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Abstract. We propose joinwidth, a new complexity parameter for the Constraint
Satisfaction Problem (CSP). The definition of joinwidth is based on the arrange-
ment of basic operations on relations (joins, projections, and pruning), which
inherently reflects the steps required to solve the instance. We use joinwidth to
obtain polynomial-time algorithms (if a corresponding decomposition is provided
in the input) as well as fixed-parameter algorithms (if no such decomposition is
provided) for solving the CSP.
Joinwidth is a hybrid parameter, as it takes both the graphical structure as well as
the constraint relations that appear in the instance into account. It has, therefore,
the potential to capture larger classes of tractable instances than purely structural
parameters like hypertree width and the more general fractional hypertree width
(fhtw). Indeed, we show that any class of instances of bounded fhtw also has
bounded joinwidth, and that there exist classes of instances of bounded joinwidth
and unbounded fhtw, so bounded joinwidth properly generalizes bounded fhtw.
We further show that bounded joinwidth also properly generalizes several other
known hybrid restrictions, such as fhtw with degree constraints and functional
dependencies. In this sense, bounded joinwidth can be seen as a unifying prin-
ciple that explains the tractability of several seemingly unrelated classes of CSP
instances.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computational prob-
lem that provides a common framework for many theoretical and practical applications
in AI and other areas of Computer Science [31]. An instance of the CSP consists of a
collection of variables that must be assigned values subject to constraints, where each
constraint is given in terms of a relation whose tuples specify the allowed combinations
of values for specified variables.

CSP is NP-complete in general. A central line of research is concerned with the
identification of classes of instances for which the CSP can be solved in polynomial time.
The two main approaches are to define classes either in terms of the constraint relations
that may occur in the instance (syntactic restrictions; see, e.g., [4]), or in terms of the
constraint hypergraph associated with the instance (structural restrictions; see, e.g., [18]).

? Robert Ganian acknowledges support by the Austrian Science Fund (FWF, Project P31336)
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2 R. Ganian and S. Ordyniak and S. Szeider

There are also several prominent proposals for utilizing simultaneously syntactic and
structural restrictions called hybrid restrictions (see, e.g., [28,7,8,6]).

Grohe and Marx [20] showed that CSP is polynomial-time tractable whenever the
constraint hypergraph has bounded fractional hypertree width, which strictly generalizes
previous tractability results based on hypertree width [15] and acyclic queries [33].
Bounded fractional hypertree width is the most general known structural restriction that
gives rise to polynomial-time tractability of CSP.

Our contribution: Joinwidth. We propose a new hybrid restriction for the CSP, the width
parameter joinwidth, which is based on the arrangement of basic relational operations
along a tree, and not on hypertree decompositions. Interestingly, as we will show, our
notion strictly generalizes (i) bounded fractional hypertree width, (ii) recently intro-
duced extensions of fractional hypertree width with degree constraints and functional
dependencies [24], (iii) various prominent hybrid restrictions [5], as well as (iv) tractable
classes based on functionality and root sets [10,9,5]. Hence, joinwidth gives rise to a
common framework that captures several different tractable classes considered in the
past. Moreover, none of the other hybrid parameters that we are aware of [8], such as
classes based on the Broken Triangle Property or topological minors [7,6] and directional
rank [28], generalize fractional hypertree width and hence all of them are either less
general or orthogonal to joinwidth.

Joinwidth is based on the arrangement of the constraints on the leaves of a rooted
binary tree which we call a join decomposition. The join decomposition indicates the
order in which relational joins are formed, where one proceeds in a bottom-up fashion
from the leaves to the root, labeling a node by the join of the relations at its children,
and projecting away variables that do not occur in relations to be processed later. Join
decompositions are related to (structural) branch decompositions of hypergraphs, where
the hyperedges are arranged on the leaves of the tree [2,19,29]. Related notions have
been considered in the context of query optimization [1,22]. However, the basic form of
join decompositions using only relational joins and projections is still a weak notion that
cannot be used to tackle instances of bounded fractional hypertree width efficiently. We
identify a further operation that—in conjunction with relational joins and projections—
gives rise to the powerful new concept of joinwidth that captures and extends the various
known tractable classes mentioned. This third operation prunes away all the tuples from
an intermediate relation that are inconsistent with a relation to be processed later.

A join decomposition of a CSP instance specifies the order in which the above three
operations are applied, and its width is the smallest real number w such that each relation
appearing within the join decomposition has at most mw many tuples (where m is the
maximum number of tuples appearing in any constraint relation of the CSP instance
under consideration). The joinwidth of a CSP instance is the smallest width over all its
join decompositions. Observe that joinwidth is a hybrid parameter—it depends on both
the graphical structure as well as the constraint relations appearing in the instance.

Exploiting Joinwidth. Similarly to other width parameters, also the property that a class
of CSP instances has bounded joinwidth can only be exploited for CSP solving if a de-
composition (in our case a join decomposition) witnessing the bounded width is provided
as part of the input. While such a join decomposition can be computed efficiently from a
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A Join-Based Hybrid Parameter for Constraint Satisfaction 3

fractional hypertree decomposition or when the CSP instance belongs to a tractable class
based on functionality or root sets mentioned earlier, we show that computing an optimal
join decomposition is NP-hard in general, mirroring the corresponding NP-hardness of
computing optimal fractional hypertree decompositions [13].

However, this obstacle disappears if we move from the viewpoint of polynomial-time
tractability to fixed-parameter tractability (FPT). Under the FPT viewpoint, one considers
classes of instances I that can be solved by a fixed-parameter algorithm—an algorithm
running in time f(k)|I|O(1), where k is the parameter (typically the number of variables
or constraints), |I| is the size of the instance, and f is a computable function [14,16,17].
We note that it is natural to assume that k is much smaller than |I| in typical cases. The
use of fixed-parameter tractability is well motivated in the CSP setting; see, for instance,
Marx’s discussion on this topic [27].

Here, we obtain two single-exponential fixed-parameter algorithms for instances of
bounded joinwidth (i.e., algorithms with a running time of 2O(k) · |I|O(1)): one where
k is the number of variables, and the other when k is the number of constraints. In this
setting, we do not require an associated join decomposition to be provided with the input.

Under the FPT viewpoint, Marx [27] previously introduced the structural parameter
submodular width (bounded submodular width is equivalent to bounded adaptive width
[26]), which is strictly more general than fractional hypertree width, but when bounded
only gives rise to fixed-parameter tractability and not polynomial-time tractability of CSP.
In fact, Marx showed that assuming the Exponential Time Hypothesis [21], bounded
submodular width is the most general purely structural restriction that yields fixed-pa-
rameter tractability for CSP. However, as joinwidth is a hybrid parameter, it can (and
we show that it does) remain bounded even on instances of unbounded submodular
width—and the same holds also for the recently introduced extensions of submodular
width based on functional dependencies and degree bounds [24].

Roadmap. After presenting the required preliminaries on (hyper-)graphs, CSP, and
fractional hypertree width in Section 2, we introduce and motivate join decompositions
and joinwidth in Section 3. We establish some fundamental properties of join decompo-
sitions, provide our tractability result for CSP for the case when a join decomposition
is given as part of the input, and then obtain our NP-hardness result for computing
join decompositions of constant width. Section 4 provides an in-depth justification for
the various design choices underlying join decompositions; among others, we show
that the pruning step is required if the aim is to generalize fractional hypertree width.
Our algorithmic applications for joinwidth are presented in Section 5: for instance, we
show that joinwidth generalizes fractional hypertree width, but also other known (and
hybrid) parameters such as functionality, root sets, and Turan sets. Section 6 contains our
fixed-parameter tractability results for classes of CSP instances with bounded joinwidth.
Finally, in Section 7, we compare the algorithmic power of joinwidth to the power of
algorithms which rely on the unrestricted use of join and projection operations.

2 Preliminaries

We will use standard graph terminology [11]. An undirected graph G is a pair (V,E),
where V or V (G) is the vertex set and E or E(G) is the edge set. All our graphs are
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4 R. Ganian and S. Ordyniak and S. Szeider

simple and loopless. For a tree T we use L(T ) to denote the set of its leaves. For i ∈ N,
we let [i] = {1, . . . , i}.

Hypergraphs. Similarly to graphs, a hypergraph H is a pair (V,E) where V or V (H)
is its vertex set and E or E(H) ⊆ 2V is its set of hyperedges. We denote by H[V ′] the
hypergraph induced on the vertices in V ′ ⊆ V , i.e., the hypergraph with vertex set V ′

and edge set { e ∩ V ′ : e ∈ E }.

The Constraint Satisfaction Problem. Let D be a set and n and n′ be natural numbers.
An n-ary relation on D is a subset of Dn. For a tuple t ∈ Dn, we denote by t[i], the i-th
entry of t, where 1 ≤ i ≤ n. For two tuples t ∈ Dn and t′ ∈ Dn′ , we denote by t ◦ t′,
the concatenation of t and t′.

An instance of a constraint satisfaction problem (CSP) I is a triple 〈V,D,C〉, where
V is a finite set of variables over a finite set (domain) D, and C is a set of constraints. A
constraint c ∈ C consists of a scope, denoted by S(c), which is a completely ordered
subset of V , and a relation, denoted by R(c), which is a |S(c)|-ary relation on D. We let
|c| denote the number of tuples in R(c) and |I| = |V |+ |D|+∑c∈C |c|. Without loss
of generality, we assume that each variable occurs in the scope of at least one constraint.

A solution for I is an assignment θ : V → D of the variables in V to domain values
(from D) such that for every constraint c ∈ C with scope S(c) = (v1, . . . , v|S(c)|),
the relation R contains the tuple θ(S(c)) = (θ(v1), . . . , θ(v|S(c)|)). We denote by
SOL(I) the constraint containing all solutions of I, i.e., the constraint with scope V =
{v1, . . . , vn}, whose relation contains one tuple (θ(v1), . . . , θ(vn)) for every solution θ
of I. The task in CSP is to decide whether the instance I has at least one solution or in
other words whether SOL(I) 6= ∅. Here and in the following we will for convenience
(and with a slight abuse of notation) sometimes treat constraints like sets of tuples.

For a variable v ∈ S(c) and a tuple t ∈ R(c), we denote by t[v], the i-th entry of
t, where i is the position of v in S(c). Let V ′ be a subset of V and let V ′′ be all the
variables that appear in V ′ and S(c). With a slight abuse of notation, we denote by
S(c) ∩ V ′, the sequence S(c) restricted to the variables in V ′ and we denote by t[V ′]
the tuple (t[v1], . . . , t[v|V ′′|]), where S(c) ∩ V ′ = (v1, . . . , v|V ′′|).

Let c and c′ be two constraints of I. We denote by S(c) ∪ S(c′), the ordered set (i.e.,
tuple) S(c) ◦ (S(c′) \ S(c)). The (natural) join between c and c′, denoted by c on c′, is
the constraint with scope S(c)∪ S(c′) containing all tuples t ◦ t′[S(c′) \ S(c)] such that
t ∈ R(c), t′ ∈ R(c′), and t[S(c) ∩ S(c′)] = t′[S(c) ∩ S(c′)]. The projection of c to V ′,
denoted by πV ′(c), is the constraint with scope S(c) ∩ V ′, whose relation contains all
tuples t[V ′] with t ∈ R(c). We note that if c contains at least one tuple, then projecting
it onto a set V ′ with V ′ ∩ S(c) = ∅ results in the constraint with an empty scope and a
relation containing the empty tuple (i.e., a tautological constraint). On the other hand,
if R(c) is the relation containing the empty tuple, then every projection of c will also
result in a relation containing the empty tuple.

For a CSP instance I = 〈V,D,C〉 we sometimes denote by V (I), D(I), C(I), and
]tup(I) its set of variables V , its domain D, its set of constraints C, and the maximum
number of tuples in any constraint relation of I, respectively. For a subset V ′ ⊆ V , we
will also use I[V ′] to denote the sub-instance of I induced by the variables in V ′ ⊆ V ,
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A Join-Based Hybrid Parameter for Constraint Satisfaction 5

i.e., I[V ′] = 〈V ′, D, {πV ′(c) : c ∈ C }〉. The hypergraph H(I) of a CSP instance
I = 〈V,D,C〉 is the hypergraph with vertex set V and edge set {S(c) : c ∈ C }.

It is well known that for every instance I and every instance I′ obtained by either
(1) replacing two constraints in C(I) by their natural join or (2) adding a projection of a
constraint in C(I), it holds that SOL(I) = SOL(I′). As a consequence, SOL(I) can be
computed by performing, e.g., a sequence of joins over all the constraints in C.

Fractional Hypertree Width. Let H be a hypergraph. A fractional edge cover for H is a
mapping γ : E(H) → R such that

∑
e∈E(H)∧v∈e γ(e) ≥ 1 for every v ∈ V (H). The

weight of γ, denoted by w(γ), is the number
∑
e∈E(H) γ(e). The fractional edge cover

number of H , denoted by fec(H), is the smallest weight of any fractional edge cover
of H .

A fractional hypertree decomposition T of H is a triple T = (T, (Bt)t∈V (T ),
(γt)t∈V (T )), where (T, (Bt)t∈V (T )) is a tree decomposition [30,12] ofH and (γt)t∈V (T )

is a family of mappings from E(H) to R such that for every t ∈ V (T ), it holds that γt is
a fractional edge cover for H[Bt]. We call the sets Bt the bags and the mappings γt the
fractional guards of the decomposition. The width of T is the maximum w(γt) over all
t ∈ V (T ). The fractional hypertree width of H , denoted by fhtw(H), is the minimum
width of any fractional hypertree decomposition of H . Finally, the fractional hypertree
width of a CSP instance I, denoted by fhtw(I), is equal to fhtw(H(I)).

Proposition 1 Let I be a CSP instance with hypergraph H and let T =
(T, (Bt)t∈V (T ), (γt)t∈V (T )) be a fractional hypertree decomposition of H of width
at most ω. For every node t ∈ V (T ) and every subset B ⊆ Bt, it holds that
|SOL(I[B])| ≤ (]tup(I))

ω .

3 Join Decompositions and Joinwidth

This section introduces two notions that are central to our contribution: join decom-
positions and joinwidth. In the following, let us consider an arbitrary CSP instance
I = 〈V,D,C〉.

Definition 2 A join decomposition for I is a pair (J, %), where J is a rooted binary tree
and % is a bijection between the leaves L(J) of J and C.

Let j be a node of J . We denote by Jj the subtree of J rooted at j and we denote by
X(j), V (j), V (j), and S(j) the (unordered) sets { %(`) : ` ∈ L(Jj) },

⋃
c∈X(j) S(c),⋃

c6∈X(j) S(c), and V (j) ∩ V (j), respectively; infuitively, X(j) is the set of constraints
that occur in the subtree rooted at j, V (j) is the set of variables that occur in the scope
of constraints in X(j), V (j) is the set of variables that occur in the scope of constraints
not in X(j), and S(j) is the set of variables that occur in V (j) and V (j). In some cases,
we will also consider linear join decompositions, which are join decompositions where
every inner node is adjacent to at least one leaf.
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6 R. Ganian and S. Ordyniak and S. Szeider

Semantics of Join Decompositions. Intuitively, every internal node of a join decomposi-
tion represents a join operation that is carried out over the constraints obtained for the
two children; in this way, a join decomposition can be seen as a procedure for performing
joins, with the aim of determining whether SOL(I) is non-empty (i.e., solving the CSP
instance I). Crucially, the running time of such a procedure depends on the size of the
constraints obtained and stored by the algorithm which performs such joins. The aim of
this subsection is to formally define and substantiate an algorithmic procedure which
uses join decompositions to solve CSP.

A naive way of implementing the above idea would be to simply compute and store
the natural join at each node of the join decomposition and proceed up to the root; see
for instance the work of [3]. Formally, we can recursively define a constraint Cnaive(j)
for every node j ∈ V (J) as follows. If j is a leaf, then Cnaive(j) = %(j). Otherwise
Cnaive(j) is equal to Cnaive(j1) on Cnaive(j2), where j1 and j2 are the two children of j
in J . It is easy to see that this approach can create large constraints even for very simple
instances of CSP: for example, at the root r of T it holds that SOL(I) = Cnaive(r),
and hence Cnaive(r) would have superpolynomial size for every instance of CSP with
a superpolynomial number of solutions. In particular, an algorithm which computes
and stores Cnaive(j) would never run in polynomial time for CSP instances with a
superpolynomial number of solutions.

An efficient way of joining constraints along a join decomposition is to only store
projections of constraints onto those variables that are still relevant for constraints which
have yet to appear; this idea has been used, e.g., in algorithms which exploit hypertree
width [15]. To formalize this, let Cproj(j) be recursively defined for every node j ∈ V (T )
as follows. If j is a leaf, then Cproj(j) = πV (j)(%(j)). Otherwise Cproj(j) is equal to(
πV (j)(Cproj(j1) on Cproj(j2)

)
), where j1 and j2 are the two children of j in J . In this

case, I is a YES-instance if and only if Cproj(r) does not contain the empty relation.
Clearly, for every node j of J it holds that Cproj(j) has at most as many tuples as
Cnaive(j), but can have arbitrarily fewer tuples; in particular, an algorithm which uses
join decompositions to compute Cproj in a bottom-up fashion can solve CSP instances
in polynomial time even if they have a superpolynomial number of solutions (see also
Observation 8).

However, the above approach still does not capture the algorithmic power offered by
dynamically computing joins along a join decomposition. In particular, similarly as has
been done in the evaluation algorithm for fractional edge cover [20, Theorem 3.5], we
can further reduce the size of each constraint Cproj(j) computed in the above procedure
by pruning all tuples that would immediately violate a constraint c in I (and, in particular,
in C \ C(j)). To formalize this operation, we let prune(c) denote the pruned constraint
w.r.t. I, i.e., prune(c) is obtained from c by removing all tuples t ∈ R(c) such that there
is a constraint c′ ∈ C with t[S(c′)] /∈ πS(c)(c

′). This leads us to our final notion of
dynamically computed constraints: for a node j, we let C(j) = prune(Cproj(j)). We
note that this, perhaps inconspicuous, notion of pruning is in fact critical—without it,
one cannot use join decompositions to efficiently solve instances of small fractional
hypertree width or even small fractional edge cover. A more in-depth discussion on this
topic is provided in Section 4.

We can now proceed to formally define the considered width measures.
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A Join-Based Hybrid Parameter for Constraint Satisfaction 7

Definition 3 Let J = (J, %) be a join decomposition for I and let j ∈ V (J). The join-
width of j, denoted jw(j), is the smallest real number ω such that |C(j)| ≤ (]tup(I))

ω,
i.e., ω = log]tup(I) |C(j)|. The joinwidth of J (denoted jw(J )) is then the maximum
jw(j) over all j ∈ V (J). Finally, the joinwidth of I (denoted jw(I)) is the minimum
jw(J ) over all join decompositions J for I.

In general terms, an instance I has joinwidth ω if it admits a join decomposition where
the number of tuples of the produced constraints never increases beyond the ω-th power
of the size of the largest relation in I. Analogously as above, we denote by ljw(I) the
minimum joinwidth of any linear join decomposition of a CSP instance I.

Example 4 Let N ∈ N and consider the CSP instance I having three variables a, b,
and c and three constraints x, y, and z with scopes (a, b), (b, c), and (a, c), respectively.
Assume furthermore that the relations of all three constraints are identical and contain
all tuples (1, i) and (i, 1) for every i ∈ [N ]. Refer also to Figure 1 for an illustration of
the example. Then |x| = |y| = |z| = ]tup(I) = 2N − 1 and due to the symmetry of I any
join-tree J of I has the same joinwidth, which (as we will show) is equal to 1. To see
this consider for instance the join-tree J that has one inner node j joining x and y and
a root node r joining C(j) and z. Then jw(`) = 1 for any leaf node ` of J . Moreover
|C(j)| = |prune(Cproj(j))| = |z| = ]tup(I) since the pruning step removes all tuples
from Cproj(j) that are not in z and consequently C(r) = z and jw(J ) = 1. Note that in
this example jw(I) = 1 < fhtw(I) = 3/2.

x y

j z

r

a b

1 1
1 2
1 3
2 1
3 1

C(x)

b c

1 1
1 2
1 3
2 1
3 1

C(y)

a b c

1 1 1
1 1 2
1 1 3
2 1 1
2 1 2
2 1 3
3 1 1
3 1 2
3 1 3
1 2 1
1 3 1

Cnaive(j)

a c

1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3

Cproj(j)

a c

1 1
1 2
1 3
2 1
3 1

C(j) = prune(Cproj(j))
= C(z) = C(r)

Fig. 1: The join decomposition given in Example 4 for N = 3 together with the intermediate
constraints obtained for the node j.
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8 R. Ganian and S. Ordyniak and S. Szeider

Finally, we remark that one could in principle also define joinwidth in terms of a
(rather tedious and technically involved) variant of hypertree decompositions. However,
the inherent algorithmic nature of join-trees makes them much better suited for the
definition of joinwidth.

Properties of Join Decompositions. Our first task is to formalize the intuition behind the
constraints C(j) computed when proceeding through the join tree.

Lemma 5 Let (J, %) be a join decomposition for I = 〈V,D,C〉 and let j ∈ V (J). Then
C(j) = πV (j)(SOL(I′)), where I′ = I[V (j)].

Proof. We prove the lemma by leaf-to-root induction along J . If j is a leaf such that
%(j) = c, then C(j) is the constraint obtained from c by projecting onto V (j) and
then applying pruning with respect to I. Crucially, pruning c w.r.t. I′ produces the same
result as pruning c w.r.t. I. Since pruning cannot remove tuples which occur in SOL(I′),
each tuple in SOL(I′) must also occur in C(j) (as a projection onto V (j)). On the
other hand, consider a tuple α in C(j) and assume for a contradiction that α is not
present in πV (j)(SOL(I′)). Since variables outside of V (j) do not occur in the scopes
of constraints other than c, this means that there would exist a constraint c′ in I′ which is
not satisfied by an assignment corresponding to α—but in that case α would be removed
from C(j) via pruning. Hence C(j) = πV (j)(SOL(I′)) holds for every leaf in T .

For the induction step, consider a node j with children j1 and j2 (with their cor-
responding instances being I′1 and I′2, respectively), and recall that C(j) is obtained
from C(j1) on C(j2) by projecting onto V (j) and then pruning (w.r.t. I or, equiva-
lently, w.r.t. I′). We will also implicitly use the fact that V (j) ⊆ V (j1) ∪ V (j2) and
V (j) = V (j1) ∪ V (j2). First, consider for a contradiction that there exists a tuple β in
SOL(I′[V (j)]) which does not occur in C(j). Clearly, β could not have been removed
by pruning, and hence this would mean that there exists no tuple in C(j1) on C(j2)
which results in β after projection onto V (j); in particular, w.l.o.g. we may assume that
every tuple in C(j1) differs from β in (the assignment of) at least one variable. However,
since β occurs in SOL(I′[V (j)]), there must exist at least one tuple, say β′, which occurs
in SOL(I′), and consequently there exists a tuple in SOL(I′1) which matches β in (the
assignment of) all variables. At this point, we have reached a contradiction with the
inductive assumption that SOL(I′1[V (j1)]) = C(j1).

For the final case, consider a tuple γ in C(j) and assume for a contradiction that γ
is not present in πV (j)(SOL(I′)). This means that there exists at least one constraint,
say c′, in πV (j)(SOL(I′)) which would be invalidated by (an assignment corresponding
to) γ. Let us assume that c′ occurs in the subtree rooted in j2, and let γ1 be an arbitrary
“projection” of γ onto V (j1). Since V (j1) ⊇ S(c′), this means that γ1 would have
been removed from C(j1) by pruning; in particular, we see that there exists no tuple γ1
in C(j1) which could produce γ in a join, contradicting our assumptions about γ. By
putting everything together, we conclude that indeed C(j) = πV (j)(SOL(I′)). ut

Next, we show how join decompositions can be used to solve CSP.

Theorem 6 CSP can be solved in time O(|I|2ω+4) provided that a join decomposition
of width at most ω is given in the input.
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A Join-Based Hybrid Parameter for Constraint Satisfaction 9

Proof. Let J = (J, %) be the provided join decomposition of width ω for I. As noted
before, the algorithm for solving I computes C(j) for every j ∈ V (J) in a bottom-up
manner. Since J has exactly 2|C| − 1 nodes, it remains to analyse the maximum time re-
quired to computeC(j) for any node of J . If j is a leaf, thenC(j) = prune(πS(j)(%(j)))
and since the time required to compute the projection P = πS(j)(%(j)) from %(j) is at
most O(]tup(I)|S(j)|) and the time required to compute the pruned constraint prune(P )
from P is at most O(|C|(]tup(I))

2|S(j)|), we obtain that C(j) can be computed in
time O(|C|(]tup(I))

2|S(j)|) ∈ O(|I|4). Moreover, if j is an inner node with children
j1 and j2, then C(j) = prune(πS(j)(C(j1) on C(j2))) and since we require at most
O((]tup(I))

2ω|S(j1)∪S(j2)|) time to compute the joinQ = C(j1) on C(j2) fromC(j1)
and C(j2), at most O((]tup(I))

2ω|S(j)|) time to compute the projection P = πS(j)(Q)
from Q, and at most O(|C|(]tup(I))

2ω+1 · |S(j)|) time to compute the pruned constraint
prune(P ) from P , we obtain O(|C|(]tup(I))

2ω+1 · |S(j1) ∪ S(j2)|) = O(|I|2ω+3) as
the total time required to compute C(j). Multiplying the time required to compute C(j)
for an inner node j ∈ V (J) with the number of nodes of T yields the running time stated
in the lemma. ut

Computing Join Decompositions. Next, let us address the problem of computing join
decompositions of bounded joinwidth, formalized as follows.

ω-JOIN DECOMPOSITION
Input: A CSP instance I.
Question: Compute a join decomposition for I of width at most ω, or correctly
determine that jw(I) > ω.

We show that ω-JOIN DECOMPOSITION is NP-hard even for width ω = 1. This
is similar to fractional hypertree width, where it was only very recently shown that
deciding whether fhtw(I) ≤ 2 is NP-hard [13], settling a question which had been open
for about a decade. Our proof is, however, entirely different from the corresponding
hardness proof for fractional hypertree width and uses a reduction from the NP-complete
BRANCHWIDTH problem [32].

Theorem 7 1-JOIN DECOMPOSITION is NP-hard, even on Boolean CSP instances.

4 Justifying Joinwidth

Below, we substantiate the use of both pruning and projections in our definition of join
decomposition. In particular, we show that using pruning and projections allows the
joinwidth to be significantly lower than if we were to consider joins carried out via Cnaive

or Cproj. More importantly, we show that join decompositions without pruning do not
cover CSP instances with bounded fractional edge cover (and by extension bounded
fractional hypertree width). To formalize this, let jwnaive(I) and jwproj(I) be defined
analogously as jw(I), with the distinction being that these measure the width in terms of
Cnaive and Cproj instead of C.

We also justify the use of trees for join decompositions by showing that there is an
arbitrary difference between linear join decompositions (which precisely correspond to
simple sequences of joins) and join decompositions.
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10 R. Ganian and S. Ordyniak and S. Szeider

Observation 8 For every integer ω there exists a CSP instance Iω such that jwproj(Iω) ≤ 1,
but jwnaive(Iω) ≥ ω.

Proof. Consider the CSP instance Iω with variables x, v1, . . . , vω and for each i ∈ [ω] a
constraint ci with scope {x, vi} containing the tuples 〈0, 1〉 and 〈0, 0〉. Since SOL(Iω)
contains 2ω tuples, it follows that every join decomposition with root r must have
|C(r)naive| = (]tup(I))

ω = 2ω tuples, hence jwnaive(Iω) ≥ ω.
On the other hand, consider a linear join decomposition which introduces the con-

straints in an arbitrary order. Then for each inner node j, it holds that S(j) = {x}
and in particular Cproj(j) contains a single tuple (0) over scope {x}. We conclude that
jwproj(Iω) ≤ 1. ut

The next proposition justifies the use of trees instead of just linear join decomposi-
tions. Its proof employs an interesting connection between branchwidth and joinwidth.

Proposition 9 For every integer ω there exists a CSP instance Iω such that jw(Iω) ≤ 1
but ljw(Iω) ≥ ω.

The next proposition shows not only that pruning can significantly reduce the size of
stored constraints, but also that without pruning (i.e., with projections alone) one cannot
hope to generalize structural parameters such as fractional hypertree width.

Proposition 10 For every integer ω there exists a CSP instance Iω with hypergraph
Hω such that jw(Iω) ≤ 2 and fec(Hω) ≤ 2 (and hence also fhtw(Hω) ≤ 2), but
jwproj(Iω) ≥ ω.

We believe that the above results are of general interest, as they provide useful
insights into how to best utilize the joining of constraints.

5 Tractable Classes

Here, we show that join decompositions of small width not only allow us to solve a
wide range of CSP instances, but also provide a unifying reason for the tractability of
previously established structural parameters and tractable classes.

5.1 Fractional Hypertree Width

We begin by showing that joinwidth is a strictly more general parameter than fractional
hypertree width. We start with a simple example showing that the joinwidth of a CSP
instance can be arbitrarily smaller than its fractional hypertree width. Indeed, this holds
for any structural parameter ψ measured purely on the hypergraph representation, i.e.,
we say that ψ is a structural parameter if ψ(I) = ψ(H(I)) for any CSP instance I.
Examples for structural parameters include fractional and generalized hypertree width,
but also submodular width [27].

Observation 11 Let ψ be any structural parameter such that for every ω there is a CSP
instance with ψ(I) = ψ(H(I)) ≥ ω. Then for every ω there is a CSP instance Iω with
jw(Iω) ≤ 1 but ψ(Iω) ≥ ω.
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A Join-Based Hybrid Parameter for Constraint Satisfaction 11

The following theorem shows that, for the case of fractional hypertree width, the opposite
of the above observation is not true.

Theorem 12 For every CSP instance I, it holds that jw(I) ≤ fhtw(I).

Proof. Let H be the hypergraph of the given CSP instance I = (V,D,C) and let
T = (T, (Bt)t∈V (T ), (γt)t∈V (T )) be an optimal fractional hypertree decomposition of
H . We prove the theorem by constructing a join decomposition J = (J, %) for I, whose
width is at most fhtw(H). Let α : E(H)→ V (T ) be some function from the edges of
H to the nodes of T such that e ⊆ Bα(e) for every e ∈ E(H). Note that such a function
always exists, because (T, (Bt)t∈V (T )) is a tree decomposition of H . We denote by
α−1(t) the set { e ∈ E(H) : α(e) = t }.

The construction of J now proceeds in two steps. First we construct a partial join
decomposition J t = (J t, %t) for I that covers only the constraints in α−1(t), for every
t ∈ V (T ). Second, we show how to combine all the partial join decompositions into the
join decomposition J for I of width at most fhtw(H).

Let t ∈ V (T ) and let J t = (J t, %t) be an arbitrary partial join decomposi-
tion for I that covers the constraints in α−1(t). Let us consider an arbitrary node
j ∈ V (J t). By Lemma 5, we know that C(j) = πS(j)(SOL(I[V (j)])). Moreover,
the fact that

⋃
e∈α−1(t) e ⊆ Bt implies V (j) ⊆ Bt. Since |πS(j)(SOL(I[V (j)]))| ≤

|SOL(I[V (j)])|, by invoking Proposition 1 we obtain that |C(j)| ≤ |SOL(I[V (j)])| ≤
]tup(I)

fhtw(I). Hence we conclude that jw(j) ≤ fhtw(H).
Next, we show how to combine the partial join decompositions J t into the join

decomposition J for I. We will do this via a bottom-up algorithm that computes a
(combined) partial join decomposition F t = (F t, ρt) (for every node t ∈ V (T )) that
covers all constraints in α−1(Tt) =

⋃
t∈V (T ) α

−1(t). Initially, we set F l = J l for every
leaf l ∈ L(T ). For a non-leaf t ∈ V (T ) with children t1, . . . , t` in T , we obtain F t
from the already computed partial join decompositions F t1 , . . . ,F t` as follows. Let P
be a path on the new vertices p1, . . . , p` and let rt and rt1 , . . . , rt` be the root nodes of
J t and F t1 , . . . , F t` , respectively. Then we obtain F t from the disjoint union of P , J t,
F t1 , . . . , F t` after adding an edge between rt and p1 and an edge between rti and pi for
every i with 1 ≤ i ≤ ` and setting p` to be the root of F t. Moreover, ρt is obtained as
the combination (i.e., union) of the functions %t, ρt1 , . . . , ρt` . Observe that because α
assigns every hyperedge to precisely one bag of T , it holds that every constraint assigned
to Tt is mapped to precisely one leaf of F t. At this point, all that remains is to show that
F t has joinwidth at most fhtw(H).

Since we have already argued that |SOL(I[V (j)])| ≤ ]tup(I)
fhtw(H) for every node j

of J t and moreover we can assume that the same holds for every node j of F t1 , . . . ,F t`
by the induction hypothesis, it only remains to show that the same holds for the nodes
p1, . . . , p`. First, observe that since (T, (Bt)t∈V (T )) is a tree decomposition of H , it
holds that S(rt), S(rt1), . . . , S(rt`) ⊆ Bt. Indeed, consider for a contradiction that,
w.l.o.g., there exists a variable x ∈ S(rt1) \ Bt. Then there must exist a hyperedge
e1 3 x mapped to t1 or one of its descendants, and another hyperedge ei 3 x mapped
to some node t′ that is neither t1 nor one of its descendants. But then both Bt′ and
Bt1 must contain x, and so Bt must contain x as well. Moreover, since S(pi) ⊆
(S(rt) ∪ S(rt1) ∪ · · · ∪ S(rt`)) for every i ∈ [`], it follows that S(pi) ⊆ Bt as well.
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12 R. Ganian and S. Ordyniak and S. Szeider

Finally, recall that C(pi) = πS(pi)(SOL(I[V (pi)])) by Lemma 5, and observe that
|πS(pi)(SOL(I[V (pi)]))| ≤ |SOL(I[S(pi)])|. Then by Proposition 1 combined with the
fact that S(pi) ⊆ Bt, we obtain |C(pi)| ≤ |SOL(I[S(pi)])| ≤ ]tup(I)

fhtw(H), which
implies that the width of pi is indeed at most fhtw(H). ut

5.2 Functionality and Root Sets

Consider a CSP instance I = 〈V,D,C〉 with n = |V |. We say that a constraint c ∈ C is
functional on variable v ∈ V if c does not contain two tuples that differ only at variable
v; more formally, for every t and t′ ∈ R(c) it holds that if t[v] 6= t′[v], then there exists
a variable z ∈ S(c) distinct from v such that t[z] 6= t′[z]. The instance I is then called
functional if there exists a variable ordering v1 < · · · < vn such that, for each i ∈ [n],
there exists a constraint c ∈ C such that π{v1,...,vi}(c) is functional on vi. Observe that
every CSP instance that is functional can admit at most 1 solution [5]; this restriction
can be relaxed through the notion of root sets, which can be seen as variable sets that
form “exceptions” to functionality. Formally, a variable set Q is a root set if there exists
a variable ordering v1 < · · · < vn such that, for each i ∈ [n] where vi 6∈ Q, there exists
a constraint c ∈ C such that π{v1,...,vi}(c) is functional on vi; we say that Q is witnessed
by the variable order v1 < · · · < vn.

Functionality and root sets were studied for Boolean CSP [10,9]. Cohen et al. [5]
later extended these notions to the CSP with larger domains. Our aim in this section is
twofold: (1) generalize root sets through the introduction of constraint root sets and (2)
show that bounded-size constraint root sets (and also root sets) form a special case of
bounded joinwidth. Before we proceed, it will be useful to show that one can always
assume the root set to occur at the beginning of the variable ordering.

Observation 13 Let Q be a root set in I witnessed by a variable order α, assume a
fixed arbitrary ordering on Q, and let the set V ′ = V (I) \ Q be ordered based on
the placement of its variables in α. Then Q is also witnessed by the variable order
α′ = Q ◦ V ′.

For ease of presentation, we will say that I is k-rooted if k is the minimum integer
such that I has a root set of size k. It is easy to see, and also follows from the work of
David [9] and Cohen et al. [5], that for every fixed k the class of k-rooted CSP instances
is polynomial-time solvable: generally speaking, one can first loop through and test all
variable-subsets of size at most k to find a root Q, and then loop through all assignments
Q→ D to get a set of functional CSP instances, each of which can be solved separately
in linear time.

While even 1-rooted CSP instance can have unbounded fractional hypertree width
(see also the discussion of Cohen et al. [5]), the class of k-rooted CSP instances for
a fixed value k is, in some sense, not very robust. Indeed, consider the CSP instance
W = 〈{v1, . . . , vn}, {0, 1}, {c}〉 where c ensures that precisely a single variable is set
to 1 (i.e., its relation can be seen as an n× n identity matrix). In spite of its triviality, it
is easy to verify thatW is not k-rooted for any k < n− 2.

Let us now consider the following alternative to measuring the size of root sets
in a CSP instance I. A constraint set P is a constraint-root set if

⋃
c∈P S(c) is a root
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A Join-Based Hybrid Parameter for Constraint Satisfaction 13

set, and I is then called k-constraint-rooted if k is the minimum integer such that I
has a constraint-root set of size k. Since we can assume that each variable occurs in at
least one constraint, every k-rooted CSP also has a constraint-root set of size at most
k; on the other hand, the aforementioned example ofW shows that an instance can be
1-constraint-rooted while not being k-rooted for any small k. The following result, which
we prove by using join decompositions and joinwidth, thus gives rise to strictly larger
tractable classes than those obtained via root sets:

Proposition 14 For every fixed k ∈ N, every k-constraint-rooted CSP instance has
joinwidth at most k and can be solved in time |I|O(k).

Proof. Consider a CSP instance I with a constraint-root set P of size k. We argue that
I has a linear join decomposition of width at most k where the elements of P occur as
the leaves farthest from the root. Indeed, consider the linear join decomposition (J, %)
constructed in a bottom-up manner, as follows. First, we start by gradually adding the
constraints in P as the initial leaves. At each step after that, consider a node j which
is the top-most constructed node in the join decomposition. By definition, there must
exist a variable v and a constraint c such that π⋃

c∈P S(c)
(c) is functional on v. Moreover,

this implies that |π⋃
c∈P S(c)

(c) on C(j)| ≤ |C(j)|, and thus |c on C(j)| ≤ |C(j)|.
Hence this procedure does not increase the size of constraints at nodes after the initial k
constraints, immediately resulting in the desired bound of k on the width of (J, %).

To complete the proof, observe that a join decomposition with the properties outlined
above can be found in time at most |I|O(k): indeed, it suffices to branch over all k-
element subsets of C(I) and test whether the union of their scopes is functional using,
e.g., the result of Cohen et al. [5, Corollary 1]. Once we have such a join decomposition,
we can solve the instance by invoking Theorem 6. ut

As a final remark, we note that the class of k-constraint rooted CSP instances
naturally includes all instances which contain k constraints that are in conflict (i.e.,
which cannot all be satisfied at the same time).

5.3 Other Tractable Classes

Here, we identify some other classes of tractable CSP instances with bounded joinwidth.
First of all, we consider CSP instances such that introducing their variables in an arbitrary
order always results in a subinstance with polynomially many solutions. In particular,
we call a CSP instance I hereditarily k-bounded if for every subset V ′ of its variables it
holds that |SOL(I[V ′])| ≤ ]tup(I)

k. Examples of hereditarily k-bounded CSP instances
include k-Turan CSPs [5, page 12] and CSP instances with fractional edge covers of
weight k [20].

Proposition 15 The class of hereditarily k-bounded CSP instances has joinwidth at
most k and can be solved in time at most O(|I|k).

Proof. Consider an arbitrary linear join decomposition (J, %). By definition, for each j ∈
V (J) it holds that |SOL(I[V (j)])| ≤ ]tup(I)

k. Then |πV (j)(SOL(I[V (j)]))| ≤ ]tup(I)
k,

and by Lemma 5 we obtain |C(j)| ≤ ]tup(I)
k, as required. ut
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14 R. Ganian and S. Ordyniak and S. Szeider

Another example of a tractable class of CSP instances that we can solve using
joinwidth are instances where all constraints interact in a way which forces a unique
assignment of the variables. In particular, we say that a CSP I = 〈V,D,C〉 is unique at
depth k if for each constraint c ∈ C there exists a fixing set C ′ ⊆ C such that c ∈ C ′,
|C ′| ≤ k, and |(onc′∈C′ c′)| ≤ 1.

Proposition 16 The class of CSP instances which are unique at depth k has joinwidth
at most k and can be solved in time at most |I|O(k).

6 Solving Bounded-Width Instances

This section investigates the tractability of CSP instances whose joinwidth is bounded
by a fixed constant ω. In particular, one can investigate two notions of tractability.
The first one is the classical notion of polynomial-time tractability, which asks for an
algorithm of the form |I|O(1). In this setting, the complexity of CSP instances of bounded
joinwidth remains an important open problem. Note that the NP-hardness of the ω-JOIN
DECOMPOSITION problem established in Theorem 7 does not exclude polynomial-time
tractability for CSP instances of bounded joinwidth. For instance, tractability could still
be obtained with a suitable approximation algorithm for computing join decompositions
(as it is the case for fractional hypertreewidth [25]) or by using an algorithm that does
not require a join decomposition of bounded width as input.

The second notion of tractability we consider is called fixed-parameter tractability
and asks for an algorithm of the form f(k) · |I|O(1), where k is a numerical parameter
capturing a certain natural measure of I. Prominently, Marx investigated the fixed-pa-
rameter tractability of CSP and showed that CSP instances whose hypergraphs have
bounded submodular width [27] are fixed-parameter tractable when k is the number of
variables. Moreover, Marx showed that submodular width is the most general structural
property among those measured purely on hypergraphs with this property.

Here, we obtain two single-exponential fixed-parameter algorithms for CSP instances
of bounded joinwidth (i.e., algorithms with a running time of 2O(k) · |I|O(1)): one where
k is the number of variables, and the other where k is the number of constraints. Since
there exist classes of instances of bounded joinwidth and unbounded submodular width
(see Observation 11), this expands the frontiers of (fixed-parameter) tractability for CSP.

Parameterization by Number of Constraints. To solve the case where k is the number of
constraints, our primary aim is to obtain a join decomposition of width at most ω, i.e.,
solve the ω-JOIN DECOMPOSITION problem defined in Section 3. Indeed, once that is
done we can solve the instance by Theorem 6.

Theorem 17 ω-JOIN DECOMPOSITION can be solved in time O(4|C| + 2|C||I|2ω+1)
and is hence fixed-parameter tractable parameterized by |C|, for a CSP instance I =
〈V,D,C〉.

From Theorem 17 and Theorem 6 we immediately obtain:

Corollary 18 A CSP instance I with k constraints and joinwidth at most ω can be
solved in time 2O(k) · |I|O(ω).
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A Join-Based Hybrid Parameter for Constraint Satisfaction 15

Parameterization by Number of Variables. Note that Corollary 18 immediately estab-
lishes fixed-parameter tractability for the problem when k is the number of variables
(instead of the number of constraints), because one can assume that |C| ≤ 2|V | for
every CSP instance I = (V,D,C). However, the resulting algorithm would be double-
exponential in |V |. The following theorem shows that this can be avoided by designing a
dedicated algorithm for CSP parameterized by the number of variables. The main idea
behind both algorithms is dynamic programming, however, in contrast to the algorithm
for |C|, the table entries for the fpt-algorithm for |V | correspond to subsets of V instead
of subsets of C. Interestingly, the fpt-algorithm for |V | does not explicitly construct a
join decomposition, but only implicitly relies on the existence of one.

Theorem 19 A CSP instance I with k variables and joinwidth at most ω can be solved
in time 2O(k) · |I|O(ω).

7 Beyond Join Decompositions

Due to their natural and “mathematically clean” definition, one might be tempted to think
that join decompositions capture all the algorithmic power offered by join and projection
operations. It turns out that this is not the case, i.e., we show that if one is allowed to use
join and projections in an arbitrary manner (instead of the more natural but also more
restrictive way in which they are used within join decompositions) one can solve CSP
instances that are out-of-reach even for join decompositions. This is interesting as it
points towards the possibility of potentially more powerful parameters based on join and
projections than joinwidth.

Theorem 20 For every ω, there exists a CSP instance Iω that can be solved in time
O(|I|4) using only join and projection operations but jw(Iω) ≥ ω.

8 Conclusions and Outlook

The main contribution of our paper is the introduction of the notion of a join decompo-
sition and the associated parameter joinwidth (Definitions 2 and 3). These notions are
natural as they are entirely based on fundamental operations of relational algebra: joins,
projections, and pruning (which can equivalently be stated in terms of semijoins). It is
also worth noting that our algorithms seamlessly extend to settings where each variable
has its own domain (this can be modeled, e.g., by unary constraints).

Our results give rise to several interesting directions for future work. We believe that
Theorem 6 can be generalized to other problems, such as #CSP or the FAQ-Problem
[23]. Theorem 7 gives rise to the question of whether there exists a polynomial-time
approximation algorithm for computing join decompositions of suboptimal joinwidth,
similar to Marx’s algorithm for fractional hypertree-width [25].

Observation 11 shows that submodular width is not more general than joinwidth.
We conjecture that also the converse direction holds, i.e., that the two parameters are
actually incomparable. Motivated by Theorem 20, one could try to define a natural
parameter that captures the full generality of join and projection operations, or to at least
define a parameter that is more general than join decompositions without sacrificing the
simplicity of the definition.
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