
Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

Technical Report AC-TR-2019-008
October 2019

Finding Longest Common
Subsequences: New A∗

Anytime Results

M. Djukanovic, G. R. Raidl, C. Blum

This is the authors’ copy of a paper that has been submitted

www.ac.tuwien.ac.at/tr



Finding Longest Common Subsequences:
New Anytime A∗ Search Results

Marko Djukanovic1, Günther R. Raidl1, and Christian Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria
2Artificial Intelligence Research Institute (IIIA-CSIC),

Campus UAB, Bellaterra, Spain
{djukanovic|raidl}@ac.tuwien.ac.at, christian.blum@iiia.csic.es

Abstract. The Longest Common Subsequence (LCS) problem aims at find-
ing a longest string that is a subsequence of each string from a given set of
input strings. This problem has applications, in particular, in the context of
bioinformatics, where strings represent DNA or protein sequences. Existing
approaches include numerous heuristics, but only a few exact approaches, lim-
ited to rather small problem instances. Adopting various aspects from leading
heuristics for the LCS, we first propose an exact A∗ search approach, which
performs well in comparison to earlier exact approaches in the context of small
instances. On the basis of A∗ search we then develop two anytime algorithms
in which classical A∗ iterations are alternated with beam search and anytime
column search, respectively. A key feature to guide the heuristic search in
these approaches is the usage of an approximate expected length calculation
for the LCS of uniform random strings. Even for large problem instances these
anytime A∗ variants yield reasonable solutions early during the search and im-
prove on them over time. Moreover, they terminate with proven optimality if
enough time and memory is given. Furthermore, they yield upper bounds and,
thus, quality guarantees when terminated early. We comprehensively evaluate
the proposed methods using most of the available benchmark sets from the lit-
erature and compare to the current state-of-the-art methods. In particular, our
algorithms are able to obtain new best results for 82 out of 117 instance groups.
Moreover, in most cases they also provide significantly smaller optimality gaps
than other anytime algorithms.

Keywords: longest common subsequence problem; anytime algorithm;
A∗ search; beam search; anytime column search

1. Introduction

In computer science strings are widely used for representing sequence information. Words
and longer texts are naturally represented by means of strings, and in the field of bioinfor-
matics, DNA, RNA and protein sequences, for example, play particularly important roles.

1

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



We formally define a string s as a finite sequence of |s| characters from a finite alphabet Σ.
A frequently occurring necessity is to detect similarities between several strings in order to
derive relationships and possibly predict different aspects of a set of strings. A subsequence
of a string s is any sequence obtained by removing arbitrary characters from s. A natural
and common way to compare two or more strings is studying their common subsequences.
More specifically, given a set of m input strings S = {s1, . . . , sm}, the Longest Common
Subsequence (LCS) problem [31] aims at finding a subsequence of maximal length which
is common for all the strings in S. Apart from applications in computational biology [25],
this problem appears, for example, in data compression [35, 3], text editing [27], the pro-
duction of circuits in field programmable gate arrays [9], and file comparison (used in the
Unix command diff) [4].

For fixed m polynomial algorithms based on dynamic programming (DP) are known [21]
to solve the LCS problem. Standard dynamic programming approaches run in O(nm)
time, where n denotes the length of the longest input string. These exact methods be-
come quickly impractical when m grows and n is not small. For a general number of
input strings m the LCS problem is known to be NP-hard [31]. In practice, heuristic
techniques are typically used for larger m and n. The Expansion algorithm and the Best-
Next heuristic [18, 24] are well known simple and fast construction heuristics, respectively.
Substantially better solutions can usually be obtained by more advanced search strategies
and metaheuristics. Among these are in particular many approaches that are based on
Beam Search (BS), see e.g., [6, 32, 36, 42, 15], and they differ in various important details
such as the heuristic guidance, the branching mechanism, and the filtering.

In our recent work [14], we proposed a general BS framework for the LCS that unifies
all the heuristic state-of-the-art approaches from the literature in the sense that each
one can be expressed by respective configuration settings. Moreover, a novel heuristic
guidance function was proposed, which approximates the expected length of a LCS for
random strings. In a comprehensive experimental comparison previous methods have
been compared and a new state-of-the-art BS variant was determined, which dominates
the other approaches on most of the available benchmark instances. The mentioned new
heuristic guidance function turned hereby out to play a crucial role.

Concerning exact approaches for the LCS problem, an integer linear programming model
has been considered in [7]. It is, however, not competitive as it cannot be applied to any
of the commonly used benchmark instances due to too many variables and constraints in
the model. Dynamic programming approaches are reasonable for small m and small n,
but they also quickly run out of memory for larger instances and then typically return
only weak solutions, if at all. Chen et al. [10] proposed the parallel FAST LCS search
algorithm, which is based on producing a special successors table to obtain all the identical
pairs and their levels. Successor nodes are derived in parallel. Pruning operations are
utilized to reduce the computational effort. While the algorithm is effective for a small
number of input strings, it also struggles for larger m. Wang et al. [42] proposed another
parallel algorithm called QUICK-DP, which is based on the dominant point approach
and employs a fast divide-and-conquer technique to compute the dominant points. More
recently, Li et al [28] suggested the Top MLCS algorithm, which is based on a directed
acyclic layered-graph model (called irredundant common subsequence graph) and parallel
topological sorting strategies used to filter out paths representing suboptimal solutions.
Moreover, the authors showed that the earlier dominant-point-based algorithms do not
scale well to larger LCS instances, and Top MLCS significantly outperforms them. In
addition to the sequential Top MLCS, also a parallel variant was proposed. Another

2

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



parallel space efficient algorithm based on a graph model, called the Leveled-DAG, was
described by Peng and Wang [33]. It eliminates all the nodes in the layered graph that
do not contribute to the construction of the LCS, and thus keeps only the nodes from
the current level and some previously generated ones. In the experimental comparison,
Leveled-DAG and Top MLCS solved the same number of benchmark instances to
proven optimality, but Leveled-DAG consumed less memory.

Despite these recent advances, solving practically relevant instances to proven optimality
remains a substantial challenge in terms of memory and computation time, even when
utilizing many parallel threads. The existing exact methods are therefore frequently not
applicable in practice. As a compromise between classical exact techniques and pure
heuristic approaches, anytime algorithms have been proposed [48, 47]. An anytime algo-
rithm is supposed to fulfill the following properties: (1) It is, in principle, complete in the
sense that it terminates with a proven optimal solution when enough time and memory
is provided; (2) it can be terminated at almost any time and then returns a solution of
reasonable quality; and (3) the solution quality improves with the given time.

Anytime algorithms thus offer to choose the trade-off between solution quality and compu-
tational requirements. Concerning the LCS problem, two anytime approaches have been
proposed in the literature so far: Pro-MLCS [44] and SA-MLCS [43]. Both algorithms
are based on the dominant point method [41], which features a special distance measure
dist for heuristic guidance and a specific multi-dimensional data structure for checking
the dominance relation of already explored nodes during the search. Algorithm Pro-
MLCS iteratively extends a fixed number of nodes at each level in a level-by-level manner
and is similar to anytime column search [39], which we will consider in more detail in
Section 4.2. On the other side, SA-MLCS applies an iterative beam widening strategy
in successive iterations to reduce space requirements. It differs from Pro-MLCS in the
data structures utilized to maintain open nodes. A specific priority queue is realized for
SA-MLCS which stores those nodes whose children have not all been expanded, further
exploited in the algorithm to make use of the search information from previous iterations
to improve efficiency of the SA-MLCS. Last but not least, [43] describes another memory
bounded variant of SA-MLCS, called SLA-MLCS. A weakness of all these approaches
is that they are not able to provide an upper bound on the solution quality and therefore
no quality guarantee in case of early termination. Moreover, neither in [44] nor in [43]
enough details are provided concerning the multi-dimensional data structure for check-
ing dominance. This made it, unfortunately, impossible to re-implement the algorithms
with all their details, and source code is not provided by the authors. However, in the
experimental section of this work we consider the distance measure dist as an alternative
heuristic guidance and we also build upon anytime column search.

Our contributions are as follows. We first propose an exact A∗ search for the LCS problem,
which is derived from components and settings that proved already useful in heuristic BS
variants as determined in our earlier studies [15, 14]. This A∗ search is shown to be
effective for small instances, but as one may expect it has serious scalability issues similar
to other exact methods in terms of time and memory requirements when considering larger
instances. We therefore extend this A∗ search by applying two alternative hybrid search
strategies from [16], turning the original A∗ search into effective anytime algorithms for
finding an LCS. Both follow the idea of interleaving traditional A∗ search iterations with
heuristic search—either BS or anytime column search [39]—and they are labeled A∗+BS
and A∗+ACS, respectively. The A∗ framework ensures completeness and provides upper
bounds at any time, while the embedded heuristic search iterations rely on the heuristic

3

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



guidance function from [14] and are responsible for producing a first approximate solution
quickly and improving it over time. Most importantly, the heuristic search iterations also
operate on the list of open nodes of A∗ search in order to avoid redundant node expansions.

In a comprehensive experimental study we evaluate the proposed approaches on various
LCS benchmark sets from the literature and compare to the so far best methods’ results.
Earlier computational studies always considered a subset of the available benchmark sets.
Concerning proven optimality, our A∗ search is able to solve 106 instances from the lit-
erature, which exceeds the number of solved instances by Top MLCS by six. Moreover,
in most cases our A∗ search is faster than Top MLCS. For the remaining instances that
cannot be solved to optimality, A∗+ACS turns out to be the now leading method for
most benchmark sets in respect to final solution quality. Moreover, optimality gaps are
considered for larger LCS instances for the first time, and those obtained by A∗+ACS are
shown to be significantly better than the ones of the other considered approaches on many
occasions. Most remarkably, A∗+ACS was able to achieve new best known solutions
for 82 different LCS instance groups, which corresponds to ≈70% of all the considered
instance groups.

The rest of this article is organized as follows. Section 2 gives an overview on essential
previous work and definitions required for the A∗ search for the LCS problem and its
anytime variants. The A∗ search framework is then presented in Section 3, while Section 4
provides the details of the A∗+ACS and A∗+BS anytime algorithms. Section 5 com-
prises the whole computational study. Conclusions and ideas for future work are given in
Section 6.

2. Previous Work

In this section we summarize those aspects of previous work that are needed for under-
standing the anytime algorithms proposed in this work. Most of this material was already
covered in a more detailed way in [14], where we introduced a general BS framework
for the LCS problem. Beam Search is a well known incomplete tree search method that
works in a limited Breadth-First Search (BFS) manner. At each step, it maintains a set
of nodes—called the beam—from the same level of the search tree. Note, in this context,
that each node of the tree corresponds to a partial solution and a respective remaining
subproblem, while the leaf nodes correspond to non-extensible solutions. The nodes of the
current beam are expanded at each step, generating a set of nodes from the next level of
the search tree. This set of extensions is denoted by Vext. Among the nodes from Vext,
the β > 0 most promising nodes are selected and form the beam of the next step, where β
is a strategy parameter called beam width. Beam Search keeps repeating these steps until
the beam is empty, i.e., no further expansions are possible. The initial beam consists just
of the root node of the search tree, which corresponds to the empty partial solution. The
result of BS is the best solution in the final beam. The general BS framework from [14]
covers all BS-based approaches from the literature known to us. In the following, after
introducing some notations and additional concepts, two important topics are addressed:
(1) the state graph on which both the BS approaches from the literature and the A∗ search
proposed in this work operate, and (2) upper bound functions and a heuristic guidance
function. Both upper bound functions and/or heuristic guidance functions are used in BS
approaches for the selection of the nodes that are kept as the next iteration’s beam.

4

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



2.1. Notations and Concepts

Let n be the maximum length of the m strings in S = {s1, . . . , sm}, i.e., n =
maxi=1,...,m |si|. Furthermore, let s[j], j = 1, . . . , |s|, be the j-th letter of a string s,
and let s1 · s2 denote the concatenation obtained by appending string s2 to string s1.
Moreover, s[j, j′], j ≤ j′, denotes the continuous subsequence of s starting at position j
and ending at position j′; if j > j′, s[j, j′] is the empty string denoted by ε. Finally, let
|s|a be the number of occurrences of letter a ∈ Σ in string s. Henceforth, a string s is
called a (valid) partial solution to S, if and only if s is a subsequence of each string in S,
that is, a common subsequence of S.

Any subproblem of S is defined on the basis of a so-called left position vector pL ∈ Nm, with
1 ≤ pL

i ≤ |si| for i = 1, . . . ,m. In particular, for a given pL, subproblem S[pL] concerns
the substrings si[pL, |si|] for all i = 1, . . . ,m. In other words, S[pL] contains the right part
of each string from S starting from the position indicated in the left position vector pL.
Note that the original problem S can be denoted by S[pL = (1, . . . , 1)]. Given a (partial)
solution s to S—that is, a string s that is a common subsequence of S—a subproblem S[pL]
is induced by defining pL in the following way. For each i = 1, . . . ,m, pL

i is determined
such that si[1, pL

i − 1] is the minimal-length string among all substrings si[1, p], p =
1, . . . , |si|, that contain s as a subsequence. For example, given S = {abcaac, acbaba}
and the partial solution s = aca, the induced subproblem S[pL] is defined by left position
vector pL = (5, 5). Note that there is potentially more than one partial solution inducing
the same subproblem, respectively, the same left position vector. In the example above,
partial solution s′ = aba, for example, induces the same subproblem and the same left
position vector as partial solution s = aca. Moreover, partial solutions inducing the same
subproblem and the same left position vector may have different lengths. Considering
again the example from above, substring s′′ = aa induces the same subproblem and the
same left position vector as s and s′.

2.2. State Graph for the LCS Problem

The state graph that is used by all BS variants known in the literature so far, and which
will also be used by the A∗ search proposed in this paper, is a directed acyclic graph
G = (V,A), where a node v = (pL,v, lv) ∈ V represents the set of partial solutions that
(1) have the same length lv and that (2) induce the same subproblem denoted by S[pL,v]
and left partition vector pL,v. An arc a = (v1, v2) ∈ A between two nodes v1 6= v2 ∈ V—
carrying label `(a) ∈ Σ—exists, if and only if the following two conditions are fulfilled:

1. lv2 = lv1 + 1

2. The partial solution inducing v2 is produced by appending `(a) to the partial solution
inducing v1.

The root node r of G corresponds to the original problem S, which is induced by the
empty partial solution denoted by ε. In technical terms, r = ((1, . . . , 1), 0). In order to
derive the successor nodes of a node v ∈ V , we first determine the subset Σv ⊆ Σ of letters
that can be used to feasibly extend the partial solutions represented by v. Obviously, Σv

consists of all letters a ∈ Σ that appear at least once in each string of S[pL,v]. For each
letter a ∈ Σv, the position of the first occurrence of a in si[pL,v

i , |si|] is denoted by pL,v
i,a ,

i = 1, . . . ,m. Set Σv may frequently be reduced by identifying dominated letters: We say
that letter a ∈ Σv dominates letter b ∈ Σv if and only if pL,v

i,a ≤ pL,v
i,b for all i = 1, . . . ,m.

5

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Dominated letters can safely be ignored since they always lead to suboptimal solutions.
Let Σnd

v ⊆ Σv be the subset of those letters that are non-dominated. Graph G contains
for each letter a ∈ Σnd

v a successor node v′ = (pL,v′ , lv + 1) of v, where pL,v′
i = pL,v′

i,a + 1,
i = 1, . . . ,m. A node v that has no successor node—that is, when Σnd

v = ∅—is called
a non-extensible node. Now, note that any path from the root node r to any node in
v ∈ V represents the feasible partial solution obtained by collecting and concatenating
the labels of the traversed arcs1. Any path from r to a non-extensible node represents a
common subsequence of S that cannot be further extended, and any longest path from r
to a non-extensible node represents an optimal solution to problem instance S.

2.3. Upper Bounds

The BS approaches from the literature make use of different upper bounds for the lengths
of LCS (sub-)problems in order to select promising nodes for the beam of the next step.
We consider here the most successful bounds. The upper bound from Blum et al. [6] was
derived by tightening the bound from Fraiser [18]. Given a node v representing the left
position vector pL,v and the corresponding subproblem S[pL,v], this bound calculates the
minimal number of occurrences of each letter over all the strings of subproblem S[pL,v]
and returns the sum of these, i.e.,

UB1(v) = UB1(pL,v) =
∑

a∈Σ
min

i=1,...,m
|si[ pL,v

i , |si| ] |a. (1)

This bound can be efficiently determined in O(m · |Σ|) time when using a suitable data
structure that is initialized in preprocessing (for more details see [15]).

A DP-based upper bound was introduced by Wang et al. [42], making use of the LCS
calculation for two input strings. For each pair {si, si+1} ⊆ S, i = 1, . . . ,m − 1, a so-
called scoring matrix Mi is constructed in a pre-processing step, where an entry Mi[p, q],
with p = 1, . . . , |si| and q = 1, . . . , |si+1|, stores the length of the LCS of strings si[p, |si|]
and si+1[q, |si+1|]. Given a node v representing the left position vector pL,v and the
corresponding subproblem S[pL,v], the upper bound is then calculated as

UB2(v) = UB2(pL,v) = min
i=1,...,m−1

Mi[pL,v
i , pL,v

i+1]. (2)

Not considering the pre-processing step, this bound can be calculated in O(m) time. As
in general neither UB1 dominates UB2 nor does UB2 dominate UB1, it makes sense to
also consider the combined bound UB(v) = min{UB1(v),UB2(v)}.

2.4. Approximate Expected Length Calculation of an LCS

Some of the BS approaches make use of a heuristic guidance function instead of an upper
bound for the selection of the nodes that form the beam of the next iteration. In the
following we briefly describe the one that we introduced in [14]. This heuristic guidance
function is based on a DP recursion by Mousavi and Tabataba [32], which calculates the
probability that any string of length p is a subsequence of a uniform random string of

1We emphasize that it is not necessary to store actual partial solutions s in the nodes. A longest path to
any node in the graph starting from the root node and the respective partial solution can be efficiently
derived in a backward manner by iteratively identifying a predecessor in which the lv-value always
decreases by one.

6

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



length q, for 0 ≤ p, q ≤ n. Let us assume that these probabilities are stored in a matrix P
with elements P[p, q] ∈ [0, 1], 0 ≤ p, q ≤ n.
The heuristic guidance function makes two strong assumptions: (1) the strings from S are
all uniform random strings, and (2) the input strings are independent from each other.
For each sequence x of length k over alphabet Σ we denote by Evx the event that x is
a common subsequence of the input strings from S. For any two sequences x and y,
x 6= y, we additionally make the simplifying assumption that the events Evx and Evy

are independent (which does not hold in reality). By applying some basic laws from
probability theory, the heuristic guidance function which—given a node v representing
the left position vector pL,v and the corresponding subproblem S[pL,v]—approximates the
expected length of a LCS in the corresponding subproblem can be stated as

EX(v) = lmin −
lmin∑

k=1

(
1−

m∏

i=1
P(k, |si| − pL,v

i + 1)
)|Σ|k

, (3)

where lmin = min{|si| − pL,v
i + 1 | i = 1, . . . ,m}. An extensive computational study

presented in [14] has shown that this heuristic guidance function has a significant impact
on finding high-quality solutions for many instances. The general conclusion was that its
use in BS approaches is generally preferred over the use of upper bound functions in the
context of benchmark instances in which the input strings are quasi-independent.

3. A∗ Search Framework

As mentioned before, our focus in this work is on the development of A∗-based anytime
algorithms for the LCS problem. A∗ search [23] is a well-known exact technique widely
used in path-finding and planning. It belongs to the class of informed search methods,
employing a best-first search strategy. Our A∗ search for the LCS problem operates on
the state graph G as defined in Section 2.2. At each iteration the most promising not-
yet-processed/expanded (open) node is expanded. To this end, each node v reached is
evaluated by a priority function f(v) := g(v) + h(v), where g(v) denotes the cost of the
best path from the root node r to v and h(v) is a heuristic function that estimates the
cost-to-go, the cost of the best path from v to a goal node. In the context of the LCS,
the cost of a path refers to its length, and a path is better the longer it is. Furthermore,
any non-extensible node of the state graph represents a goal node. Good candidates for
h(·) in the context of the LCS are upper bound functions, such as the ones discussed
in Section 2.3. They never underestimate the length of the best/longest path to a goal
node and are called admissible in the terminology of A∗ search. Using an admissible
heuristic function guarantees that an optimal solution is found when a goal node is finally
selected for expansion and the search terminates. Moreover, the proposed upper bounds
are monotonic, i.e., the upper bound of any extension of a node is always at most as high
as the upper bound of the original node. This property guarantees that re-evaluations
of already expanded nodes are never necessary. To efficiently retrieve the node with
highest priority in each iteration, A∗ search maintains all open nodes in a priority queue
Q. Additionally, our A∗ search maintains a hash map N with left position vectors pL,v

as keys mapping to the respective lv-values. By this data structure, we can efficiently
recognize already reached left position vectors.
A∗ search starts with the initialization of Q, that is, Q = {r}. At each iteration, it expands
the top node of Q by generating the respective successor nodes. If its left position vector

7

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Algorithm 1 A∗ for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest paths;
Q: priority queue with all open nodes

2: pL,r ← (1, . . . , 1)
3: r ← (pL,r, 0)
4: N [pL,r] = 0
5: Q = {r}
6: while time and memory limit not exceeded and Q is not empty do
7: v ← pop the top node from Q
8: Σnd

v ← non-dominated feasible letters concerning subproblem S[pL,v]
9: if Σnd

v = ∅ then // v is a goal node
10: return optimal solution slcs retrieved from v
11: else
12: for all a ∈ Σnd

v do // expand v

13: pL,v′
i ← pL,v′

i,a + 1, i = 1, . . . ,m
14: lv′ ← lv + 1
15: if pL,v′ ∈ N then
16: if N [pL,v′ ] < lv′ then // a better path to the node was found
17: N [pL,v]← lv′

18: update priority value of node v in Q
19: end if
20: else // a new node
21: fv′ ← lv′ + UB(v′)
22: add v′ of the priority fv′ to Q
23: add v′ to N
24: end if
25: end for
26: end if
27: end while
28: return empty solution ε

is not already present in N , a successor node is added to N and to Q. If, on the other
side, the successor’s left position vector is already in N , it is checked if the new path to
v is longer than the already known one. If this is the case, the lv-value of v is updated
correspondingly, and the priority of v (used for its ranking in Q) is adapted accordingly.
The algorithm keeps expanding the top nodes of Q until optimality is reached by selecting
a goal node or either the memory limit or a time limit is exceeded. One potential problem
is that Q typically contains many nodes with the same priority value. These ties are
broken by prioritizing those nodes which are farther away from the root node, i.e., the
ones with higher lv values. Remaining ties are broken with the help of a k-norm of the
remaining string lengths, i.e., each node is evaluated by κ(v) =

(∑m
i=1(|si| − pL,v

i + 1)k
) 1

k .
These κ(v)-values can be seen as a rough heuristic indicator for the cost-to-go, nodes with
larger values are expected to be more promising. We used k = 0.5 in our implementation.
A pseudo-code of our A∗ search for the LCS problem is given in Algorithm 1. Note that an
alternative A∗ algorithm was proposed in [42]. However, this simpler algorithm uses just
the weaker upper bound function UB2 to guide the search, does not consider tie breaking,
and has a larger memory footprint.

8

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



4. Anytime Algorithms for the LCS Problem

When faced with large-size problem instances of hard optimization problems, pure ex-
act approaches such as DP or A∗ search frequently reach their limits. Moreover, if not
given enough time (or space) to terminate, these algorithms are not able to provide sub-
optimal solutions of reasonable quality. Therefore, the optimization community has, at
some point, started to improve such algorithms by adding mechanisms that allow them
to be terminated early and nevertheless provide feasible solutions of reasonable quality.
The phrase anytime algorithms was used for the first time in the literature by Dean and
Boddy [11, 12] in the middle of the 80’s, referring to a class of algorithms that is able to
find an initial approximate solution quickly and then improves upon it over time, until
optimality is finally guaranteed if enough time is given. These algorithms are nowadays
widely used in planning and intelligent systems and domains such as real-time diagnosis
and repair, mobile robot control, and signal interpretation. In these domains, solutions
must frequently be obtained rather quickly but sometimes more time can be spent [48, 47].
Anytime algorithms are flexible in terms of time and resources used. They are designed
to offer a selectable trade-off between solution quality and computational requirements.

Two important groups of anytime algorithms are those based on BS and on A∗ search,
respectively. The BS–based anytime algorithms are generally characterized by repeated
applications of BS (with a reduced beam width) in which the initial beam of a subsequent
iteration is, in some way, based on nodes that were discovered but not processed in earlier
iterations. One of the first approaches of that kind was proposed by Zhang [45]. This
algorithm was able to reach high-quality solutions earlier than standard BS, in addition to
being able to produce optimal solutions if given enough computational resources. Another
example is beam stack search [46], which integrates systematic backtracking within BS.
On the other side, a lot of work has been dedicated to the development of A∗-based
anytime approaches. Hansen and Zhou [22] presented anytime weighted A∗. The main
idea of this algorithm is to change the evaluation function to f(v) = g(v) +w ·h(v), where
w ≥ 1 is a weight parameter. In general, a larger weight will yield a shorter run and
cruder solution as the heuristic guidance is inflated, while smaller weights will yield better
solutions at the cost of longer runtimes. Thus, the search is typically iteratively performed
with decreasing weights. Likhachev et al. [29] proposed the Anytime Repairing A∗ (ARA∗)
algorithm, which extends anytime weighted A∗ by reusing the results of an iteration in
the subsequent one; it is therefore significantly more efficient. In order to get rid of the
sensitive weight parameter, Anytime Non-parametric A∗ (ANA∗) was proposed by Berg
et al. [40]; here, the greediness of the search is adapted as the quality of the solutions
found improves. Aine et al. [2] suggested Anytime Window A∗ (AWA∗), where they set a
range for the levels from which the nodes of the corresponding open lists are only allowed
to be expanded and by which they enforce convergence to a sub-optimal solution at each
iteration. This range (i.e., window) is adapted at each iteration to produce an improved
solution. A memory bounded variant of AWA∗, called MAWA∗, was proposed in [37].

Later, Vadlamundi et al. [39] described Anytime Column Search (ACS). Here, the nodes
of the state graph are organized into layers. The algorithm maintains a separate priority
queue for each of these layers. At each iteration of ACS, which is performed in a level-
by-level manner, up to β of the best nodes of each level of the state graph are expanded.
An algorithm based on a similar idea was presented by Kao et al. [26]. We will build
upon ACS in Section 4.2, where we will also introduce it in more detail. More recently,
Vadlamundi et al. [38] proposed Anytime Pack Search (APS), which maintains a container

9

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



of pack > 0 nodes—where pack is a parameter of the algorithm—and a priority queue Q of
not-yet-expanded nodes. At each iteration, standalone BS runs are successively performed
for which the initial beam is composed of the first pack nodes from the top of priority queue
Q, until Q becomes empty. The authors showed APS to be a state-of-the-art approach
for three different problem domains [38]. Therefore, we decided to consider APS for
comparison purposes also in the current work for finding a LCS.
The two new anytime algorithms that we present in this work for the LCS problem are
based on the A∗ framework from Section 3. Our main idea is to embed efficient heuristic
approaches into the A∗ framework which are repeatedly executed inbetween regular A∗
iterations. Our A∗ anytime variants—apart from providing excellent solutions—are able
to return proven gaps at almost any time when terminated prematurely.

4.1. A∗+BS Approach

Since BS approaches are the state-of-the-art heuristic techniques for the LCS problem
but A∗ search is more promising when it comes to solving smaller instances to proven
optimality, it seems sensible to combine A∗ search with BS into an anytime search method
denoted by A∗+BS. We presented the basic idea of such a hybrid search strategy originally
in [16], where it was applied to the longest common palindromic subsequence problem. At
the start of A∗+BS, a run of BS with small width is performed for which the beam is
initialized with the root node r. This initial BS run takes place to obtain a first reasonable
approximate solution (and thus a primal bounds) rather quickly. Then the algorithm
proceeds by iteratively applying the following scheme. First, δ traditional iterations of A∗
search are performed, with δ > 0 being a strategy parameter. Second, a BS run is applied
in which the first beam is initialized with the top node of Q. The algorithm stops once
optimality is proven or a memory limit, respectively time limit, is exceeded. To avoid
redundant recalculations, all the embedded BS calls and the A∗ search act on the same
search tree. All non-expanded nodes encountered during a BS run are used to update the
hash map N and are inserted into the priority queue Q (if not already there). Moreover,
if a new best path to some node is encountered within any BS iteration, an update of the
corresponding node in N is performed by changing the key to the new lv-value, and the
node is then added into the corresponding beam, that is, the nodes which were already
encountered during the search are allowed to be added into Vext.
A pseudo-code for A∗+BS is provided in Algorithm 2. Parameters β > 0 (beam width of
BS) and δ > 0 (frequency of BS applications) control the balance between BS and classical
A∗ search iterations and thus the emphasis on improving the primal bound versus the dual
bound, respectively. Beam search makes use of a function Filter(Vext, kfilter) for filtering
dominated successor nodes at each step. This procedure works as follows. Up to kfilter of
the most promising nodes are selected from Vext as a reference set. Then, all other nodes
from Vext that are dominated by at least one of these reference solutions are removed from
Vext. If kfilter = 0, no filtering is applied. Moreover, the employed BS uses the upper
bound UB from Section 2.3 in order to choose up to β nodes for the beam of the next
step. Finally, note that the A∗ search framework ensures completeness of the A∗+BS
algorithm and provides proven gaps at any time.
The procedure ExpandNode for the expansion of a node and updating the respective data
structures is provided in Algorithm 3 (for now, disregard the lines marked to be relevant
only for A∗+ACS). If the node to be expanded is a goal node, it is checked if it yields a
new best solution. If this is the case, sbest is updated accordingly. Moreover, if the length

10

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Algorithm 2 A∗+BS for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest paths;
Q: priority queue of not yet expanded nodes; β > 0: beam width; δ > 0: number of
consecutive A∗ iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε
3: pL,r ← (1, . . . , 1)
4: r ← (pL,r, 0)
5: N [pL,r] = 0
6: Q← {r}
7: opt← false
8: while not opt and neither memory limit nor time limit exceeded do
9: B ← pop the β top nodes from Q

10: while B 6= ∅ do
11: // perform BS:
12: for all v ∈ B do
13: ExpandNode(v) // see Alg. 3
14: store respective children of v in Vext
15: end for
16: Filter(Vext, kfilter) // filter dominated nodes from Vext
17: B ← Reduce(Vext, β)
18: end while
19: iter ← 0
20: while iter < δ and neither memory limit nor time limit exceeded do
21: // perform A∗ iteration:
22: v ← get top node from Q
23: remove v from Q
24: ExpandNode(v) // see Alg. 3
25: iter ← iter + 1
26: end while
27: end while
28: return sbest

of the so-far best solution sbest is greater or equal to the f–value of the top node in Q, the
flag opt is set to true, meaning that the search terminates with proven optimality of sbest.

4.2. A∗+ACS Approach

As mentioned above, each BS run in A∗+BS starts from the current top node of Q. This
means that each BS run only deals with extensions of this single node, and consequently
the search space is rather restricted. In particular, many other highly promising nodes at
different levels of the state graph may have already been identified, but they are ignored.
In order to deal with this potential short-coming, we developed an alternative approach in
the line of [16] in which BS runs are exchanged by major iterations of the above already
mentioned Anytime Column Search (ACS) [39]; this hybrid approach is henceforth labeled
A∗+ACS.

Anytime column search is an iterative algorithm which maintains for each level j of the
state graph a priority queue Qj that stores—in the context of the LCS problem—all open
nodes v with lv = j, j = 0, . . . , jmax, jmax = UB(r). Initially, Q0 contains the root node r

11

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Algorithm 3 ExpandNode(v).
1: Input: a node v to be expanded; a flag parameter
2: Uses resp. updates: slcs, N,Q and if called from A∗+ACS, Qj , j = 0, . . . , jmax;
3: if Σnd

v = ∅ then // v is a complete node
4: s← derive the non-extensible solution corresponding to v
5: if |slcs| < |s| then // update best sol.
6: slcs ← s
7: end if
8: else
9: for all a ∈ Σnd

v do // expand v

10: pL,v′
i ← pL,v′

i,a + 1, i = 1, . . . ,m
11: lv′ ← lv + 1
12: if pL,v′ ∈ N then
13: if N [pL,v′ ] < lv′ then // a better path to the node encountered
14: N [pL,v′ ]← lv′

15: update priority of the corresponding node in Q;
16: if called from A∗+ACS then
17: move node v′ from Qlv to Qlv′
18: end if
19: end if
20: else // create new node
21: add v′ to N
22: fv′ ← lv′ + UB(v′)
23: add v′ with priority fv′ to Q
24: if called from A∗+ACS then
25: ev′ ← EX(v′)
26: add v′ with priority ev′ to Qlv′
27: end if
28: end if
29: end for
30: end if
31: if |slcs| ≥ maxv∈Q f(v) then
32: opt← true
33: end if

and the other priority queues are empty. Each major iteration of ACS considers all levels
j = 0, . . . , jmax with non-empty queues Qj in turn, and expands β nodes (or less if Qj is
shorter. The procedure terminates with an optimal solution once all priority queues are
empty. Note that ACS in general finds heuristic solutions very quickly since each major
iteration identifies usually at least one non-extensible heuristic solution.

The main idea for combining A∗ with ACS consists again in interleaving classical A∗
iterations with major ACS iterations. Hereby, A∗ keeps working on the basis of priority
list Q and the priority function that utilizes the upper bound function UB(v). In this way,
the whole approach will maintain the completeness of classical A∗ search and maxv∈Q f(v)
always is a true upper bound for the optimal solution value. In contrast to Q, the heuristic
guidance function EX from Section 2.4 is used as sorting criterion for the nodes in the
level-specific ACS-queues Qj . Remember that EX is usually a more promising guidance
to find good heuristic solutions, but as it is no valid upper bound, it cannot be used

12

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



for proving optimality. Moreover, note that changes made in priority queue Q must be
accompanied by corresponding changes in priority queues Qj and vice versa. To enable a
direct lookup of priority queue entries for a given node, we make use of the corresponding
hash map N .

The pseudo-code of the A∗+ACS is presented in Algorithm 4. Note that at each entry
of the main while loop (lines 8–32), the algorithm first executes one major iteration of
ACS (lines 10–31) and afterwards δ classical A∗ iterations (lines 22–28). Note that, just
like A∗+BS, the algorithm potentially makes use of filtering when case kfilter > 0 during
the major iterations of ACS (line 21). The only difference is that nodes removed from
Vext due to filtering are not only removed from N and Q but also from the corresponding
queue Qj . Parameters β and δ play the same role as in A∗+BS, namely, controlling the
balance between finding good heuristic solutions and improving the dual bound over time.
Finally, A∗+ACS terminates either with a proven optimal solution, or once the memory
limit or the time limit is exceeded, returning the best non-extensible solution found up to
this point.

5. Experimental Evaluation

In the following we first provide a summary of the algorithms that are considered for
the experimental evaluation. These are our two anytime algorithms (1) A∗+BS and (2)
A∗+ACS, (3) the APS algorithm from [38], which is one of the state-of-the-art anytime
variants from literature that we implemented for comparison purposes, and (4) A∗+ACS-
dist which is the variation of A∗+ACS in which the heuristic guidance function EX is
replaced by the dist(·) estimation from Pro-MLCS [44] and SA-MLCS [43]. Unfortu-
nately, we were not able to do a full comparison to Pro-MLCS and SA-MLCS as the
codes could not be obtained from the authors and the description of the special multi-
dimensional tree data structure for determining dominated solutions is insufficient for a
re-implementation. However, A∗+ACS-dist without the classical A∗ iterations in (i.e.,
when setting δ = 0) almost corresponds to Pro-MLCS except that instead of the multi-
dimensional data structure from [44], Filter(·, ·) is used for filtering dominated solutions.

All algorithms were implemented in C++ and the experiments were conducted in single-
threaded mode on a machine with an Intel Xeon E5–2640 processor with 2.4GHz allowing
a maximum of 32GB of memory. The maximum computation time for each run was
limited to 900 seconds. The considered algorithms were evaluated by the quality of the
best solutions they provided and by the percentage gaps, which are calculated at time t > 0
as gap(t) := ub(t)−|sbest(t)|

ub(t) ·100%, where sbest(t) denotes the best solution found up to time
t and ub(t) denotes the upper bound on the length of an optimal solution obtained from
the f -value of the top node in Q at time t (or the optimal solution value when already
available).

5.1. Benchmark Instances

The related literature on the LCS problem offers six public benchmark sets for the LCS
problem. We used all of them for the experimental evaluation here. The BL benchmark [7]
consists of 450 problem instances grouped by different values for the number of input
strings (m), the maximum length of the input strings (n), and the alphabet size (|Σ|).
For each combination of m, n, and |Σ| the set offers ten instances generated uniformly at

13

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Algorithm 4 A∗+ACS for the LCS problem.
1: N : hash map for all reached left position vectors with the lengths of the longest paths;
Q: priority queue of not yet expanded nodes; Qj : priority queues maintained for each
level j of the state graph; β > 0: a beam width; δ > 0: amount of consecutive A∗
iterations; kfilter ≥ 0: extent of filtering

2: sbest ← ε
3: pL,r ← (1, . . . , 1)
4: r ← (pL,r, 0)
5: N [pL,r] = 0
6: Q← {r}; Q0 ← {r}
7: opt← false
8: while not opt and neither memory limit nor time limit exceeded do
9: lev ← 0

10: while lev < jmax do
11: // perform ACS iteration:
12: b← 0
13: Vext ← ∅
14: while Qlev 6= ∅ and b < β do
15: v ← get the top node from Qlev
16: remove v from Qlev and Q
17: ExpandNode(v) // see Alg. 3
18: Store respective children of v in Vext // keep track of nodes for filtering
19: b← b+ 1
20: end while
21: Filter(Vext, kfilter) // filter dominated nodes from Vext
22: lev ← lev + 1
23: end while
24: iter ← 0
25: while iter < δ and neither memory limit nor time limit exceeded do
26: // perform A∗ iteration:
27: v ← top node from Q
28: remove v from Q and Qlv

29: ExpandNode(v) // see Alg. 3
30: iter ← iter + 1
31: end while
32: end while
33: return sbest

random. Furthermore, Rat and Virus are two benchmarks with a biological background,
consisting of 20 instances each. Random is another rather small benchmark set consisting of
20 randomly generated instances. The latter three benchmark sets were introduced in [34].
Moreover, benchmark set ES, which was introduced in [17], is a large set with 600 instances
grouped by different combinations of values for m, n, and |Σ|, where each group includes
50 instances. Last but not least, benchmark set BB—introduced in [5]—consists of 800
artificially created instances. These were generated in a way such that input strings have
a larger similarity to each other than to random strings: Given m, |Σ|, and an additional
parameter l > 0, first a base string of length l was generated uniformly at random over
alphabet Σ. Then, each of the m strings of the instance were derived by passing over

14

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



the base string and removing each character with a probability of 10%. Thus, an input
string of an instance with l = 1000 is, on average, of length 900. We only considered the
80 largest instances from this set, based on m ∈ {10, 100} and |Σ| ∈ {4, 8, 16, 32} and
l = 1000. There are ten instances for each combination of m and |Σ|. Note that the
instances in this last set are the only ones with a clear relation between the input strings,
that is, where input strings are not independent of each other.

5.2. Tuning of the Algorithms’ Parameters

In order to ensure a fair comparison, the parameters of all considered algorithms were
tuned by irace [30]. This tuning took place under the same conditions (computation
time limit: 900 seconds; memory limit: 32 GB) as later the final experimental evaluation.
After conducting some preliminary experiments, we decided to use the following domains
for the values of the parameters for the tuning:

• δ ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000, 20000, 50000},
• kfilter ∈ {0, 1, 10, 50, 100, 500, 1000, 5000, 10000,+∞},
• β ∈ {1, 50, 100, 500, 1000, 5000, 10000, 20000},

Since the parameter pack of APS refers to the beam width of that algorithm, we chose the
same domain for pack and β. As we expected potentially stronger differences in suitable
settings for the dependent instances BB and the quasi-independent other instances, we
decided to apply tuning for these two instance categories separately. We used 40 addi-
tional randomly generated instances for the tuning process aimed for quasi-independent
instances. The budget of irace was set to 5000 optimization runs in this case. On the
other side, we generated 20 additional dependent instances for tuning purposes, in the
same way as reported in [5]. The budget of irace was set to 1000 optimization runs
in this second case. In addition to the separation concerning the instance type—quasi-
independent versus dependent—we applied for each instance type two tuning runs with
different aims. One of these tuning runs aimed for final solution quality, and the other
one for small dual gaps. The results of these four tuning runs are reported in the four
sub-tables of Table 1.

Concerning the tuning results for the quasi-independent instances, note that a higher beam
size β is necessary when aiming for solution quality. On the other hand, when we focus on
small dual gaps, the amount of A∗ iterations (δ) has to be significantly increased for all
algorithms in comparison. This result appears conclusive when considering that classical
A∗ iterations are primarily important for improving the dual bound. Concerning the
tuning results for the dependent instances, we can also notice the requirement of a higher
value for δ when aiming for small gaps. Rather interesting is the large value required for β
in the case of A∗+BS and APS when aiming for solution quality. In contrast, the tuning
procedure has yielded a lower beam size for algorithms A∗+ACS and A∗+ACS-dist.

5.3. Experimental Evaluation: Exact Solving with Classical A∗ Search

Initial tests indicated that our classical A∗ search is only meaningfully applicable to the
smallest instances of the benchmark sets, that is, the instances with string length n = 100
from set BL. The corresponding results can be found in Table 3, in which we compare
the proposed A∗ approach to the exact solver Top MLCS [28]. In our comparison we

15

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



Table 1: Tuning results.

(a) Tuning for solution quality on quasi-independent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 50 1 100 –
β 500 500 100 –
kfilter 1 1 0 0
pack – – – 500

(b) Tuning for small gaps on quasi-independent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 10000 1000 500 –
β 500 1 1 –
kfilter 100 0 0 100
pack – – – 500

(c) Tuning for solution quality on dependent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 500 500 100 –
β 1000 1 1 –
kfilter 1000 1 0 1000
pack – – – 1000

(d) Tuning for small gaps on non-indepenent instances.

Parameter
Algorithm A∗+BS A∗+ACS A∗+ACS-dist APS

δ 5000 20000 20000 –
β 1000 50 100 –
kfilter 1000 100 100 5000
pack – – – 1000

made use of the original implementation of Top MLCS provided by the authors2. We
remark that Top MLCS can effectively exploit a parallel hardware architecture, but we
performed it in single threaded mode in order to ensure a fair comparison with our A∗
approach. Besides the instance characteristics, Table 3 lists average solution lengths |s|,
average times t in seconds until proven optimality has been reached, and the number of
instances that could be solved to optimality #opt (out of ten per line) for both approaches.
From Table 3 it can be observed that all problem instances with |Σ| ≥ 12 are solved—
by both algorithms—to proven optimality, and runtimes are typically only a fraction of a
second. However, A∗ needs significantly less time especially for the instances with |Σ| = 12.
Additionally, our A∗ approach solved six (out of ten) instances with |Σ| = 4 and m = 10
to proven optimality3, while Top MLCS was not able to do so due to running out of
memory. None of the instances with |Σ| = 4 and m ≥ 50 could be solved to optimality by
the two algorithms due to the memory limit.
In summary, A∗ is able to solve 106 instances from the literature to proven optimality.
At this point we would like to stress that the mixed integer linear programming solver

2The source code of Top MLCS can be found at https://github.com/dxslin/mlcs.
3All ten instances with m = 10, n = 100, |Σ| = 4, could be solved by A∗ when increasing the memory

limit to 40GB.

16

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



A∗ Top MLCS

m |Σ| |s| t[s] #opt |s| t[s] #opt
4 20.5 428.33 6 0.0 – 0

10 12 12.7 1.73 10 12.7 5.2 10
20 7.9 0.08 10 7.9 0.28 10
4 0.0 – 0 0.0 – 0

50 12 6.9 0.17 10 6.9 0.46 10
20 3.0 0.06 10 3.0 0.08 10
4 0.0 – 0 0.0 – 0

100 12 5.2 0.08 10 5.2 0.23 10
20 2.1 0.07 10 2.1 0.08 10
4 0.0 – 0 0.0 – 0

150 12 4.7 0.07 10 4.7 0.16 10
20 1.9 0.08 10 1.9 0.08 10
4 0.0 – 0 0.0 – 0

200 12 4.1 0.07 10 4.1 0.18 10
20 1.1 0.06 10 1.1 0.11 10

Table 3: Classical A∗ search: average results for benchmark BL, n = 100.

CPLEX in version 12.9 applied to the LCS model from [7] could not solve any of these
instances due to a too large number of variables and constraints.

5.4. Experimental Evaluation: Anytime Algorithms

In contrast to the classical A∗ search, the anytime algorithms studied in this work are able
to yield meaningful results on all problem instances. Remember that we aim to compare
A∗+BS and A∗+ACS with APS and A∗+ACS-dist. Additional reason why the Pro-
MLCS [44] and SA-MLCS [43] are not considered in this comparison is because they are
not designed for providing gaps upon premature termination. Moreover, we would like to
emphasize that—as observed in [14]—the main factor for obtaining high quality solutions
is the heuristic guidance function. For this reason we study algorithm A∗+ACS-dist
which makes use of the heuristic guidance function dist(v) = ∑m

i=1 p
L,v
i from Pro-MLCS

and SA-MLCS. As already mentioned, when setting δ = 0 in A∗+ACS-dist, we get
reasonably close to the original Pro-MLCS algorithm.

In the following we report on results both concerning the obtained (average) solution
quality and (average) gaps. For improving the readability result tables for benchmark sets
Rat, Virus, ES, and BB are given in the main text, whereas the tables for Random and
BL are provided in Appendix A. More specifically, the results concerning solution quality
of the first four data sets can be found in Tables 4–7, while the corresponding results
concerning the gaps are presented in Tables 8–11. The first three table columns indicate the
characteristics of the considered sub-groups of the benchmark sets in terms of |Σ|, m, and
n. Subsequently, the results of the four algorithms are presented. Each of these four blocks
consists of four columns listing the following information: the average solution quality (|s|),
the average gaps (gap [%]), the average time at which the best solution was found (tbest [s]),
and the average total runtime (t [s]). The tables showing the results with the parameter
settings aiming for solution quality have an additional column labeled lit. best that reports
the best-known result from the literature for the respective instance, or instance group
(without considering the results from the current work). Asterisks in the solution quality
column indicate that the best-known result from the literature was beaten. The best
result concerning the comparison of the four algorithms considered in this work is always

17

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 197 41.7 2.15 685.6 *206 39.4 130.6 900.0 197 41.0 866.9 900.0 204 39.5 98.2 731.2 205
4 15 600 180 47.8 11.6 735.3 *189 45.5 740.1 900.0 181 47.5 130.3 900.0 186 45.6 75.4 603.1 185
4 20 600 166 43.3 29.5 900.0 *174 41.2 12.3 900.0 167 42.2 420.9 900.0 171 41.0 71.7 776.0 172
4 25 600 166 51.3 74.4 684.2 *173 49.4 38.3 900.0 166 50.4 212.3 900.0 170 49.4 57.6 642.5 170
4 40 600 152 50.0 570.7 900.0 *154 49.7 32.8 900.0 151 49.8 183.0 900.0 150 50.3 6.5 755.4 153
4 60 600 148 55.6 186.4 900.0 *154 54.0 510.3 900.0 148 55.3 129.1 900.0 151 54.4 384.7 893.9 152
4 80 600 136 52.3 190.8 900.0 *144 49.8 427.9 900.0 137 50.9 308.0 900.0 126 55.0 0.6 754.5 142
4 100 600 134 52.0 180.9 900.0 *139 50.7 458.7 900.0 134 51.6 31.9 900.0 132 52.5 421.7 809.7 137
4 150 600 123 44.3 29.9 900.0 *131 41.0 39.2 900.0 124 43.6 89.8 900.0 110 50.2 848.4 900.0 129
4 200 600 121 46.9 20.8 900.0 *126 45.0 288.0 900.0 121 46.8 23.8 900.0 105 53.7 821.4 900.0 123

20 10 600 69 63.1 5.4 900.0 *72 61.3 136.7 900.0 69 61.9 5.0 900.0 *72 59.8 172.7 900.0 71
20 15 600 61 66.8 5.8 900.0 63 65.9 3.8 900.0 61 65.5 44.3 900.1 63 64.2 536.0 900.0 63
20 20 600 52 68.9 6.4 900.0 *55 68.2 7.1 900.0 53 67.5 66.8 900.0 52 68.3 11.2 900.0 54
20 25 600 50 71.4 7.5 900.0 52 70.6 3.4 900.0 51 70.0 34.1 900.0 52 69.4 53.9 900.0 52
20 40 600 49 72.6 185.3 900.1 *50 72.1 138.6 900.0 49 71.7 11.8 900.0 47 72.5 685.8 900.0 49
20 60 600 46 73.7 138.6 900.0 47 73.0 11.5 900.0 46 72.8 15.6 900.0 46 72.3 690.3 900.2 47
20 80 600 44 71.6 367.0 900.1 44 70.5 132.5 900.0 44 70.1 145.4 900.3 42 71.4 638.4 900.0 44
20 100 600 39 75.8 280.6 900.2 40 75.3 6.5 900.0 39 74.5 254.7 900.2 38 74.8 141.9 905.8 40
20 150 600 37 76.0 30.3 900.3 *38 75.5 21.4 900.0 37 74.8 30.8 900.0 37 74.4 844.5 900.0 37
20 200 600 33 75.7 137.1 900.2 *35 74.6 144.7 900.0 34 73.0 499.2 900.2 33 73.6 104.0 900.0 34

Table 4: Rat benchmark. Results when aiming for solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 223 39.9 879.4 900.4 *228 38.2 80.8 900.0 222 39.3 19.2 826.6 221 39.6 394.2 900.0 227
4 15 600 200 45.2 3.7 900.0 *206 43.7 92.5 900.0 200 44.6 527.2 900.0 201 44.5 578.8 629.3 205
4 20 600 185 45.4 276.2 900.0 *194 42.9 327.6 900.0 185 45.1 61.0 900.0 183 45.9 190.8 609.0 192
4 25 600 190 46.8 185.8 900.0 *196 45.3 128.2 900.0 190 46.3 13.3 856.9 190 46.3 341.5 697.2 194
4 40 600 167 51.3 265.6 900.2 *174 49.6 264.0 900.0 167 50.7 191.4 900.0 152 55.2 246.4 678.0 170
4 60 600 162 52.9 185.0 900.0 *168 51.3 49.8 900.0 162 52.4 74.5 900.0 152 55.3 342.0 729.2 166
4 80 600 156 54.1 9.9 900.1 163 52.3 61.2 900.0 157 53.4 39.6 900.0 137 59.2 407.3 793.4 163
4 100 600 153 55.0 74.7 900.0 *160 53.1 71.5 900.0 153 54.5 79.7 900.0 136 59.5 636.2 872.6 158
4 150 600 152 54.9 19.7 900.0 *157 53.7 40.3 900.0 152 54.6 20.9 900.0 137 59.0 238.9 790.7 156
4 200 600 149 55.5 26.4 900.1 *156 53.6 582.5 900.0 150 54.8 602.6 900.0 133 59.9 310.3 897.3 154

20 10 600 74 60.8 132.2 900.0 77 59.3 14.6 900.0 75 59.0 189.1 900.0 76 58.2 26.7 900.0 77
20 15 600 62 66.7 7.4 900.0 64 65.8 4.0 900.0 63 65.0 32.4 900.0 64 64.2 127.7 900.0 64
20 20 600 58 69.1 7.7 900.1 *61 67.6 28.9 900.0 59 67.8 258.7 900.0 *61 66.5 852.6 900.0 60
20 25 600 53 70.4 7.4 900.1 *56 68.9 82.8 900.0 54 68.8 119.9 900.0 55 68.0 37.0 900.0 55
20 40 600 49 72.9 40.0 900.0 *51 71.8 110.4 902.3 49 71.7 5.1 900.0 49 71.8 118.1 900.0 50
20 60 600 47 73.4 312.9 900.0 48 73.0 6.1 900.0 47 72.2 7.0 900.0 47 72.4 837.4 900.0 48
20 80 600 45 74.6 744.7 900.2 46 74.0 7.1 900.0 45 73.4 8.8 900.1 45 73.4 683.6 900.0 46
20 100 600 44 75.0 97.2 900.1 45 74.6 8.9 900.0 44 74.3 134.1 900.1 44 74.0 880.7 900.0 45
20 150 600 45 75.1 42.6 900.6 *46 74.6 27.7 900.0 45 74.4 48.8 900.3 44 74.7 257.4 900.1 45
20 200 600 43 76.0 60.3 900.2 44 75.1 44.8 900.0 43 75.1 65.0 900.5 43 74.7 110.7 900.1 44

Table 5: Virus benchmark. Results when aiming for solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|
10 1000 2 604.7 23.5 350.8 866.7 *618.9 21.7 323.2 900.4 603.6 23.3 254.7 873.3 615.4 21.8 234.7 760.8 615.1
10 1000 10 195.7 57.9 285.9 891.0 *205.0 55.9 251.3 900.7 195.5 57.5 294.8 888.8 204.1 55.6 230.7 771.9 203.1
50 1000 2 526.6 33.0 287.3 897.5 *540.9 31.2 302.2 900.0 526.9 32.6 264.1 887.4 532.8 31.9 301.2 696.2 538.2
50 1000 10 131.0 71.3 219.88 900.2 *137.5 69.9 158.1 900.0 131.2 71.0 137.5 900.2 134.5 70.2 321.1 867.3 136.3

100 1000 2 509.1 35.1 250.8 900.1 *522.1 33.4 324.6 900.0 509.4 34.8 283.8 900.0 512.5 34.4 274.5 781.6 519.8
100 1000 10 118.8 73.9 217.7 900.2 *124.1 72.7 121.0 900.0 118.9 73.6 175.9 900.1 120.5 73.1 356.0 900.0 123.3
10 2500 25 224.5 72.1 276.4 900.0 235.0 70.7 419.5 900.4 223.9 72.0 263.5 900.0 *236.6 70.4 374.8 897.3 235.2
50 2500 25 132.1 83.3 217.1 900.1 *140.4 82.3 239.8 900.0 132.6 83.1 212.8 900.3 136.5 82.6 368.1 900.0 139.5

100 2500 25 116.8 85.2 268.2 900.6 *123.4 88.1 223.6 900.0 117.0 85.1 350.8 900.7 118.6 84.8 352.7 900.1 122.9
10 5000 100 137.5 84.0 338.2s 900.4 *145.7 84.7 434.3 900.2 136.8 84.1 392.8 901.1 144.6 83.1 340.6 900.1 144.9
50 5000 100 67.4 92.0 355.8 902.8 *72.0 97.6 286.1 900.1 67.6 91.9 432.1 902.7 69.6 91.9 330.6 900.7 71.9

100 5000 100 57.1 93.1 584.4 906.6 *60.8 97.4 515.7 900.1 57.1 93.1 601.9 905.8 57.9 93.6 382.3 901.5 60.7

Table 6: ES benchmark. Results when aiming for solution quality (averaged over 50 in-
stances per row).

18

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

2 10 1000 675.1 16.4 64.9 900.0 676.6 16.5 347.1 900.0 675.7 15.6 57.1 900.0 *676.7 16.4 152.0 885.4 676.5
2 100 1000 561.3 31.2 260.3 900.0 547.1 32.6 497.6 900.0 *563.6 30.6 264.3 900.0 486.7 40.0 464.9 870.0 560.7
4 10 1000 545.2 30.3 13.0 900.0 *545.5 30.7 204.9 900.0 545.2 29.4 13.4 900.0 *545.5 30.5 85.6 798.4 545.4
4 100 1000 389.4 51.1 209.8 900.4 344.3 56.4 503.4 900.0 *390.2 50.9 362.7 900.0 273.6 65.4 291.2 881.0 388.8
8 10 1000 462.7 39.0 17.0 900.0 462.7 39.9 68.4 900.0 462.7 38.0 19.2 900.0 462.7 39.7 16.9 827.2 462.7
8 100 1000 273.1 65.1 143.7 900.1 223.7 71.1 631.7 900.1 *273.4 65.0 179.8 900.1 164.7 78.7 408.7 900.0 272.1

24 10 1000 385.6 42.0 43.8 900.0 385.6 47.0 33.8 900.0 385.6 40.5 35.5 900.0 385.6 46.8 8.5 900.0 385.6
24 100 1000 149.4 79.5 138.0 900.4 117.0 83.5 636.9 900.3 149.4 79.5 145.2 900.4 83.8 88.2 550.2 900.0 149.5

Table 7: BB benchmark. Results when aiming for solution quality (averages over ten in-
stances per row).

indicated in boldface. Note that in tables presenting results obtained with parameter
settings aiming for solution quality, this concerns the columns on the average solution
quality. While in tables presenting results obtained with parameter settings aiming for
small gaps, this concerns the columns listing the average gaps.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 198 40.5 354.2 741.0 206 38.0 468.2 900.0 198 40.7 454.1 900.0 204 38.6 315.1 683.5
4 15 600 180 46.9 3.3 900.0 187 44.5 211.8 900.0 181 46.9 7.3 908.2 186 44.6 419.7 713.7
4 20 600 166 42.2 13.9 900.0 173 39.5 384.1 900.0 167 42.2 123.9 902.4 170 40.6 176.4 716.3
4 25 600 165 50.5 116.8 900.0 173 47.4 430.3 900.0 166 50.4 336.5 900.0 170 48.3 393.9 769.8
4 40 600 150 50.0 121.3 900.0 154 48.1 258.3 900.0 151 49.8 18.5 900.0 151 49.2 11.8 771.6
4 60 600 149 54.6 8.1 900.0 153 53.1 215.1 900.0 149 55.0 7.5 900.1 149 54.3 217.8 748.4
4 80 600 136 50.7 205.8 900.0 143 47.6 33.8 900.0 137 50.9 359.9 900.0 127 53.5 11.9 755.2
4 100 600 133 51.6 144.6 900.0 138 49.6 11.8 900.0 134 51.6 37.5 900.0 127 53.6 332.5 900.0
4 150 600 123 44.1 250.9 900.1 131 40.2 519.7 900.0 124 43.6 104.4 900.0 105 52.1 826.2 900.0
4 200 600 121 46.5 22.8 900.0 124 44.9 17.2 900.1 121 46.7 24.4 900.2 102 54.7 124.8 900.0

20 10 600 70 59.8 7.0 900.0 71 59.0 20.9 900.1 70 60.5 7.2 900.0 71 58.7 234.4 900.0
20 15 600 60 65.1 7.8 900.0 63 62.9 5.9 900.1 61 65.3 23.1 900.1 62 63.3 84.6 884.8
20 20 600 53 66.9 358.5 900.1 55 65.2 196.4 900.1 54 67.1 48.4 900.1 52 66.9 114.8 900.0
20 25 600 50 69.7 8.2 900.0 52 68.3 15.0 911.1 51 70.0 42.9 900.2 52 68.1 583.1 900.1
20 40 600 48 71.6 12.6 900.3 49 70.3 137.1 900.0 49 71.8 567.4 900.2 45 72.6 75.4 900.0
20 60 600 45 72.7 18.9 900.4 47 70.3 346.6 900.4 47 72.2 652.4 900.2 45 71.5 509.9 900.1
20 80 600 44 69.4 642.3 900.4 43 69.1 63.4 900.3 44 70.5 65.4 900.2 40 71.2 243.8 900.1
20 100 600 38 74.3 24.1 900.0 40 71.8 175.4 900.3 39 74.5 216.8 900.6 37 73.8 431.1 900.0
20 150 600 37 73.2 31.1 900.7 37 71.5 89.5 900.3 37 74.8 31.3 900.5 34 74.0 612.1 900.2
20 200 600 32 77.1 37.6 900.0 34 70.2 28.1 900.6 35 72.0 433.3 900.1 31 72.8 152.6 900.2

Table 8: Rat benchmark. Results when aiming for small gaps.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 222 38.7 3.0 910.7 228 36.8 637.5 900.0 224 38.1 20.7 826.2 221 38.4 550.5 649.1
4 15 600 200 44.4 48.3 900.0 206 42.5 21.9 900.0 201 44.2 702.0 746.8 200 44.1 333.0 579.2
4 20 600 185 44.9 406.2 900.0 192 42.7 246.2 900.0 186 44.8 139.6 900.0 183 45.4 583.8 592.5
4 25 600 189 46.3 4.8 903.8 196 44.2 850.5 900.0 190 46.3 21.5 900.0 188 46.3 263.9 575.7
4 40 600 166 50.7 13.5 900.0 173 48.4 866.7 900.0 167 50.9 846.3 900.0 152 54.6 338.5 609.3
4 60 600 162 51.9 42.7 900.0 168 49.9 645.2 900.0 162 52.4 85.5 900.0 150 55.2 472.9 757.9
4 80 600 157 53.1 12.3 900.0 163 50.8 114.6 900.0 157 53.4 11.1 900.0 134 59.5 327.0 861.3
4 100 600 153 54.2 14.0 900.0 160 51.5 806.0 900.0 153 54.5 14.5 900.1 133 59.7 715.9 900.0
4 150 600 152 54.4 143.6 900.0 157 52.6 415.1 900.1 152 54.6 802.9 900.1 136 58.9 725.0 900.1
4 200 600 150 54.7 645.8 900.0 155 52.7 415.1 900.2 150 54.8 729.9 900.0 132 59.8 151.7 900.0

20 10 600 74 58.4 27.7 900.0 77 56.5 320.2 900.0 75 58.8 111.8 900.1 76 56.8 255.7 900.0
20 15 600 62 64.8 8.2 900.1 64 62.6 3.1 900.0 63 65.0 30.6 900.1 64 62.6 851.2 900.0
20 20 600 58 67.6 9.0 900.0 60 65.9 33.8 900.0 59 67.8 19.0 900.1 60 65.7 57.5 900.0
20 25 600 53 68.5 9.7 900.0 55 66.7 26.1 901.4 53 69.4 9.6 900.0 55 66.5 690.9 900.1
20 40 600 49 71.3 579.5 900.0 50 70.1 52.2 900.3 49 72.0 25.7 900.2 48 71.1 162.7 900.1
20 60 600 47 72.0 18.5 900.0 48 70.4 107.1 900.2 47 72.5 18.1 900.4 45 72.2 316.6 900.1
20 80 600 45 73.1 283.9 900.0 46 71.4 22.2 900.3 45 73.7 67.1 900.2 44 72.7 736.1 900.0
20 100 600 43 74.1 27.3 900.0 45 72.0 190.9 900.4 44 74.3 113.1 900.2 43 73.3 653.6 900.2
20 150 600 44 76.0 49.4 900.0 45 72.7 48.8 900.0 45 74.6 185.4 900.4 43 73.9 229.3 900.3
20 200 600 43 75.8 65.0 900.0 43 73.3 105.9 900.4 43 75.0 64.9 900.3 42 73.8 236.9 900.1

Table 9: Virus benchmark. Results when aiming for small gaps.

19

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



1 2 3 4

A*+ACS
APS

A*+ACS−dist
A*+BS

(a) Benchmark Rat

1 2 3 4

A*+ACS
APS

A*+BS
A*+ACS−dist

(b) Benchmark Virus

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(c) Benchmark ES

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(d) Benchmark Random

1 2 3 4

A*+ACS
A*+ACS−dist

APS
A*+BS

(e) Benchmark BL

2 3

APS

A*+BS

A*+ACS

A*+ACS−dist

(f) Benchmark BB

Figure 1: Critical difference plots concerning solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

n m |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
1000 10 2 606.4 22.8 177.3 881.0 618.1 21.2 427.4 900.0 607.5 22.7 165.9 881.7 614.9 21.6 269.3 818.2
1000 10 10 196.9 56.8 205.9 900.0 204.2 54.9 283.2 900.1 198.0 56.9 205.9 900.0 203.5 55.0 284.6 707.5
1000 50 2 526.4 32.6 300.6 892.9 540.3 30.6 377.0 900.0 526.6 32.7 267.5 900.0 532.6 31.6 349.2 799.5
1000 50 10 130.6 70.9 160.1 900.0 137.1 69.1 294.6 900.3 131.3 71.0 206.1 900.1 133.7 69.8 293.7 836.6
1000 100 2 508.9 34.8 265.1 900.0 521.6 32.9 336.9 900.1 509.4 34.8 297.5 900.0 512.0 34.1 440.7 875.2
1000 100 10 118.6 73.4 112.4 900.1 123.7 71.9 287.4 900.2 119.0 73.6 191.8 900.1 119.6 72.8 378.4 900.0
2500 10 25 226.6 71.5 179.5 900.6 231.5 70.6 576.4 900.1 227.5 71.5 244.3 900.1 235.2 70.1 443.9 900.0
2500 50 25 131.9 83.3 181.1 900.4 139.5 81.9 388.9 900.3 132.4 83.2 261.9 900.4 135.3 82.5 424.6 900.3
2500 100 25 116.5 85.2 221.0 900.6 122.7 84.0 360.3 900.5 117.0 85.1 362.6 900.7 117.6 84.7 405.0 900.2
5000 10 100 138.9 83.8 327.7 901.0 143.4 82.9 643.8 900.8 139.3 83.8 414.2 900.9 143.0 83.0 466.8 900.3
5000 50 100 67.3 92.0 337.6 902.4 71.0 91.3 470.8 903.5 67.5 92.0 411.2 902.6 68.3 91.6 536.0 902.0
5000 100 100 57.0 93.1 575.9 900.0 59.6 92.6 488.6 907.3 57.0 93.1 626.2 905.7 56.2 93.0 518.6 903.4

Table 10: ES benchmark. Results when aiming for small gaps (averages over 50 instances
per row).

A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
2 10 1000 676.7 16.6 155.8 900.3 675.4 16.2 18.1 900.0 674.6 16.2 115.0 900.0 676.7 16.5 63.9 884.6
2 100 1000 547.4 32.6 428.3 900.5 561.8 31.0 357.3 900.0 563.2 30.9 557.2 900.0 486.5 40.1 398.6 864.0
4 10 1000 545.5 30.7 98.4 901.0 545.2 30.0 14.4 900.0 545.2 30.0 60.4 900.0 545.5 30.6 42.1 853.6
4 100 1000 346.5 56.1 507.0 901.0 389.2 50.9 186.7 900.0 389.4 51.1 400.2 900.0 270.2 65.8 487.3 859.6
8 10 1000 462.7 39.8 15.6 900.5 462.7 38.7 18.8 900.0 462.7 38.6 89.6 900.0 462.7 39.6 7.5 900.2
8 100 1000 224.1 71.0 524.3 901.9 273.0 65.1 106.8 900.1 272.9 65.1 388.1 900.1 160.9 79.1 575.0 901.4

24 10 1000 385.6 46.3 1.5 901.1 385.6 41.6 34.1 900.0 385.6 41.2 122.8 900.0 385.6 46.0 1.7 900.8
24 100 1000 120.9 82.9 657.5 908.4 149.4 79.5 138.6 900.4 149.3 79.5 580.9 900.6 80.6 88.6 606.8 910.1

Table 11: BB benchmark. Results when aiming for small gaps (averaged over ten instances
per row).

A study of the numerical results allows to draw the following conclusions:

• A∗+ACS generally outperforms the three competitors in terms of solution quality
in the context of instances with quasi-independent input strings (that is, benchmark
sets Rat, Virus, Es, Random and BL). The only exception is benchmark set BB, in
which instances consist of dependent input strings. The reason for this behavior
is clearly that the heuristic guidance function EX() works in general very well for
instances with quasi-independent input strings, while it tends to mislead for instances
with related input strings. Observe in Table 7 that the performance of A∗+ACS
and of A∗+ACS-dist strongly decreases, especially when the instances consist of
many input strings (m = 100). A more visual presentation of the results is provided
in Figures 5–8 in Appendix B, where the improvement of A∗+ACS over the three
competitors is shows in percent.

20

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(a) Benchmark Rat

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(b) Benchmark Virus

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(c) Benchmark ES

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(d) Benchmark Random

1 2 3 4

A*+ACS
A*+ACS−dist

A*+BS
APS

(e) Benchmark BL

1 2 3 4

A*+ACS

APS

A*+BS

A*+ACS−dist

(f) Benchmark BB

Figure 2: Critical difference plots concerning the obtained gaps.

• In order to check the statistical significance of differences, Friedman’s test was per-
formed simultaneously for all four anytime approaches. Given that in all cases the
test rejected the hypothesis that the algorithms perform equally, pairwise compar-
isons were performed using the Nemenyi post-hoc test [13]. The outcome is shown
in Figure 1 by means of so-called critical difference plots, one for each benchmark
set. In short, each algorithm is positioned in the horizontal segment according to
its average ranking concerning the considered set of instances. Then, the critical
difference (CD) is computed for a significance level of 0.05 and the performance of
those algorithms that have a difference lower than CD are considered as equal—that
is, no difference of statistical significance can be detected. This is indicated in the
graphics by horizontal bars joining the respective algorithms. Figure 1 shows that
A∗+ACS produces significantly better results concerning solution quality for bench-
mark sets Rat, Virus, and BL. The differences observed for benchmark sets Random
and ES are statistically not significant (despite the fact that A∗+ACS produces new
state-of-the-art results in 13 out of 20, and in 10 out of 12 cases, respectively).

• Just like classical A∗, both A∗+ACS-dist and A∗+ACS are able to prove opti-
mality for the instances of benchmark set BL with n = 100 and |Σ| ≥ 12. This is
indicated by entries with value 0.0 in columns with heading gap [%] (see Table 13).
However, as expected, more computation time is needed than by A∗.

• A∗+ACS does not only beat the competitors we considered here. It performs also
very favorably in comparison to purely heuristic state-of-the-art approaches from the
literature. This can be observed by comparing the performance of A∗+ACS with
the last columns in Tables 4–7 and Tables 12–13 which contain the so far best known
results from the literature4. Overall A∗+ACS was able to obtain new best-known
results in 82 out of 117 cases (table rows).

• For what concerns the performance of the four algorithms with respect to the pro-
duced gaps—see Tables 8–11 and Tables 14–15 (from Appendix A)—it can be ob-
served that—also in this case—A∗+ACS generally outperforms the competing al-
gorithms. This is with the exception of benchmark set BB, where no clear tendency
can be identified. The statistical significance of this conclusion is tested in the same
way as done for the case of aiming for solution quality. The corresponding critical

4As the best result for a specific group of instances from the literature we took the maximum average
solution quality among the reported averages (if any) from [6, 32, 14, 36, 7]. Most of best results so far
are from BS-EX [14].

21

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



difference plots are shown in Figure 2. Moreover, the improvements of A∗+ACS
over the competitors are graphically shown in Figures 9–12 (Appendix B).

• Nevertheless, observe that A∗+ACS-dist often produces better final gaps than
A∗+ACS for instances with a low number of input string. This is the case, for
example, for instances with n = 10 from benchmark set BL; see Table 15 and Figure 9.
A possible explanation for this behavior is as follows. On the one hand, the heuristic
guidance function dist(·) performs rather well for instances with a low number of
input strings (that is, a low m-value), which means that A∗+ACS-dist will not have
a major disadvantage with respect to A∗+ACS in those cases. On the other hand,
dist(·) requires less computation time than the EX function used by A∗+ACS. This
implies that A∗+ACS-dist is able to perform more node expansions than A∗+ACS
within the allowed computation time, which leads to better upper bounds.

5.5. Comparison of the Algorithms’ Anytime Behavior

So far we have only studied the final results of the algorithms for what concerns solution
quality and gaps. However, in the context of anytime algorithms, another important
aspect to take into account is their anytime behavior. In order to visualize the anytime
behavior of the algorithms, we plot the evolution of the solution quality, respectively the
gaps, over time (either averaged over all problem instances of the same specifications, or
averaged over multiple runs for single problem instances, depending on the benchmark
set). The plots concerning solution quality are shown, for seven representative cases, in
Figure 3, while the ones concerning the gaps are shown, for the same seven cases, in
Figure 4. In addition to the curves showing the average behavior, these graphics also
contain boxplots—shown every 200 seconds—indicating the variability of the algorithm
performance.

The following observations can be made concerning the anytime plots on solution quality:

• A∗+ACS generally finds solutions of higher quality than the other algorithms in
early stages of the search process. The main reason for this is clearly the heuristic
guidance function EX() which is utilized in A∗+ACS.

• Notice also that A∗+ACS is able to find improving solutions more frequently than
A∗+BS or APS. For these latter algorithms it seems much harder to find improving
solutions at later stages of the search process. Even though A∗+ACS-dist can be
said to generally outperform APS and A∗+BS, it can not match the performance
of A∗+ACS. It can also be observed that the compared algorithms find improving
solutions in general more frequently when the alphabet size is rather small.

• APS and A∗+BS, which make both use of an embedded BS to find heuristic solu-
tions, show a similar evolution of solution quality over time. It is noticeable that a
rather large beam size β is required to achieve the best possible anytime performance
within the given computation time.

Concerning the anytime performance of the algorithms with respect to the gaps we can
make the following observations:

• For the smallest ones of the considered instances—that is, the instances from bench-
mark set BL with n = 100—A∗+BS shows the best evolution of the obtained gaps
(see Figure 4a). This is for the following two reasons: (1) the parameter values
identified by our tuning process allow a significant amount of A∗ iterations, which is

22

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



0.0 200.0 400.0 600.0 800.0
time[s]

32

34

36

38

av
g.
 so

lu
tio

n 
qu

al
ity A*+ACS

A*+BS
APS
A*+ACS-dist

(a) Benchmark set BL: 10 instances with
|Σ| = 4,m = 10, n = 100.

0.0 200.0 400.0 600.0 800.0
time[s]

95.0

97.5

100.0

102.5

105.0

av
g.

 so
lu

tio
n 

qu
al

ity A*+ACS
A*+BS
APS
A*+ACS-dist

(b) Benchmark set BL: 10 instances with
|Σ| = 12,m = 50, n = 1000.

0.0 200.0 400.0 600.0 800.0
time[s]

130

140

150

160

170

so
lu
tio

n 
qu

al
ity

A*+ACS
A*+BS
APS
A*+ACS-dist

(c) Benchmark set Virus: instance |Σ| = 4,
m = 40, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

100

110

120

130

140

so
lu
tio

n 
qu

al
ity

A*+ACS
A*+BS
APS
A*+ACS-dist

(d) Benchmark set Rat: instance |Σ| = 4,
m = 100, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

59

60

61

62

63

so
lu
tio

n 
qu

al
ity

A*+ACS
A*+BS
APS
A*+ACS-dist

(e) Benchmark set Random: instance |Σ| =
20, m = 10, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

505

510

515

520

525

av
g.
 so

lu
tio

n 
qu

al
ity

A*+ACS
A*+BS
APS
A*+ACS-dist

(f) Benchmark set ES: 50 instances with
|Σ| = 2,m = 100, n = 1000.

0.0 200.0 400.0 600.0 800.0
time[s]

480

500

520

540

560

av
g.
 so

lu
tio

n 
qu

al
ity

A*+ACS
A*+BS
APS
A*+ACS-dist

(g) Benchmark set BB: 10 instances with
|Σ| = 2,m = 100, n = 1000.

Figure 3: Comparison of the algorithms’ anytime behavior concerning solution quality.

23

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



0.0 200.0 400.0 600.0 800.0
time[s]

10

20

30

40

50

av
g.
 g
ap

s [
\%

]
A*+ACS
A*+BS
APS
A*+ACS-dist

(a) Benchmark set BL: 10 instances with
|Σ| = 4,m = 10, n = 100.

0.0 200.0 400.0 600.0 800.0
time[s]

74

76

78

80

av
g.
 g
ap

s [
\%

]

A*+ACS
A*+BS
APS
A*+ACS-dist

(b) Benchmark set BL: 10 instances with
|Σ| = 12,m = 50, n = 1000.

0.0 200.0 400.0 600.0 800.0
time[s]

45

50

55

60

65

ga
ps
 [\
%
].

A*+ACS
A*+BS
APS
A*+ACS-dist

(c) Benchmark set Virus: instance |Σ| = 4,
m = 40, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

45

50

55

60

65

ga
ps
 [\
%
].

A*+ACS
A*+BS
APS
A*+ACS-dist

(d) Benchmark set Rat: instance |Σ| = 4,
m = 100, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

62

64

66

68

ga
ps
 [\
%
].

A*+ACS
A*+BS
APS
A*+ACS-dist

(e) Benchmark set Random: instance |Σ| =
20, m = 10, n = 600.

0.0 200.0 400.0 600.0 800.0
time[s]

32

33

34

35

36

37

av
g.
 g
ap

s [
\%

]

A*+ACS
A*+BS
APS
A*+ACS-dist

(f) Benchmark set ES: 50 instances with
|Σ| = 2,m = 100, n = 1000.

0.0 200.0 400.0 600.0 800.0
time[s]

30

35

40

45

av
g.
 g
ap

s [
\%

]

A*+ACS
A*+BS
APS
A*+ACS-dist

(g) Benchmark set BB: 10 instances with
|Σ| = 2,m = 100, n = 1000.

Figure 4: Comparison of the algorithms’ anytime behavior concerning gaps.

24

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



crucial for obtaining a favorable evolution of the gaps, and (2) near-optimal solutions
are easily obtained for these instances by any of the algorithms.

• Concerning the remaining medium-size and large–size instances, A∗+ACS shows a
better anytime performance concerning the gaps for the Virus, Rat, Random, and
ES benchmarks; see Figures 4b–4f. This is because the ACS-iterations, even with a
rather low value of β, are still able to find rather high-quality primal solutions, while
a significantly increased number of A∗-iterations (in comparison to the parameter
setting used when aiming for solution quality) provides improved upper bounds.
In this sense, A∗+ACS is an algorithm that is much better balanced than the
competitors.

• In the case of small alphabet sizes, A∗+ACS-dist is not able to keep up with the
performances of the other algorithms (see Figures 4c and 4d). Mainly responsible
for this is the heuristic function dist(·), which provides a weaker guidance than
in particular EX for finding good primal bounds, especially in the case of small
alphabet sizes.

• APS and A∗+BS show a similar behavior concerning the evolution of the average
gaps over time. The necessity of working with a large beam width (β) hinders the
evolution of the gap since the search is mainly focused on improving solution quality
and less on improving the upper bound.

6. Conclusions and Future Work

We presented an exact A∗ algorithm for the LCS problem based on the general search
framework for the problem proposed in our earlier study, which combines features of
various other heuristic techniques. This A∗ search makes use of the combination of two
previously known upper bound functions for the length of the LCS and is able to solve
instances of up to n = 100 and |Σ| ≥ 12 to proven optimality (106 instances from the
literature are solved to optimality), most of them in a fraction of a second. For larger or
more complex instances, however, the exact A∗ search soon either runs out of memory or
requires substantially more time. Therefore, we combined A∗ search with either BS or ACS
by interleaving traditional A∗ iterations with BS runs of small width or single iterations
of ACS, respectively. Note that we did this combination in a way that avoids redundant
expansions of the same nodes, i.e., the methods act on a shared list of open nodes. These
anytime algorithms, denoted by A∗+ACS and A∗+BS either run until optimality is
proven or they are terminated prematurely, in which case a solution of promising quality
is returned in combination with an upper bound. To the best of our knowledge, we report
proven optimality gaps for larger LCS instances for the first time ever in the literature. Our
two anytime algorithms were compared to the well known Anytime Pack Search (APS) and
a variant of A∗+ACS employing the dist heuristic as guidance. All the parameters of the
algorithms were tuned w.r.t. both, solution quality and small gaps by using irace. Our
computational study showed that A∗+ACS performs in most cases significantly better
than the other algorithms concerning solution quality. New best solutions where found by
A∗+ACS for 82 different LCS instance groups from the literature (≈ 70% of all instance
groups from the literature), and for the remaining groups, the so far best known results
were matched by A∗+ACS in most cases. Also concerning optimality gaps, A∗+ACS
outperforms the other approaches in most cases or is on par with them. Last but not least,
A∗+ACS usually provides a better anytime behavior in the sense that it earlier produces

25

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



better results, and more frequently improves on them over time. Responsible for the
success of A∗+ACS is the careful selection and combination of strategies and components
that proved already successful or promising in earlier works such as pure heuristic beam
searches. The most important aspect is that we use, on the one hand, the upper bound
UB for steering the classical A∗ search iterations and, on the other hand, the separate
heuristic function EX for guiding the ACS iterations. While UB is required to obtain
upper bounds and finally prove optimality, EX approximates the expected LCS length for
unrelated random strings and is, for most of the considered benchmark instances, very
well suited to lead ACS to promising heuristic solutions. The benefits of EX diminish,
however, when instances with strongly related strings are considered, as for example in
benchmark set BB. There, EX tends to become a disadvantage.

In future work it may be interesting to consider an approach that analyzes instances in a
pre-processing phase in order to determine the most promising strategies and parameters
to actually use. For example, one may roughly check the relatedness of the strings in order
to decide whether or not EX shall be applied. Moreover, it would be good to find a more
efficient way of filtering dominated solutions; this may make filtering actually beneficial
also in those cases in which it did not pay off so far, especially within A∗+ACS. Last but
not least, coming up with an effective parallel implementation of our algorithms would
be of high practical interest. Finally, note that A∗+ACS is also a promising starting
point for algorithms to solve other variants of the LCS problem such as the constrained
LCS problem [20], the repetition–free LCS [1], the doubly-constrained LCS [8], and the
restricted LCS [19].

Acknowledgments.

We gratefully acknowledge the financial support of this project by the Doctoral Program
“Vienna Graduate School on Computational Optimization” funded by the Austrian Science
Foundation (FWF) under contract no. W1260-N35.

References

[1] S. S. Adi, M. D. Braga, C. G. Fernandes, C. E. Ferreira, F. V. Martinez, M.-F. Sagot,
M. A. Stefanes, C. Tjandraatmadja, and Y. Wakabayashi. Repetition-free longest
common subsequence. Discrete Applied Mathematics, 158(12):1315–1324, 2010.

[2] S. Aine, P. Chakrabarti, and R. Kumar. AWA* – A window constrained anytime
heuristic search algorithm. In Proceedings of IJCAI’07 – The 12th International
Joint Conference on Artificial Intelligence, pages 2250–2255, 2007.

[3] R. Beal, T. Afrin, A. Farheen, and D. Adjeroh. A new algorithm for “the LCS prob-
lem” with application in compressing genome resequencing data. BMC Genomics,
17(4):544, 2016.

[4] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence
algorithms. In In Proceedings of SPIRE 2000 – The 7th International Symposium on
String Processing and Information Retrieval, pages 39–48. IEEE, 2000.

[5] C. Blum and M. J. Blesa. Probabilistic beam search for the longest common subse-
quence problem. In T. Stützle, M. Birratari, and H. H. Hoos, editors, Proceedings of

26

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



SLS 2007 – The 1st International on Engineering Stochastic Local Search Algorithms,
volume 4638 of LNCS, pages 150–161. Springer, 2007.

[6] C. Blum, M. J. Blesa, and M. López-Ibáñez. Beam search for the longest common
subsequence problem. Computers & Operations Research, 36(12):3178–3186, 2009.

[7] C. Blum and P. Festa. Longest common subsequence problems. In Metaheuristics for
String Problems in Bioinformatics, chapter 3, pages 45–60. Wiley, 2016.

[8] P. Bonizzoni, G. Della Vedova, R. Dondi, and Y. Pirola. Variants of constrained
longest common subsequence. Information Processing Letters, 110(20):877–881, 2010.

[9] P. Brisk, A. Kaplan, and M. Sarrafzadeh. Area-efficient instruction set synthesis for
reconfigurable system-on-chip design. In Proceedings of DAC 2004 – The 41st Design
Automation Conference, pages 395–400. IEEE press, 2004.

[10] H.-T. Chan, C.-B. Yang, and Y.-H. Peng. The generalized definitions of the two-
dimensional largest common substructure problems. In Proceedings of the 33rd Work-
shop on Combinatorial Mathematics and Computation Theory, pages 1–12. National
Taiwan University, Department of Mathematics, 2016.

[11] T. L. Dean. Intractability and time-dependent planning,”. In Proceedings of the 1986
Workshop on Reasoning about Actions & Plans, pages 245–266, 1986.

[12] T. L. Dean and M. S. Boddy. An analysis of time-dependent planning. In AAAI,
volume 88, pages 49–54, 1988.

[13] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research, 7:1–30, 2006.

[14] M. Djukanovic, G. Raidl, and C. Blum. A beam search for the longest common
subsequence problem guided by a novel approximate expected length calculation. In
Proceedings of LOD 2019 – The 5th International Conference on Machine Learning,
Optimization, and Data Science, LNCS. Springer, 2019. to appear.

[15] M. Djukanovic, G. Raidl, and C. Blum. Heuristic approaches for solving the longest
common squared subsequence problem. In Proceedings of EUROCAST 2019 – The
17th International Conference on Computer Aided Systems Theory, LNCS. Springer,
2019. to appear.

[16] M. Djukanovic, G. Raidl, and C. Blum. Anytime algorithms for the longest com-
mon palindromic subsequence problem. Computers & Operations Research, 2020. to
appear.

[17] T. Easton and A. Singireddy. A large neighborhood search heuristic for the longest
common subsequence problem. Journal of Heuristics, 14(3):271–283, 2008.

[18] C. B. Fraser. Subsequences and Supersequences of Strings. PhD thesis, University of
Glasgow, Glasgow, UK, 1995.

[19] Z. Gotthilf, D. Hermelin, G. M. Landau, and M. Lewenstein. Restricted LCS. In
Proceedings of SPIRE 2010 – The 17th International Symposium on String Processing
and Information Retrieval, volume 6394 of LNCS, pages 250–257. Springer, 2010.

[20] Z. Gotthilf, D. Hermelin, and M. Lewenstein. Constrained LCS: Hardness and ap-
proximation. In Proceedings of CPM 2008 – The 19th Annual Symposium on Com-
binatorial Pattern Matching, volume 5029 of LNCS, pages 255–262. Springer, 2008.

27

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



[21] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, 1997.

[22] E. A. Hansen and R. Zhou. Anytime heuristic search. Journal of Artificial Intelligence
Research, 28:267–297, 2007.

[23] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[24] K. Huang, C. Yang, and K. Tseng. Fast algorithms for finding the common subse-
quences of multiple sequences. In Proceedings of ICS 2004 – The 9th International
Computer Symposium. IEEE Press, 2004.

[25] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA
structures. Journal of Computational Biology, 9(2):371–388, 2002.

[26] G. K. Kao, E. C. Sewell, and S. H. Jacobson. A branch, bound, and remember
algorithm for the 1|ri|

∑
ti scheduling problem. Journal of Scheduling, 12(2):163–

175, 2009.

[27] J. B. Kruskal. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM review, 25(2):201–237, 1983.

[28] Y. Li, Y. Wang, Z. Zhang, Y. Wang, D. Ma, and J. Huang. A novel fast and memory
efficient parallel MLCS algorithm for long and large-scale sequences alignments. In
IEEE 32nd International Conference on Data Engineering, pages 1170–1181, 2016.

[29] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*: Anytime A* with provable
bounds on sub-optimality. In Advances in neural information processing systems,
pages 767–774, 2004.

[30] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle.
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3:43 – 58, 2016.

[31] D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322–336, 1978.

[32] S. R. Mousavi and F. Tabataba. An improved algorithm for the longest common
subsequence problem. Computers & Operations Research, 39(3):512–520, 2012.

[33] Z. Peng and Y. Wang. A novel efficient graph model for the multiple longest common
subsequences (mlcs) problem. Frontiers in Genetics, 8:104, 2017.

[34] S. J. Shyu and C.-Y. Tsai. Finding the longest common subsequence for multiple
biological sequences by ant colony optimization. Computers & Operations Research,
36(1):73–91, 2009.

[35] J. Storer. Data Compression: Methods and Theory. Computer Science Press, MD,
USA, 1988.

[36] F. S. Tabataba and S. R. Mousavi. A hyper-heuristic for the longest common subse-
quence problem. Computational Biology and Chemistry, 36:42–54, 2012.

[37] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. MAWA∗ – A memory-bounded
anytime heuristic-search algorithm. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 41(3):725–735, 2010.

28

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



[38] S. G. Vadlamudi, S. Aine, and P. P. Chakrabarti. Anytime pack search. Natural
Computing, 15(3):395–414, 2016.

[39] S. G. Vadlamudi, P. Gaurav, S. Aine, and P. P. Chakrabarti. Anytime column search.
In Proceedings of AI’12 – The 25th Australasian Joint Conference on Artificial Intel-
ligence, pages 254–265. Springer, 2012.

[40] J. Van Den Berg, R. Shah, A. Huang, and K. Goldberg. Anytime nonparametric A∗.
In Proceedings of AAAI’11 – The 25th Conference on Artificial Intelligence, 2011.

[41] Q. Wang, D. Korkin, and Y. Shang. Efficient dominant point algorithms for the
multiple longest common subsequence (MLCS) problem. In Proceedings of IJCAI’09
– The 25th International Joint Conference on Artificial Intelligence, pages 1494–1499,
2009.

[42] Q. Wang, D. Korkin, and Y. Shang. A fast multiple longest common subse-
quence (MLCS) algorithm. IEEE Transactions on Knowledge and Data Engineering,
23(3):321–334, 2011.

[43] J. Yang, Y. Xu, Y. Shang, and G. Chen. A space-bounded anytime algorithm for the
multiple longest common subsequence problem. IEEE Transactions on Knowledge
and Data Engineering, 26(11):2599–2609, 2014.

[44] J. Yang, Y. Xu, G. Sun, and Y. Shang. A new progressive algorithm for a mul-
tiple longest common subsequences problem and its efficient parallelization. IEEE
Transactions on Parallel and Distributed Systems, 24(5):862–870, 2013.

[45] W. Zhang. Complete anytime beam search. In Proceedings of IAAI ’98 – The 20th
Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,
pages 425–430, Menlo Park, CA, USA, 1998. American Association for Artificial
Intelligence.

[46] R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with beam
search. In Proceedings of ICAPS 2005 – The 15th International Conference on Au-
tomated Planning and Scheduling, pages 90–98. AAAI Press, 2005.

[47] S. Zilberstein. Operational rationality through compilation of anytime algorithms.
AI Magazine, 16(2):79–79, 1995.

[48] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73–73, 1996.

29

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



A. Additional Numerical Results

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|

4 10 600 214 41.8 2.52 900.0 *223 39.2 548.2 900.0 214 41.0 2.2 900.0 *223 38.6 173.6 681.1 221
4 15 600 198 46.5 35.8 624.91 *206 44.5 16.0 900.0 199 45.6 892.9 900.0 205 44.1 140.4 596.2 204
4 20 600 189 48.4 687.7 900.0 *195 46.7 130.0 900.0 188 48.1 245.0 900.0 194 46.6 158.7 686.9 193
4 25 600 183 49.9 357.7 900.0 *189 48.2 26.7 900.0 182 49.4 7.7 900.0 187 48.2 110.4 627.1 187
4 40 600 170 53.4 234.6 796.0 *177 51.5 457.5 900.0 170 52.9 110.3 900.0 174 51.7 585.8 718.9 175
4 60 600 162 55.2 8.6 900.0 *169 53.3 275.9 900.0 162 54.7 7.9 900.0 166 53.6 448.3 705.0 168
4 80 600 158 56.5 112.4 900.0 *164 54.8 337.6 900.0 158 56.1 67.3 900.0 159 55.7 9.1 765.3 163
4 100 600 155 57.4 170.6 900.0 *161 55.6 735.4 900.0 155 56.8 70.9 900.0 157 56.3 24.1 832.1 159
4 150 600 149 58.9 19.7 900.0 *155 57.2 487.5 900.0 150 58.0 71.8 900.0 149 58.4 20.1 900.1 153
4 200 600 147 59.1 135.3 900.0 *152 57.8 130.5 900.0 147 58.8 54.0 900.0 147 58.7 430.0 900.0 151

20 10 600 61 66.9 62.6 900.0 63 65.4 8.1 900.0 61 65.7 38.7 900.0 63 64.2 315.5 900.0 63
20 15 600 51 72.3 347.2 900.0 53 71.0 4.4 900.0 51 71.3 5.8 900.0 53 70.1 201.5 900.0 53
20 20 600 46 74.6 57.0 900.0 48 73.5 3.6 900.0 47 73.1 804.5 900.0 48 72.4 160.4 900.0 48
20 25 600 43 76.0 7.8 900.1 *45 74.7 7.1 900.0 44 74.6 187.0 900.1 *45 73.7 342.2 900.0 44
20 40 600 38 78.5 9.8 900.1 39 77.8 4.3 900.0 38 77.8 11.4 900.1 39 76.9 778.8 900.6 39
20 60 600 34 80.6 23.0 900.1 *36 79.2 14.5 900.0 35 79.2 283.5 900.0 35 78.9 10.2 900.0 35
20 80 600 33 80.8 15.7 900.3 33 80.7 5.9 900.0 33 80.1 20.0 900.1 33 79.9 495.3 900.0 33
20 100 600 31 82.0 23.8 900.0 32 81.4 7.6 900.0 31 81.3 21.3 900.1 32 80.4 237.4 900.3 32
20 150 600 29 83.0 413.5 900.6 *30 82.4 733.9 900.0 29 82.4 817.7 900.2 29 82.1 817.7 900.1 29
20 200 600 27 84.0 37.7 901.2 28 83.3 14.1 900.0 27 83.1 19.7 900.1 27 83.1 19.7 900.1 28

Table 12: Random benchmark. Results when aiming for solution quality.

A∗ + BS A∗+ACS APS A∗ + ACS-dist lit. best
m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s|
10 100 4 34.1 51.4 20.1 882.1 34.1 15.1 0.3 900.2 34.1 10.9 4.0 900.0 34.1 9.9 0.1 800.7 34.1
10 100 12 12.7 0.0 0.2 5.2 12.7 0.0 0.2 5.2 12.7 0.0 0.7 7.1 12.7 0.0 0.0 4.2 12.7
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.1 7.9
10 500 4 179.9 40.9 312.0 900.0 *186.0 38.8 109.5 900.0 179.6 40.2 221.6 792.7 185.5 38.2 52.8 736.9 184.1
10 500 12 76.4 60.2 134.8 900.0 *79.3 58.5 19.4 900.0 76.4 59.1 123.5 900.0 79.2 57.3 57.2 795.6 78.7
10 500 20 49.7 66.7 87.4 900.0 *51.3 65.2 48.2 900.0 49.8 65.2 104.8 900.0 *51.3 63.7 4.2 900.0 51.1
10 1000 4 362.6 42.4 209.7 900.0 *378.0 40.0 369.7 901.1 362.1 42.1 200.9 900.0 376.1 40.0 288.7 686.6 374.6
10 1000 12 156.2 62.2 214.4 900.4 *163.7 60.4 143.4 900.0 156.2 61.7 229.8 885.6 163.2 60.0 226.5 818.5 162.0
10 1000 20 102.4 68.9 120.8 900.0 *107.4 67.3 134.1 900.0 102.6 68.3 238.0 900.2 *107.4 66.7 294.8 891.2 106.5
50 100 4 24.2 32.9 18.7 884.1 24.2 29.2 0.3 893.3 24.2 24.3 2.3 900.0 24.2 23.6 61.3 754.5 24.2
50 100 12 6.9 0.0 0.1 0.3 6.9 0.0 0.1 0.2 6.9 0.0 0.2 0.2 6.9 0.0 0.1 0.2 6.9
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0
50 500 4 136.9 54.1 63.6 892.8 *142.0 52.4 238.3 897.3 137.2 53.3 137.0 877.7 139.7 52.5 301.7 703.0 141.0
50 500 12 47.8 74.0 190.0 900.0 *49.7 72.8 152.6 900.0 48.1 73.0 92.5 900.1 49.1 72.2 172.2 893.6 49.2
50 500 20 28.2 79.3 54.3 900.1 29.3 78.3 3.6 900.0 28.3 78.3 31.0 900.1 29.1 77.2 133.7 901.0 29.3
50 1000 4 278.6 55.3 162.5 900.0 *291.0 53.4 348.6 900.0 279.0 55.0 190.2 900.0 285.0 54.0 271.7 713.3 288.6
50 1000 12 99.1 75.4 79.0 900.3 *104.2 74.2 72.8 900.0 99.6 75.0 157.8 900.1 102.7 74.1 358.2 896.1 103.5
50 1000 20 60.5 81.0 114.5 900.1 *63.2 80.1 52.6 900.0 60.8 80.4 190.2 900.2 62.2 79.9 307.1 901.7 62.5

100 100 4 21.9 37.3 226.2 900.0 *22.1 32.5 1.1 895.5 *22.1 28.1 12.2 900.0 *22.1 24.9 63.1 815.0 22.0
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1
100 500 4 127.6 57.9 135.2 900.0 *131.9 55.6 74.6 900.0 127.7 56.5 86.0 900.0 128.7 56.1 358.6 868.4 130.8
100 500 12 41.8 76.8 41.0 900.1 *43.4 75.9 52.0 900.2 42.0 75.8 17.8 900.2 42.4 75.4 136.2 900.1 43.1
100 500 20 24.2 81.6 16.1 900.4 *25.0 80.9 7.1 900.0 24.2 80.8 17.3 900.4 24.5 80.1 107.9 900.0 24.9
100 1000 4 261.8 57.9 135.3 900.0 *272.4 56.2 291.9 900.0 262.6 57.5 317.2 900.1 265.1 57.1 257.0 817.3 270.6
100 1000 12 89.2 77.8 106.3 900.2 *93.1 76.8 67.3 900.0 89.0 77.6 93.3 900.2 90.5 77.0 295.2 900.0 92.4
100 1000 20 52.8 83.2 50.4 900.2 *55.1 82.5 61.1 900.6 53.0 82.9 124.1 900.5 53.6 82.5 216.9 901.6 54.7
150 100 4 20.3 37.4 23.4 900.0 *20.8 30.6 2.9 899.1 20.7 26.3 117.9 900.0 20.7 22.4 38.5 826.7 20.5
150 100 12 4.7 0.0 0.0 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9
150 500 4 123.5 58.4 180.3 900.0 *127.5 56.9 150.9 899.7 124.0 57.7 313.6 900.0 123.9 57.6 314.1 884.5 126.4
150 500 12 39.5 77.9 113.9 900.2 *40.9 77.1 24.1 900.0 39.8 77.1 184.7 900.3 39.7 76.9 141.0 900.0 40.4
150 500 20 22.5 82.8 31.4 900.5 23.0 82.3 7.4 900.0 22.5 81.7 27.9 900.8 22.4 81.5 73.3 900.1 23.0
150 1000 4 254.6 59.0 365.0 900.1 *264.0 57.5 245.6 900.0 254.5 58.8 311.1 900.1 255.9 58.6 295.5 864.8 262.8
150 1000 12 84.5 79.0 105.5 900.3 *88.1 78.0 44.4 900.0 84.6 78.6 101.7 900.3 85.2 78.3 296.4 900.0 87.7
150 1000 20 49.7 84.2 98.6 900.4 *51.6 83.5 86.8 900.0 49.8 83.8 114.8 900.9 49.9 83.6 280.8 900.1 51.2
200 100 4 19.9 37.9 5.7 900.0 *20.1 32.8 9.0 898.2 *20.1 28.2 58.8 900.1 19.9 24.6 17.0 861.6 19.9
200 100 12 4.1 0.0 0.0 0.0 4.1 0.0 0.0 0.0 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0 4.1
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1
200 500 4 121.0 59.3 93.0 900.0 *124.8 57.9 188.1 900.0 121.3 58.6 126.0 900.1 121.0 58.6 258.6 880.1 123.7
200 500 12 38.0 78.7 41.0 900.4 *39.1 77.9 57.1 900.0 38.0 78.0 31.2 900.3 38.0 77.7 82.9 900.0 39.0
200 500 20 21.0 83.7 28.0 900.5 *22.0 82.9 41.4 900.2 21.1 82.9 107.5 901.0 21.2 82.3 116.4 900.1 21.8
200 1000 4 249.6 59.8 283.5 900.1 *258.8 58.3 170.0 900.0 249.8 59.6 235.8 900.1 250.2 59.4 448.5 893.6 257.6
200 1000 12 81.8 79.5 244.9 900.2 *85.2 78.6 59.5 900.0 81.9 79.2 205.1 900.4 81.9 79.1 205.4 900.0 84.8
200 1000 20 47.8 84.6 305.7 900.4 *49.4 84.1 93.4 900.0 47.9 84.5 190.7 900.6 47.9 84.2 309.5 900.1 49.1

Table 13: BL benchmark. Results when aiming for solution quality (averages over ten
instances per row).

30

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



A∗ + BS A∗+ACS APS A∗ + ACS-dist

|Σ| m n |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
4 10 600 215 40.4 3.4 900.0 222 38.3 100.0 900.0 219 39.5 568.6 900.0 223 37.9 236.1 633.2
4 15 600 200 45.2 146.8 900.0 206 43.3 167.7 900.0 200 45.4 74.6 900.0 204 43.8 64.4 586.4
4 20 600 188 47.6 209.3 749.4 194 45.8 158.7 900.0 189 47.8 731.3 917.0 194 45.8 75.0 887.5
4 25 600 182 49.3 397.2 900.0 189 46.9 235.2 900.0 183 49.3 189.7 900.0 186 47.8 7.3 578.1
4 40 600 171 52.1 57.8 812.6 176 50.4 42.8 900.0 169 53.2 34.9 900.0 173 51.3 627.6 640.6
4 60 600 162 54.5 167.6 900.0 168 52.4 471.3 900.1 163 54.6 462.0 900.0 164 53.5 56.2 628.7
4 80 600 157 56.0 108.8 900.1 163 54.0 115.6 900.1 159 55.8 115.6 900.0 159 55.1 65.0 725.5
4 100 600 155 56.6 170.2 900.0 160 54.7 168.1 900.0 155 56.9 84.4 900.0 157 55.5 118.0 900.0
4 150 600 149 58.1 20.5 900.1 154 56.2 301.2 900.0 149 58.4 20.1 900.0 150 57.4 173.2 790.8
4 200 600 147 58.5 115.3 900.1 151 56.7 37.8 900.0 147 58.8 54.8 900.0 146 58.2 221.0 900.0

20 10 600 61 64.3 2.8 900.0 63 62.9 162.8 900.1 62 65.0 29.2 900.1 62 63.1 59.3 890.1
20 15 600 51 70.5 7.7 900.1 53 68.8 86.5 900.0 52 70.8 63.9 900.0 52 69.2 47.9 814.7
20 20 600 46 73.1 7.3 900.1 48 71.3 79.9 900.0 46 73.9 8.5 900.1 47 71.9 8.0 855.2
20 25 600 43 74.6 9.1 900.0 45 72.7 47.0 900.0 44 74.6 440.7 900.2 44 73.2 7.4 868.9
20 40 600 38 77.2 9.9 900.0 39 75.9 29.4 900.0 38 77.8 12.4 900.3 38 76.5 142.2 900.0
20 60 600 34 79.4 434.1 900.2 36 77.4 592.2 900.2 35 79.2 293.9 900.3 35 78.0 179.8 900.0
20 80 600 32 80.2 15.8 900.4 33 78.8 27.9 900.2 32 80.7 21.4 900.2 32 79.5 88.7 900.2
20 100 600 31 80.7 24.9 900.5 32 79.5 56.2 900.2 31 81.0 10.2 900.2 31 80.1 37.5 900.1
20 150 600 28 83.9 36.3 900.0 29 81.2 41.1 900.0 29 82.4 74.3 900.9 28 81.8 26.2 900.2
20 200 600 27 84.3 43.2 900.5 28 81.6 20.9 900.0 28 82.9 856.6 900.7 27 82.2 387.0 900.3

Table 14: Random benchmark. Results when aiming for small gaps.

A∗ + BS A∗+ACS APS A∗ + ACS-dist

m n |Σ| |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s] |s| gap[%] tbest[s] t[s]
10 100 4 34.0 4.2 0.3 797.6 34.1 10.8 1.8 900.0 34.1 8.4 0.6 898.9 34.1 6.7 1.4 645.0
10 100 12 12.7 0.0 0.3 2.7 12.7 0.0 1.6 8.2 12.7 0.0 0.5 4.1 12.7 0.0 0.3 2.4
10 100 20 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.1 0.1 7.9 0.0 0.0 0.0
10 500 4 180.7 39.3 113.1 901.3 185.4 37.7 337.6 900.0 181.2 39.5 28.2 900.0 185.3 37.3 160.8 656.6
10 500 12 76.7 57.9 24.1 900.0 79.0 56.6 216.1 900.1 77.2 58.3 180.3 900.0 79.1 55.8 163.0 795.5
10 500 20 49.6 64.1 5.9 900.0 51.2 62.7 205.8 900.1 50.1 64.8 16.1 900.1 51.3 61.7 72.4 900.0
10 1000 4 365.5 41.4 168.4 900.0 376.2 39.6 385.8 900.0 366.5 41.4 77.4 900.0 375.6 39.5 229.3 700.6
10 1000 12 157.1 61.1 113.5 900.0 162.7 59.6 273.3 900.1 158.2 61.2 135.2 900.0 162.1 59.5 111.2 742.0
10 1000 20 103.4 67.5 38.4 900.0 106.6 66.3 265.9 900.2 104.1 67.7 83.7 900.1 106.4 66.0 240.6 890.9
50 100 4 23.9 21.1 0.8 900.0 24.2 18.7 9.6 900.0 24.2 25.3 2.6 900.0 24.1 18.0 106.5 748.2
50 100 12 6.9 0.0 0.2 0.3 6.9 0.0 0.3 0.5 6.9 0.0 0.3 0.4 6.9 0.0 0.1 0.1
50 100 20 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0
50 500 4 136.5 53.3 110.9 900.0 141.3 51.3 142.3 901.0 137.2 53.4 101.3 900.0 138.8 52.0 256.1 712.6
50 500 12 47.4 72.8 8.3 900.1 49.2 71.3 152.7 900.2 48.1 73.0 137.3 900.0 48.4 71.5 130.8 808.5
50 500 20 28.1 77.7 20.2 900.1 29.3 76.2 121.1 900.3 28.4 78.2 33.8 900.3 28.7 76.2 94.7 900.5
50 1000 4 278.3 55.0 157.3 900.0 289.8 52.9 410.9 900.0 278.9 55.0 96.1 900.0 284.2 53.7 332.7 756.7
50 1000 12 99.0 74.8 104.1 900.1 103.7 73.4 288.9 900.2 99.6 75.0 205.8 900.1 101.7 73.8 378.8 874.5
50 1000 20 60.0 80.4 98.4 900.2 62.6 79.3 134.3 900.4 60.7 80.6 132.0 900.3 61.3 79.6 320.7 901.0

100 100 4 21.6 24.6 1.3 900.0 22.0 20.4 16.1 900.1 22.1 28.1 12.9 900.0 22.0 17.4 80.6 813.9
100 100 12 5.2 0.0 0.1 0.1 5.2 0.0 0.0 0.1 5.2 0.0 0.2 0.2 5.2 0.0 0.0 0.0
100 100 20 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0 2.1 0.0 0.0 0.0
100 500 4 127.3 56.3 96.3 900.0 131.4 54.4 250.1 900.0 127.7 56.5 91.2 900.0 128.0 55.4 242.5 857.0
100 500 12 41.8 75.4 88.1 900.1 43.2 74.2 185.7 900.2 42.0 76.0 30.5 900.2 42.0 74.6 131.8 900.0
100 500 20 24.2 80.1 17.0 900.2 24.8 79.0 156.8 900.6 24.2 80.7 14.8 900.4 24.0 79.3 152.9 900.1
100 1000 4 261.9 57.5 206.9 900.0 271.4 55.7 312.8 900.1 262.6 57.5 354.9 900.0 264.7 56.7 521.1 890.2
100 1000 12 88.9 77.3 53.2 900.1 92.7 76.1 363.4 900.3 89.1 77.5 186.5 900.2 89.7 76.7 368.2 900.0
100 1000 20 52.8 83.0 103.0 900.2 54.8 81.6 310.1 900.6 53.0 82.9 126.8 900.2 52.9 82.1 309.9 900.1
150 100 4 20.0 22.0 1.6 900.1 20.6 18.1 17.9 900.0 20.7 26.8 123.5 900.1 20.6 15.1 182.6 834.9
150 100 12 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0 4.7 0.0 0.1 0.1 4.7 0.0 0.0 0.0
150 100 20 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0 1.9 0.0 0.0 0.0
150 500 4 123.4 57.5 254.8 900.0 127.0 55.8 229.7 900.1 123.9 57.7 251.4 900.0 123.2 57.0 364.8 848.4
150 500 12 39.3 76.8 21.3 900.2 40.5 75.6 95.5 900.4 39.8 77.1 205.9 900.3 39.3 76.1 124.2 900.1
150 500 20 22.4 82.5 25.8 900.2 22.9 80.3 324.6 901.0 22.5 82.0 36.4 900.9 22.1 80.6 142.3 900.2
150 1000 4 254.1 58.7 141.1 900.0 263.3 57.0 340.2 900.1 254.6 58.8 293.6 900.1 255.0 58.2 284.5 872.9
150 1000 12 84.4 78.8 159.2 900.7 87.7 77.2 294.5 900.4 84.6 78.6 106.5 900.3 84.5 78.0 204.9 900.1
150 1000 20 49.7 84.1 101.7 900.6 51.0 82.8 155.6 901.0 49.8 83.8 117.6 900.6 49.0 83.3 309.8 900.3
200 100 4 19.7 23.9 2.3 900.0 20.0 20.2 47.5 900.1 20.1 26.8 56.4 900.1 19.8 17.8 134.5 878.7
200 100 12 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.1 4.1 0.0 0.1 0.1 4.1 0.0 0.0 0.0
200 100 20 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0
200 500 4 121.0 58.4 190.1 900.1 124.0 56.9 187.4 900.1 121.3 58.6 133.5 900.1 120.3 58.0 186.4 880.4
200 500 12 38.0 77.4 50.6 900.2 38.9 76.3 84.2 900.4 38.0 78.0 31.9 900.5 37.5 77.0 214.4 900.1
200 500 20 21.0 83.5 28.0 900.1 21.7 81.1 256.0 901.3 21.1 83.0 111.8 901.1 20.9 81.4 288.6 900.2
200 1000 4 249.3 59.6 124.0 900.0 258.1 57.7 431.9 900.2 249.8 59.6 242.5 900.1 249.0 59.2 436.3 899.3
200 1000 12 81.7 79.5 130.9 900.2 84.6 78.0 311.7 900.7 81.9 79.2 187.4 900.4 81.1 78.8 332.9 900.1
200 1000 20 47.5 84.7 106.7 900.5 49.0 83.3 221.1 900.8 47.9 84.5 203.9 900.7 46.9 83.9 298.5 900.3

Table 15: BL benchmark. Results when aiming for small gaps (averages over ten instances
per row).

31

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



B. Improvements of A∗+ACS Over Other Approaches

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 12

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]
|Σ|= 12

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

Figure 5: Improvement of A∗+ACS over the competitors in terms of solution quality (in
%) for benchmark set BL. First row: instances with n = 500. Second row:
instances with n = 1000.

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0.1

1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

Figure 6: Improvement of A∗+ACS over the competitors in terms of solution quality (in
%) for benchmark sets Rat (first column of graphs), Virus (second column of
graphics) and Random (last column of graphics).

32

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



10 50 10
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]
n=1000, |Σ|= 2

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

n=1000, |Σ|= 10

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

n=2500, |Σ|= 25

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

n=5000, |Σ|= 100

A*+BS
APS
A*+ACS-dist

Figure 7: Improvement of A∗+ACS over the competitors in terms of solution quality (in
%) for benchmark set ES.

10 10
0

m

-10.0

-1.0
0.0
1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 2

A*+BS
APS
A*+ACS-dist

10 10
0

m

-10.0

-1.0
0.0
1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 10
0

m

-10.0

-1.0
0.0
1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 8

A*+BS
APS
A*+ACS-dist

10 10
0

m

-10.0

-1.0
0.0
1.0

10.0

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 24

A*+BS
APS
A*+ACS-dist

Figure 8: Improvement of A∗+ACS over the competitors in terms of solution quality (in
%) for benchmark set BB.

10 50 10
0

15
0

20
0

m

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 12

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0

2

4

6
Im

pr
. o

f A
*+

AC
S 
[%

]
|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 12

A*+BS
APS
A*+ACS-dist

10 50 10
0

15
0

20
0

m

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

Figure 9: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark set BL. First row: instances with n = 500. Second row: instances
with n = 1000.

33

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8



10 15 20 25 40 60 80 10
0

15
0

20
0

m

0

10

20

30
Im

pr
. o

f A
*+

AC
S 

[%
]

|Σ| = 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0

5

10

15

20

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

0

5

10

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

10 15 20 25 40 60 80 10
0

15
0

20
0

m

−2

0

2

4

6

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 20

A*+BS
APS
A*+ACS-dist

Figure 10: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark sets Rat (first column of graphs), Virus (second column of graphics)
and Random (last column of graphics).

10 50 10
0

m

0

2

4

6

Im
pr

. o
f A

*+
AC

S 
[%

]

n=1000, |Σ| = 2

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

2

4

Im
pr
. o

f A
*+

AC
S 
[%

]

n=1000, |Σ|= 10

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

2

4

Im
pr
. o

f A
*+

AC
S 
[%

]

n=2500, |Σ|= 25

A*+BS
APS
A*+ACS-dist

10 50 10
0

m

0

2

4

Im
pr
. o

f A
*+

AC
S 
[%

]

n=5000, |Σ|= 100

A*+BS
APS
A*+ACS-dist

Figure 11: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark set ES.

10 10
0

m

0

10

20

30

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 2

A*+BS
APS
A*+ACS-dist

10 10
0

m

0

10

20

30

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 4

A*+BS
APS
A*+ACS-dist

10 10
0

m

0

10

20

30

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 8

A*+BS
APS
A*+ACS-dist

10 10
0

m

0

10

20

30

Im
pr
. o

f A
*+

AC
S 
[%

]

|Σ|= 24

A*+BS
APS
A*+ACS-dist

Figure 12: Improvement of A∗+ACS over the competitors in terms of gaps (in %) for
benchmark set BB.

34

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
01

9-
00

8


