd(e) if e ∈ E(T ′) \ E(T ′L) or δB′(e) = δB′

L
(e)

if e ∈ E(T ′L). Towards showing the former case, let e ∈ E(T ′) \ E(T ′L). Because TL and T ′L are connected the
components of T \{e} are the same as the components of T ′ \{e} for every such edge e. Hence, δB′(e) = δB(e),
as required.

Towards showing the later case, let e ∈ E(T ′L) and let C1 and C2 be the two components of T ′ \ {e}.
We start by showing that δB′(e) ⊆ δB′

L
(e). Because v ∈ δB′(e), we obtain that there are two leaves l1 and

l2 of T ′ with l1 ∈ V (C1) and l2 ∈ V (C2) such that v ∈ γ′(l1) ∩ γ′(l2). Observe that f(l1) ∈ V (C1) and
f(l2) ∈ V (C2) and hence v ∈ γ′L(f(l1)) and v ∈ γ′L(f(l2)). Consequently, v ∈ δB′

L
(e). This shows that

δB′(e) ⊆ δB′
L

(e) and it remains to show that δB′
L

(e) ⊆ δB′(e). Because v ∈ δB′
L

(e), we obtain that there are two
leaves l1 and l2 of T ′L with l1 ∈ V (C1) and l2 ∈ V (C2) such that v ∈ γ′L(l1) ∩ γ′L(l2). Because v ∈ γ′L(l1),
we obtain that there is a leaf l′1 ∈ f−1(l1) such that v ∈ γ′(l′1). Similarly, because v ∈ γ′L(l2), we obtain that
there is a leaf l′2 ∈ f−1(l2) such that v ∈ γ′(l′2). Note that because l′1 ∈ f−1(l1) it holds that l′1 ∈ V (C1) and
similarly because l′2 ∈ f−1(l2) it holds that l′2 ∈ V (C2). Hence, v ∈ δB′(e), which completes the proof of the
theorem.
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6 Local Improvement For Carving decompositions
The local improvement approach introduced in the previous section for branchwidth can also be employed for
carving-width in a very similar manner. Namely if C(H) = (T, γ) is a carving of a hypergraph H = (V,E)
and TL is a connected ternary subtree of T , we can define the local carving CL = (TL, γL) of C by setting
γL(l) = γ(L(T l)) for every leaf l ∈ L(TL), where T l is the unique subtree of T ′ containing l and T ′ is the
subgraph of T obtained after deleting all edges in TL from T . Note that (TL, γL) is strictly speaking not a
carving of H since its leaves are assigned to subsets of vertices instead of single vertices. Since (TL, γL) only
partially decomposes H , i.e., it does not decompose the subsets of vertices assigned to its leaves, we call it a
partial carving. One can now show, in a very similar manner as for branch decompositions, that any partial
carving of H , whose leaves correspond to the same subsets of V (H) as the leaves in (TL, γL), can be used to
replace (TL, γL) in (T, γ) to obtain a carving of H with potentially smaller width. Moreover, finding a partial
carving of smaller width can be achieved by employing almost the same encoding as introduced in Section 4.
In particular, one merely needs to adapt Property (D1) of carving derivations (see Subsection 4.1) to ensure that
the initial partition of a derivation is equal to the partition of V (H) given by the leaves of (TL, γL). Hence
the local improvement approach for branchwidth can be easily adapted to carvings with one exception: For
the local improvement approach to work, it is crucial that one can obtain an initial carving very efficiently,
e.g., via a heuristic method as in the case of branch decompositions. Unfortunately, we are not aware of any
suitable heuristic method for the computation of carvings and have therefore refrained from implementing the
local improvement approach for carvings.

7 Experimental Results
We have implemented and tested the single SAT encoding for branchwidth and carving-width, as well as the SAT-
based local improvement method for branchwidth. We tested them on various benchmark instances, including
famous named graphs from the literature [Weisstein 2016], graphs from TreewidthLIB [Bodlander 2016] which
origin from a broad range of applications, and a series of circular clusters [Cornuéjols 2001] which are hyper-
graphs denoted Ci

j with j vertices and j edges of size i. Throughout we used the SAT solver Glucose 4.0 (with
standard parameter setting) as it performed best in our initial tests compared to other solvers such as GlueMiniSat
2.2.8, Lingeling, and Riss 4.27. We run the experiments on a 4-core Intel Xeon CPU E5649, 2.35GHz, 72 GB
RAM machine with Ubuntu 14.04 with each process having access to at most 8 GB RAM.

7.1 Single SAT Encoding
To determine the branchwidth or carving-width of a graph or hypergraph with our encodings, one could either
start from w = 1 and increase w until the formula becomes satisfiable, or by setting w to an upper bound on
the width obtained by a heuristic method, and decrease it until the formula becomes unsatisfiable. For both
approaches the solving time at the threshold (i.e., for the largest w for which the formula is unsatisfiable) is, as
one would expect, by far the longest. Table 2 shows this behavior on some typical instances. Hence whether we
determine the width from below or from above does not matter much. A more elaborate binary search strategy
could save some time, but overall the expected gain is little compared to the solving time at the threshold. The
solving time varies and depends on the structure of the (hyper)graph. We could determine the exact branchwidth
and carving-width of many famous graphs known from the literature, see Table 3. For many of the graphs, the
exact branchwidth or carving-width were not known before.

We verified the correctness of our encoding for branchwidth by comparing the widths computed by our
method with the widths computed by Hicks’ 2005 tangles-based algorithm. For carving-width, we are not aware
of any other implemented algorithm, but as a sanity check we used the fact that the carving-width of the medial
graph of a planar graph is exactly two times the branchwidth of the graph [Seymour and Thomas 1994], and we
tested this for a number of planar graphs.

Table 3 contains a comparison of our SAT encoding for branchwidth with Ulusal’s ILP encodings [Ulusal
2008] as well as Hicks’ tangles-based algorithm 2005 over all the graphs in the famous graphs benchmark suite.
For this comparison, we re-implemented the integer programming encodings and compared our algorithm with
this approach and the tangle based algorithm, for which we obtained the source code from the authors. The
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Table 2: Distribution of solving time in seconds for various values of w for some famous named graphs of
branchwidth 6.

w 2 3 4 5 6 7 8 9 10

Graph unsat unsat unsat unsat sat sat sat sat sat

FlowerSnark 1.2 4.4 25.5 889.9 1.6 1.3 1.6 1.3 1.3
Errera 5.7 22.7 79.4 1530.9 12.0 7.3 6.7 5.4 6.1
Folkman 3.4 13.7 98.6 2747.0 6.1 5.3 3.7 3.8 5.2
Poussin 3.3 9.2 68.7 941.2 4.5 3.5 3.9 2.9 3.4

table shows the running time in seconds for our encoding (SAT), the best running time for any of the three ILP
encodings developed by Ulusal (ILP), and the running time of Hicks’ tangles-based algorithm. The table shows
that our SAT encoding for branchwidth solved 30, Ulusal’s ILP encodings solved 8, Hicks’ algorithm solved 36,
and our SAT encoding for carving-width solved 38 out of the 41 famous graphs within a timeout of 100 minutes.

To determine the branchwidth of (at least) some of the remaining graphs, we ran additional experiments
with an increased timeout of 24 hours. This allowed us to compute the branchwidth of the Holt graph and the
Shrikhande graph. Interestingly, whereas our SAT encoding could solve the Holt graph in less than 24 hours, the
tangles-based algorithm ran out of memory and was not able to solve the instance. Since the Holt graph is also
the graph with the highest branchwidth among all the famous graphs for which we know their branchwidth, this
suggests that our SAT encoding for branchwidth might have an advantage over the tangles-based approach for
instances with high branchwidth. This is in alignment with the fact that the time and space requirements of the
tangles-based approach grow exponentially with the branchwidth of the graph [Hicks 2005].

Overall the experiments show that on the famous graphs, except for the Holt graph, the tangles-based approach
is superior to our SAT encoding, which in turn is superior to the ILP encodings developed by Ulusal. However, the
results on the Holt graph suggest that our SAT encoding is better suited for the instances with high branchwidth
that are encountered within our local improvement procedure.

Finally, to obtain a first indication of the performance of our SAT encodings on hypergraphs, we tested our
encodings on the circular cluster hypergraphs Ci

2i−1 [Cornuéjols 2001], which have also been used by Ulusal
to evaluate the performance of ILP encodings. We were able to find the exact branchwidth for instances up to
i = 26 and the exact carving-width for instances up to i = 16 using a timeout of 2000 seconds. For comparison,
the best of Usual’s ILP encodings could merely solve these instances up to i = 6 whereas Hicks’ algorithm does
not support hypergraphs.

7.2 SAT-Based Local Improvement
We tested our local improvement method on graphs with several thousands of vertices and edges, with initial
branch decompositions of width up to above 200. In particular, we tested it on all graphs from TreewidthLIB
omitting graphs that are minors of other graphs as well as small graphs with 150 or fewer edges (small graphs can
be solved with the single SAT encoding). These are in total 740 graphs with up to 5934 vertices and 17770 edges.
We ran our SAT-based local improvement algorithm on each graph with a timeout of 6 hours, where each SAT-
call had a timeout of 1200 seconds and a memory limit of 8GB. We computed the initial branch decomposition
by a greedy heuristic described by Hicks [2005] who kindly provided us the implementation. We conducted
our experiments using different values for the budget, i.e., the parameter globalbudget used in Algorithm 1
bounding the maximum number of edges in the local hypergraph, as well as different values of depth for the
derivation of the local hypergraph (the parameter length(H,w) used in Algorithm 1). Tables 5, 6, and 7
illustrate our experimental results for budgets between 120 and 210 and depths ranging between m/5 and m
as well as the depth given by Theorem 3.2 (here m refers to the number of edges of the local hypergraph). To
compare the performance of our approach for different values of these two parameters, we use the following
performance indicators:

• the sum of the improvement over all instances (Table 5),

16

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
01
0



Table 3: Experimental results for our SAT encodings for branchwidth and carving-width on the famous graphs.
The columns below “branchwidth” show the branchwidth ω (computed by any of the three methods), and the
times in seconds required by our SAT encoding (SAT), the fastest of the three ILP encodings by Ulusal (ILP), and
the tangles-based algorithm (Tangles). Finally, the ω column below “carving-width” shows the carving-width
computed by our SAT encoding. “-” indicates that the instance could not be solved within a timeout of 24 hours
and ? indicates that the instance could be solved within 24 hours but not within our initial timeout of 100 min.
We indicate an out of memory error by “MO.”

Graph |V | |E| Branchwidth Carving-width

ω SAT ILP Tangles ω

Ellingham 78 117 - - - - -
B10Cage 70 106 - - - - -
Watsin 50 75 6 - - 32.14 6
Paley17 17 68 - - - - -
Kittell 23 63 6 - - 315.88 12
Holt 27 54 9 ? - MO 12
Shrikhande 16 48 8 ? - ? 16
Errera 17 45 6 1384.21 - 3.70 12
Brinkmann 21 42 8 - - 3163.38 12
5x5-grid 25 40 5 13.45 - 0.06 6
Folkman 20 40 6 1518.40 - 3.40 12
Clebsch 16 40 8 - - 2017.62 16
Poussin 15 39 6 645.63 - 4.75 11
Paley13 13 39 7 - - 179.11 16
Robertson 19 38 8 - - 3906.94 12
McGee 24 36 7 - - 177.92 8
Nauru 24 36 6 436.23 - 43.34 8
Hoffman 16 32 6 997.97 - 3.97 10
Desargues 20 30 6 474.72 - 2.10 6
Dodecahedron 20 30 6 152.96 - 2.29 6
Flower Snark 20 30 6 995.93 - 1.87 6
Pappus 18 27 6 241.12 - 1.76 6
Sousselier 16 27 5 18.47 - 0.12 7
Goldner-Harary 11 27 4 9.97 - 0.48 10
4x4-grid 16 24 4 3.77 - 0.10 5
Chvátal 12 24 6 81.20 - 0.82 8
Grötzsch 11 20 5 11.37 - 0.55 7
Dürer 12 18 4 2.45 - 0.01 4
Franklin 12 18 4 4.85 - 0.04 4
Frucht 12 18 3 2.16 475.59 0.41 4
Tietze 12 18 4 1.52 - 0.04 5
Herschel 11 18 4 8.49 - 0.08 6
Petersen 10 15 4 1.62 - 0.09 5
3x3-grid 9 12 3 1.10 1.18 0.02 4
Pmin 9 12 3 1.09 1.07 0.03 4
Wagner 8 12 4 1.54 - 0.02 4
Moser spindle 7 11 3 1.05 2.40 0.014 4
Prism 6 9 3 1.33 1.07 0.03 4
Butterfly 5 6 2 2.11 0.87 0.02 4
Bull 5 5 2 0.00 1.01 0.00 2
Diamond 4 5 2 2.09 1.10 52.54 3
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Table 4: Results for SAT-based local improvement for a selection of example instances from TreewidthLIB.

Graph |V | |E| Branchwidth Difference
Initial Improved

bn 63-pp 426 1489 73 51 22
bn 51 661 2131 95 75 20
bn 77 1020 2616 40 23 17

rl5915.tsp 5915 17728 70 64 6
fl3795.tsp 3795 11326 49 42 7
fnl4461.tsp 4461 13359 82 72 10

bn 43-pp 254 725 23 17 6
fl1400.tsp-pp 1390 4108 23 14 9
vm1084.tsp-pp 808 2312 29 19 10

graph09 458 1667 125 117 8
graph13-wpp 427 1778 137 129 8
pignet2-pp 1024 3774 175 173 2



 significant improvement



 large number of edges



 low initial width



 large initial width

• the maximum improvement for any of the instances (Table 6),

• the total number of instances whose branchwidth could be improved by at least one (Table 7).

For the sum of improvements (Table 5) as well as for the total number of improved instances (Table 7) the best
combination turned out to be a budget of 200 and a depth ofm/3. For this combination, the sum of improvements
is 1483 and we improved the width of 476 out of 740 instances. With regards to the maximum improvement of
any instance (Table 6), this combination performed well with a maximum improvement of 20; however, the
combination with a budget of 140 and using the optimal depth performed even better, allowing us to improve the
width of an instance by 22.

In Table 4 we list some instances that we found particularly notable for various aspects, such as a significant
improvement, a large number of vertices and edges, or a remarkably low or high width of the initial branch
decomposition.

Our experiments show that the SAT-based local improvement method scales well to large graphs with several
thousands of vertices and edges and branchwidth upper bounds well over hundred. These are instances that are by
far out of reach for any known exact method, in particular, for the tangles-based algorithm which cannot handle
large branchwidth. The use of our SAT encoding which scales well with the branchwidth is therefore essential
for these instances.

Our results on TreewidthLIB instances show that in some cases the obtained improvement can make a dif-
ference of whether a dynamic programming algorithm that uses the obtained branch decomposition is feasible or
not. Our experiments also show that it can be worth to tune the local improvement approach using parameters
such as budget and depth.

8 Final Remarks
We have presented a first SAT encoding for branchwidth based on a novel partition-based formulation of branch
decompositions and introduced the new SAT-based local improvement method. We also formulated a SAT-based
local improvement method for carving width. Our SAT-based local improvement method provides the means
for scaling the SAT-approach to significantly larger instances and exhibits a fruitful new application field of SAT
solvers. In many cases, the SAT-based local improvement method could obtain branch decompositions of a width
that makes a dynamic programming feasible, which was not possible with the original branch decomposition
obtained by a heuristics.
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Table 5: Sum of improvements over all the instances for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 809 1182 1138 1200 911 670
130 1055 1249 1216 1343 1221 896
140 1043 1338 1299 1387 1291 961
150 1055 1338 1318 1454 1375 1028
160 1004 1350 1350 1453 1390 1047
170 962 1350 1352 1460 1390 1035
180 913 1322 1293 1454 1342 1033
190 934 1309 1296 1478 1401 1121
200 780 1288 1090 1483 1156 907
210 891 1209 1349 1395 1363 1046

Table 6: Maximum improvement over all the instances for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 14 21 21 20 17 16
130 17 19 20 20 17 14
140 16 20 22 20 17 16
150 18 19 20 20 18 17
160 10 19 20 20 17 15
170 10 19 20 20 16 15
180 20 19 20 20 18 19
190 10 19 20 20 19 15
200 10 19 20 20 16 15
210 10 19 20 20 16 17

For both the single SAT encoding and the SAT-based local improvement we see several possibilities for fur-
ther improvement. For the encoding one can try other ways for stating cardinality constraints and one could
apply incremental SAT solving techniques. Further, one could consider alternative encoding techniques based on
MaxSAT, which have been shown effective for related problems [Berg and Järvisalo 2014]. Also for the local
improvement, we see various directions for further research. For instance, when a local branch decomposition
cannot be improved, one could use a SAT solver to obtain an alternative branch decomposition of the same width
but where other parameters are optimized, e.g., the number of maximum separations. This could propagate into
adjacent local improvement steps and yield an overall branch decomposition of smaller width. Our experiments
show the performance of our local improvement approach depends on the exact combination of various param-
eters such as budget and depths. It would therefore be interesting for future work to investigate the benefit from
tools for automated parameter configuration [Falkner et al. 2015].

Finally, we would like to mention that branch decompositions are the basis for several other (hyper)graph
width measures such as rankwidth and Boolean-width [Adler et al. 2010], as well as to width-parameters em-
ployed in Knowledge Compilation and Reasoning [Darwiche 2009]. Hence we think that it might be fruitful to
extend our methods to such width measures related to branchwidth and leave this for future research.

Acknowledgment We thank Illya Hicks for providing us the code of his branchwidth heuristics and acknowl-
edge support by the Austrian Science Fund (FWF, projects W1255-N23 and P-27721).
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Table 7: Number of improved instance for the various configurations.

budget m/1 m/2 optimal m/3 m/4 m/5

120 316 395 390 401 322 260
130 394 421 411 426 412 331
140 406 435 428 442 431 353
150 412 448 439 459 447 370
160 417 458 448 465 458 380
170 405 454 450 465 458 380
180 392 457 446 466 444 368
190 403 462 448 470 463 422
200 339 466 378 476 393 332
210 379 444 515 462 456 380
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in Computer Science), Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav Královic,
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