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Abstract. Q-resolution is perhaps the most well-studied proof system
for Quantified Boolean Formulas (QBFs). Its proof complexity is by now
well understood, and several general proof size lower bound techniques
have been developed. The situation is quite different for long-distance
Q-resolution (LDQ-resolution). While lower bounds on LDQ-resolution
proof size have been established for specific families of formulas, we lack
semantically grounded lower bound techniques for LDQ-resolution.
In this work, we study restrictions of LDQ-resolution. We show that
a specific lower bound technique based on bounded-depth strategy ex-
traction does not work even for reductionless Q-resolution by present-
ing short proofs of the QParity formulas. Reductionless Q-resolution
is a variant of LDQ-resolution that admits merging but no universal
reduction. We also prove a lower bound on the proof size of the com-
pletion principle formulas in reductionless Q-resolution. This shows that
two natural fragments of LDQ-resolution are incomparable: Q-resolution,
which allows universal reductions but no merging, and reductionless Q-
resolution, which allows merging but no universal reductions. Finally, we
develop semantically grounded lower bound techniques for fragments of
LDQ-resolution, specifically tree-like LDQ-resolution and regular reduc-
tionless Q-resolution.

1 Introduction

The effectiveness of modern satisfiability (SAT) solvers has established proposi-
tional logic as the language of choice for encoding hard combinatorial problems
from areas such as formal verification [8, 33] and AI planning [27]. However, since
the computational complexity of these problems usually exceeds the complexity
of SAT, propositional encodings of such problems can be exponentially larger
than their original descriptions. This imposes a limit on the problem instances
that can be feasibly solved even with extremely efficient SAT solvers, and has
prompted research on decision procedures for more succinct logical formalisms
such as Quantified Boolean Formulas (QBFs).

QBFs augment propositional formulas with existential and universal quan-
tification over truth values and can be exponentially more succinct. The down-
side of this conciseness is that the satisfiability problem of QBFs is PSPACE-
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complete [29], and in spite of substantial progress in solver technology, practi-
cally relevant instances remain hard to solve. Unlike in the case of SAT, where
Conflict-Driven Clause Learning (CDCL) [15] has emerged as the single domi-
nant solving paradigm, there is a variety of competing solver architectures for
QBF, most of which are either based on a generalization of CDCL (QCDCL)
[11, 35], quantifier expansion [7, 17], or clausal abstraction [18, 26, 30].

Research in proof complexity has provided valuable insights into the the-
oretical limits of different solving approaches and their relative strengths and
weaknesses. Q-resolution [21] is perhaps the most well-studied QBF proof sys-
tem, largely due to the fact that it is used by QCDCL solvers for proof generation
(see Section 3). Early proof size lower bounds for Q-resolution relied on propo-
sitional hardness or ad-hoc arguments [21]. Semantically grounded lower bound
techniques based on strategy extraction have been developed only recently [6, 4].
These techniques identify properties of winning strategies extracted from proofs
and use them to derive proof size lower bounds. They not only help us prove
lower bounds for new classes of formulas but afford a better understanding of
what kinds of problems certain proof systems can solve efficiently.

Long-distance Q-resolution is a variant of Q-resolution which allows the
derivation of syntactically tautological clauses in certain cases [1] and which
is arguably the most natural proof system for use in a QCDCL solver [35, 13].
Although lower bounds for long-distance Q-resolution have been proved [3, 6],
we lack semantically grounded lower bound techniques for this proof system. In
this paper, we present results on the proof complexity of restricted versions of
long-distance Q-resolution:

1. We prove an exponential lower bound on the reductionless Q-resolution [9]
proof size of a class of QBFs with short Q-resolution refutations [20].

2. We observe that the QParity formulas [6] have short proofs in reduction-
less Q-resolution. It has already been shown that these formulas have short
(linear) proofs in long-distance Q-resolution [12], and in fact these proofs
are reductionless. In combination with the first result, this proves the in-
comparability of Q-resolution and reductionless Q-resolution. It also marks
the breakdown of a semantically grounded lower bound technique for Q-
resolution [6]—strategies corresponding to reductionless Q-resolution proofs
cannot be efficiently represented by bounded-depth circuits.

3. Finally, we develop semantically grounded lower bound techniques for re-
stricted subsystems of long-distance Q-resolution. Specifically, we show that
the strategy functions computed by proofs in regular reductionless Q-resolution
are read-once branching programs, and that tree-like long-distance Q-resolution
proofs correspond to bounded depth circuits.

2 Preliminaries

We assume a countably infinite set V of propositional variables and consider
propositional formulas constructed from V using the connectives ¬ (negation),
∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (the biconditional).
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The size |ϕ| of a propositional formula ϕ is number of variable occurrences in ϕ
plus the number of connectives. Given a propositional formula ϕ, we write var(ϕ)
to denote the set of variables occurring in ϕ. A literal is a variable v or a negated
variable ¬v. A clause is a finite disjunction of literals. A clause is tautological
if it contains both v and ¬v for some variable v. A propositional formula is in
conjunctive normal form (CNF) if it is a finite conjunction of non-tautological
clauses. An assignment (or variable assignment) is a function that maps a sub-
set X ⊆ V of variables to the set {0, 1} of truth values. Given a propositional
formula ϕ and an assignment τ : X → {0, 1} with var(ϕ) ⊆ X, we let ϕ[τ ] de-
note the truth value obtained by evaluating ϕ under τ . The formula ϕ is satisfied
by τ if ϕ[τ ] = 1, otherwise it is falsified by τ .

We consider Quantified Boolean Formulas in Prenex Conjunctive Normal
Form (PCNF). A PCNF formula F = Q.ϕ consists of a quantifier prefix Q
and a propositional formula ϕ in conjunctive normal form, called the matrix
of F . The quantifier prefix is a sequence Q1x1 . . . Qnxn where Qi ∈ {∃,∀} and
the xi are pairwise distinct variables for 1 ≤ i ≤ n. The quantifier prefix defines
an ordering <F on its variables as xi <F xj for 1 ≤ i < j ≤ n. We assume
that {x1, . . . , xn} = var(ϕ) and write var(F) = var(ϕ). The set of existential
variables of F is var∃(F) = {xi | 1 ≤ i ≤ n,Qi = ∃ }, and the set of universal
variables of F is var∀(F) = {xi | 1 ≤ i ≤ n,Qi = ∀ }.

A strategy function for a universal variable u ∈ var∀(F) is a Boolean func-
tion fu : 2D

u
F → {0, 1}. Here, Du

F = { v ∈ var∃(F) | v <F u } is the set of
existential variables to the left of u in the quantifier prefix and 2D

u
F denotes the

set of assignments of Du
F . A universal winning strategy for a PCNF formula F is

a family { fu | u ∈ var∀(F) } of strategy functions with the following property.
Let τ : var(F) → {0, 1} be an assignment satisfying τ(u) = fu(τ |Du

F ) for each
universal variable u, where τ |Du

F denotes the restriction of τ to Du
F . Then the

matrix of F is falsified by τ . A PCNF formula F is false if there exists a universal
winning strategy for F and true otherwise.

3 Q-Resolution Proof Systems

In this section, we are going to introduce several clausal proof systems for PCNF
formulas. The original Q-resolution proof system consists of propositional res-
olution and the universal reduction rule for dealing with universally quantified
variables. This system—which is displayed in Figure 1—was shown to be sound
and complete for false PCNF formulas [21]. Different variants of Q-resolution
can be identified as the proof systems underlying search-based QBF solvers.
For instance, the traces of certain DPLL-style algorithms can be mapped to
Q-resolution proofs [14]. However, since ordinary Q-resolution explicitly forbids
tautological resolvents, this requires that literals that would result in a tautol-
ogy be resolved away in a recursive manner, a process that was shown to require
exponential time in the worst case [32].

The exponential overhead can be avoided by a more intricate analysis of
the implication graph [23], but arguably the more natural solution is to allow
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(input clause)
C

C1 ∨ e ¬e ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1∨e and ¬e∨C1,
the resolution rule can derive the clause C1 ∨C2 provided that it is non-tautological.
Here, e is an existential variable called the pivot.

C ∨ ` (universal reduction)
C

The universal reduction rule can derive the clause C from C ∨ ` if var(`) is universal
and there is no existential variable e ∈ var(C) with ` <F e.

Fig. 1. Derivation rules of Q-resolution for a PCNF formula F = Q.ϕ.

tautological clauses during learning. This was the approach taken by an early
version of CDCL for QBF [35], but the resulting proof system was only studied
and proven sound under the name of long-distance Q-resolution much later [1].
Long-distance Q-resolution involves a generalized resolution rule that allows for
the derivation of tautologies, or equivalently, of merged literals. A merged lit-
eral u∗ is generated for a universal variable u upon resolving a clause C1 ∨ e∨ u
with a clause C2∨¬e∨¬u. Here, it is required that e < u in the quantifier prefix.
Since u∗ is essentially a shorthand for u ∨ ¬u, we let u∗ = u∗ and var(u∗) = u.
The resolution rule of long-distance Q-resolution is shown in Figure 2. The long-
distance Q-resolution (LDQ-resolution) proof system is comprised of the input
clause rule, long-distance resolution, and universal reduction.

C1 ∨ e ¬e ∨ C2 (long-distance resolution)
(C1 \ C2) ∨ (C2 \ C1) ∨ {u∗ | u ∈ var(C1 ∩ C2) }

The long-distance resolution rule can derive clauses containing merged literals u∗ for
universal variables u. We require that e <F u for each such variable u ∈ var(C1∩C2),
and that C1 ∨ C2 does not contain an existential variable and its negation.

Fig. 2. The long-distance resolution rule for a PCNF formula F .

The QBF solver GhostQ [22] uses a restricted version of long-distance Q-
resolution without universal reduction. Indeed, in a search-based solver that
assigns variables in the order of the quantifier prefix, universal reduction is not
required to derive a learned clause. One only needs to identify purely universal
clauses, which are treated as if they were empty. The corresponding traces can
be construed as derivations in the proof system shown in Figure 3. We refer to
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this system—which was first studied under the name of Qw-resolution [9]—as
reductionless Q-resolution.

(input clause)
C

Every input clause C ∈ ϕ can be used as an axiom.

C1 ∨ e ¬e ∨ C2 (long-distance resolution)
(C1 \ C2) ∨ (C2 \ C1) ∨ {u∗ | u ∈ var(C1 ∩ C2) }

It is required that e <F u for each variable u ∈ var(C1 ∩ C2) and that C1 ∨ C2 does
not contain an existential variable and its negation.

Fig. 3. Derivation rules of reductionless Q-resolution for a PCNF formula F = Q.ϕ.

As usual, we consider derivations in these proof systems which are sequences
C1, . . . , Ck of clauses such that each clause Ci is an axiom or derived from clauses
appearing earlier in the sequence using one of the proof rules. The size of a
derivation is the number k of clauses in the sequence. A refutation is a derivation
of the empty clause or, in the case of reductionless Q-resolution, a derivation of
a purely universal clause.

In the following sections, we will sometimes write C1 �x C2 to denote the
resolvent of C1 and C2 on pivot x. If the pivot is understood we may simply
write C1 � C2.

4 A Lower Bound for Reductionless Q-resolution

We generalize an exponential lower bound for level-ordered Q-resolution [19] for
the completion principle formulas CRn defined below. A Q-resolution derivation
is level-ordered if the order of pivot variables encountered on any path in the
derivation follows the order in the quantifier prefix. A level-ordered Q-resolution
refutation can be turned into a reductionless Q-resolution refutation simply by
omitting the reduction steps.

Definition 1 ([19]). Let

CRn = ∃
1≤i,j≤n

xij ∀z
n

∃
i=1

ai
n

∃
j=1

bj

( ∧

1≤i,j≤n
Aij ∧Bij

)
∧A ∧B,

where
Aij = xij ∨ z ∨ ai,
Bij = xij ∨ z ∨ bj ,

A = a1 ∨ · · · ∨ an,
B = b1 ∨ · · · ∨ bn.

5
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We will prove the following result.

Theorem 1. Any reductionless Q-resolution refutation of the formula CRn has
size at least 2n.

In the following we assume n ≥ 2 (Theorem 1 obviously holds for n = 1), Π is
a reductionless Q-resolution refutation of CRn, C is a clause of Π, and C⊥ the
conclusion of Π (recall that a reductionless Q-resolution refutation ends in a
purely universal clause). For the purposes of this subsection, we will consider a
merged literal u∗ as a shorthand for u ∨ ¬u.

Claim 1. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,

– if ai ∈ C or xij ∈ C then z ∈ C,
– if bj ∈ C or xij ∈ C then z ∈ C.

Proof. The statement holds for input clauses and universal literals are never
removed from clauses. ut

Claim 2. For all 1 ≤ i ≤ n and 1 ≤ j ≤ n,

– if ai ∈ C then z ∈ C or C = A,
– if bj ∈ C then z ∈ C or C = B.

Proof. The statement holds for input clauses. Let C be the resolvent of C1 and
C2 and assume without loss of generality that ai ∈ C1. By induction hypothesis
either z ∈ C1, in which case z ∈ C, or C1 = A, in which case the resolution step
is over some pivot aj . That means aj ∈ C2, and by Claim 1 we have z ∈ C2 and
so z ∈ C. ut

Claim 3.

– For all 1 ≤ i ≤ n, if z 6∈ C ∧ ai 6∈ C ∧ C 6= B, then there is j, such that
xij ∈ C,

– For all 1 ≤ j ≤ n, if z 6∈ C ∧ bj 6∈ C ∧ C 6= A, then there is i, such that
xij ∈ C.

Proof. By induction on the proof size. The statement clearly holds for input
clauses. Let C be the resolvent of C1 and C2. Since z 6∈ C, both z 6∈ C1 and
z 6∈ C2. Since ai 6∈ C, either ai 6∈ C1 or ai 6∈ C2, assume the first. If C1 = B,
then the resolution step can only resolve away one of the literals, and so there is
j such that bj ∈ C. By Claim 2 (since C 6= B) we have z ∈ C, a contradiction.
Therefore C1 6= B and by induction hypothesis there is j such that xij ∈ C1.
Unless the resolution step is on xij , we have xij ∈ C, so it remains to prove that
this is indeed not the case. If xij were the pivot, then xij ∈ C2, hence z ∈ C2, a
contradiction. ut

Claim 4. The conclusion C⊥ contains z∗.

Proof. C⊥ contains no existential literals and is distinct from A and B, so in
order not to be in contradiction with Claim 3, the statement has to hold. ut
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Claim 5. If z, z ∈ C, then for all 1 ≤ i, j ≤ n we have ai, ai, bj , bj 6∈ C.

Proof. Consider the last C that violates this implication. Clearly C 6= C⊥. There-
fore, there is C0 and C1 such that C1 is the resolvent of C and C0. Clearly
z, z ∈ C1. Since C1 no longer violates the condition, there is no literal right of z
in C1. Hence C0 is neither A nor B. Therefore by Claim 1 and Claim 2, a literal
on z is in C0. Since C violates the implication, there is a literal right of z in C,
but since there is none in C1, the pivot variable must be right of z. That means
the resolution step is illegal, a contradiction. ut
Claim 6. If C is the resolvent of C1 and C2 and z, z ∈ C, then neither C1 nor
C2 contains any of the literals ai, ai, bj , bj .

Proof. If z, z ∈ C1 or z, z ∈ C2, then the statement follows from Claim 5.
Otherwise, the resolution step merges z and z. That means the pivot must be
left of z, and so any of the literals ai, ai, bj , bj would end up in C if contained in
any of the premises, a contradiction with Claim 5. ut

For the next claims, we need to introduce sets M and S as follows. We let

M = {C ∈ Π | z∗ ∈ C }

be the set of clauses which contain a merged literal. We define S as the “bound-
ary” of M , i.e., the set of clauses that do not contain a merged literal but have
a direct descendant that does, formally

S = {C ∈ Π | C /∈M and there are C0, C1 ∈ Π s.t. C1 = C�C0 and C1 ∈M }.

Claim 7. If C ∈ S, then ai, ai, bj , bj 6∈ C.

Proof. Follows from Claim 6 as C ∈ S has a direct descendant with z∗. ut
Claim 8. If C ∈ S then |C \ {z, z}| ≥ n.

Proof. By Claim 7 and the fact that C 6∈M we get that all preconditions of one
of the rows of Claim 3 are satisfied for C, which means that either for all i there
is a j such that xij ∈ C, or for all j there is an i such that xij ∈ C, in both cases
a total of n distinct literals, none of which is a literal on z. ut
Proof (of Theorem 1). Consider Π ′ = S∪M . Clauses in M have direct ancestors
only in M or S (any direct ancestor that is not in M is by definition in S). Since
C⊥ ∈ M , Π ′ is a reductionless Q-resolution refutation of S. If we disregard
literals on z, it is in fact a resolution refutation of the propositional formula S,
which means that S is unsatisfiable. By Claim 8, every clause in S has at least n
literals, and so it excludes at most 2n

2−n of the assignments to the variables of
S. Therefore, S must have at least 2n clauses in order to exclude all assignments
and be unsatisfiable. ut
Corollary 1. Reductionless Q-resolution does not p-simulate tree-like Q-resolution.

Proof. Since CRn have short proofs in tree-like Q-resolution [20], the separation
follows from Theorem 1. ut
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Remark 1. Theorem 1 has another interesting consequence. Since QCDCL with
dependency learning can solve CRn in polynomial time [25], Theorem 1 implies
that in order to harness the full power of QCDCL with dependency learning,
one has to perform universal reduction during clause learning. This is in contrast
with “ordinary” QCDCL where universal reduction is not required to derive a
learned clause [22].

5 Short Proofs of QParity in Reductionless Q-Resolution

In this section, we prove that the QParity formulas, which require exponentially
long proofs in Q-resolution [6], have short proofs in reductionless Q-resolution.
It has already been shown that these formulas have short proofs in long-distance
Q-resolution [12, Theorem 9]. We simply observe that these proofs—which we
reproduce below for the sake of completeness—are in fact reductionless.

Definition 2 ([6]). Let QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. φn, where

φn = T 1
2 ∧ T 2

2 ∧ T 3
2 ∧ T 4

2 ∧
(

n∧

i=3

T 1
i ∧ T 2

i ∧ T 3
i ∧ T 4

i

)
∧ Z1 ∧ Z2, and

T 1
2 = x1 ∨ x2 ∨ t2,
T 2
2 = x1 ∨ x2 ∨ t2,
T 3
2 = x1 ∨ x2 ∨ t2,
T 4
2 = x1 ∨ x2 ∨ t2,

T 1
i = ti−1 ∨ xi ∨ ti,
T 2
i = ti−1 ∨ xi ∨ ti,
T 3
i = ti−1 ∨ xi ∨ ti,
T 4
i = ti−1 ∨ xi ∨ ti,

Z1 = tn ∨ z,
Z2 = tn ∨ z.

Theorem 2. There is a reductionless Q-resolution refutation of QParityn of
size 6n− 5.

Proof. For 2 ≤ i ≤ n − 1 and 1 ≤ j ≤ 2, we let Z1
i = ti ∨ z∗, Z2

i = ti ∨ z∗, and
Zjn = Zj , and it is easy to verify that

Zji−1 =
(
T 3j−2
i �ti Z1

i

)
�xi

(
T j+1
i �ti Z2

i

)
.

Hence, we derive Z1
2 and Z2

2 in a total of 6(n− 2) steps. Next, we have

(z∗) =
( (
T 1
2 �t2 Z1

2

)
�x2

(
T 2
2 �t2 Z2

2

) )
�x1

( (
T 4
2 �t2 Z1

2

)
�x2

(
T 3
2 �t2 Z2

2

) )
,

and so the formula is refuted. The resolution steps on the xi are sound, because
xi < z for all 1 ≤ i ≤ n. The total number of resolution steps is 6n− 5. ut

Corollary 2. Q-resolution does not p-simulate reductionless Q-resolution.

Remark 2. While strategies extracted from Q-resolution refutations (of PCNF
formulas containing a single unviersal variable) correspond to bounded-depth
circuits [6], Theorem 2 implies that reductionless Q-resolution proofs cannot be
efficiently transformed into bounded-depth circuits.
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6 Lower Bounds from Strategy Extraction

In this section, we will show how to extend the scope of lower bound techniques
based on strategy extraction [6] to fragments of long-distance Q-resolution. We
begin by observing that strategies extracted from reductionless Q-resolution
proofs correspond to branching programs [5].

We briefly review the definition of a branching program and refer to the book
by Wegener for more details [34]. A branching program or binary decision dia-
gram (BDD) on a set X of variables is a directed acyclic graph with a unique
source node and at most two sink nodes. Each node v is labelled with a vari-
able λ(v) ∈ X, except for the sinks, which are labelled with 0 or 1. If there are
two sink nodes, their labels must be distinct. Moreover, every node has exactly
two outgoing edges labelled with 0 and 1, respectively. A path v1, . . . , vn from
the source of a branching program to its sink is consistent if the label of edge
(vi, vi+1) agrees with the label of edge (vj , vj+1) whenever vi and vj are labelled
with the same variable. A consistent path corresponds to an assignment in the
obvious way. A branching program B on X computes a Boolean function f(B)
in the following way. Let τ : X → {0, 1} be an assignment. We follow the (con-
sistent) path induced by τ to a sink node v, and set f(B)(τ) = λ(v). The size
of a branching program is the number of nodes in it.

Let π = C1, . . . , Ck be a reductionless Q-resolution derivation from a PCNF
formula F . For each universal variable u ∈ var∀(F), we construct a branching
program BuF (π) in the following way [9, 5]. We first introduce two nodes v0
and v1 with λ(v0) = 0 and λ(v1) = 1. We now consider the clauses Ci in the
order of their derivation and associate a node vi with each one. Depending on
how clause Ci was derived, we distinguish two cases:

1. If Ci is an input clause, we let

vi =

{
v0, if u ∈ Ci;
v1, otherwise.

2. If Ci is the resolvent of clauses Cj = C ′j ∨ e and Cl = ¬e∨C ′l , there are two
possibilities depending on the order of variables e and u in the prefix:
– If e < u, we introduce a fresh node vi to BuF (π) and label it λ(v) = e.

Moreover, we add a 0-labelled edge from vi to vj and a 1-labelled edge
from vi to vl.

– Otherwise, u < e and we cannot have u ∈ var(Cj ∩ Cl) by the rules of
reductionless Q-resolution (see Figure 3). If u ∈ var(Cj), we let vi = vj .
Otherwise, we let vi = vl.

Finally, we remove all nodes that cannot be reached from vk. The following
statement is immediate from the construction.

Lemma 1. If π = C1, . . . , Ck is a reductionless Q-resolution derivation from
a PCNF formula F and u ∈ var∀(F) is a universal variable, then BuF (π) is a
branching program on Du

F of size at most k.
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Moreover, if the derivation π is a refutation, these branching programs compute
a universal winning strategy. To show this, we first prove the following statement.

Lemma 2. Let π = C1, . . . , Ck be a reductionless Q-resolution derivation from
a PCNF formula F . Let τ : var∃(F) → {0, 1} be an assignment that does not
satisfy Ck, and let

σπF = {u 7→ f(BuF (π))(τ |Du
F ) | u ∈ var∀(F) }

be the assignment computed by the branching programs BuF (π) in response. Then
Ci[σ

π
F ∪ τ ] = 0 for some input clause Ci ∈ π.

Proof. We proceed by induction on the size k of the derivation. If π = C1 then C1

must be an input clause, and BuF (π) consists of a single node labelled 0 if u ∈ C1

and labelled 1 if ¬u ∈ C1. Accordingly, the function f(BuF (π)) constantly returns
an assignment that falsifies any universal literal on variable u. This proves the
base case.

Suppose the statement of the lemma holds for derivations of size up to k−1.
If Ck is an input clause, the same reasoning as in the base case applies, so
suppose Ck is derived by resolution from clauses Ci = C ′i ∨ e and Cj = ¬e ∨
C ′j with 1 ≤ i, j < k. Let πi = C1, . . . , Ci and let πj = C1, . . . , Cj be the
derivations of the corresponding clauses. We claim that σπF (u) = σπi

F (u) for each
universal variable u ∈ var(Ci) if τ(e) = 0, and σπF (u) = σ

πj

F (u) for each universal
variable u ∈ var(Cj) if τ(e) = 1.

Choose a universal variable u and let τ ′ = τ |Du
F be the corresponding restric-

tion of τ . We consider two cases. If e < u it is not difficult to see that

f(BuF (π))(τ ′) =

{
f(BuF (πi))(τ

′) if τ(e) = 0, and

f(BuF (πj))(τ
′) otherwise.

Accordingly, we have σπF (u) = σπi

F (u) if τ(e) = 0 and otherwise σπF (u) = σ
πj

F (u).
On the other hand, if u < e by construction of the branching program we have

f(BuF (π)) =

{
f(BuF (πi)) if u ∈ var(Ci), and

f(BuF (πj)) otherwise.

If u ∈ var(Ci) then σπF (u) = σπi

F (u). If u ∈ var(Cj) as well then we must
have u ∈ Ci ∩ Cj or ¬u ∈ Ci ∩ Cj since u /∈ var(Ci ∩ Cj) by definition of
reductionless Q-resolution. It follows that f(BuF (πi)) and f(BuF (πj)) compute
the same constant function. Otherwise, if u /∈ var(Ci) then σπF (u) = σ

πj

F (u).
This proves the claim.

If τ(e) = 0 then by induction hypothesis Cl[σ
πi

F ∪ τ ] = 0 for an input
clause Cl ∈ πi. We can assume without loss of generality that πi does not
contain any universal variable besides those in the clause Ci. It follows from
the claim that the assignment σπF ∪ τ falsifies Cl as well. The case τ(e) = 1 is
symmetric. ut
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Lemma 3. Let π = C1, . . . , Ck be a reductionless Q-resolution refutation of a
PCNF formula F . The set { f(BuF (π)) | u ∈ var∀(F) } is a universal winning
strategy.

Proof. Because π is a refutation the clause Ck must not contain existential vari-
ables. Thus every assignment τ : var∃(F) → {0, 1} is an assignment that does
not satisfy Ck, and by Lemma 2 the universal response σπF (defined as in the
statement of that lemma), in conjunction with the assignment τ , must falsify an
input clause. ut

These results allow us to translate lower bounds for branching programs to
lower bounds on the size of reductionless Q-resolution refutations. Let f : X →
{0, 1} be a Boolean function, let ϕ(X) be a Boolean circuit encoding f , and
let u be a variable not occurring in ϕ. Using Tseitin transformation [31], we
can construct a CNF formula ψ(X,u, Y ) such that ∃Y.ψ(X,u, Y ) is logically
equivalent to ϕ(X) 6= u. The PCNF formula F = ∃X∀u∃Y.ψ(X,u, Y ) is a false
PCNF formula with f as a unique universal winning strategy (cf. the lower
bounds from strategy extraction for Q-resolution [6]). We call such a formula F
a PCNF encoding of f .

Proposition 1. Let F be a PCNF encoding of a Boolean function f such that
any branching program computing f has size at least m. Then any reductionless
Q-resolution refutation of F requires at least m clauses.

Proof. Since f is the unique universal winning strategy for F , the statement
follows immediately from Lemma 1 and Lemma 3. ut

To the best of our knowledge, the only lower bounds on the size of general
branching programs for explicitly defined Boolean functions currently known are
polynomial [24]. Accordingly, Proposition 1 does not yield strong lower bounds
for reductionless Q-resolution. However, we can lift lower bounds for restricted
classes of branching programs to lower bounds on the proof size in restricted
versions of reductionless Q-resolution.

6.1 Regular Reductionless Q-Resolution

Every reductionless Q-resolution derivation π = C1, . . . , Ck can be represented
by a directed acyclic graph G(π) on vertices v1, . . . , vk where vi is labelled with
Ci and there is an edge from vj to vi if i < j and Ci is one of the clauses Cj was
derived from (that is, edges are oriented from conclusions to premises). Each
edge is labelled with the corresponding pivot variable.

A reductionless Q-resolution refutation π = C1, . . . , Ck is regular if each
variable occurs at most once as a label on any directed path starting from the
vertex labelled with clause Ck. Each strategy function computed by such a proof
corresponds to a so-called read-once branching programs or free binary decision
diagram (FBDD). A read-once branching program is a branching program where
each variable is encountered at most once on any path from the source to a
sink [34].
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Lemma 4. Let π = C1, . . . , Ck be a regular reductionless Q-resolution refutation
of a PCNF formula F . Then BuF (π) is a read-once branching program of size at
most k for each universal variable u ∈ var∀(F).

Proof. Consider BuF (π) for any universal variable u ∈ var∀(F). By construction,
the sequence of variables encountered on any path starting from the source
of BuF (π) is a subsequence of the pivot variables seen as edge labels on any path
starting from the source of G(π). In particular, every variable occurs at most
once. Since BuF (π) is a branching program of size at most k by Lemma 1, it is
in fact a read-once branching program of size at most k. ut

The FBDD size of a Boolean function f is the size of the smallest read-
once branching program representing f . We can transfer lower bounds on the
FBDD size of Boolean functions into lower bounds on the regular reductionless
Q-resolution proof size of certain PCNF formulas, as stated in the next result.

Proposition 2. Let F be a PCNF encoding of a Boolean function f with FBDD
size m. Any regular reductionless Q-resolution refutation of F has size at least m.

Proof. The statement follows from Lemma 4 and Lemma 3. ut
Unlike in the case of general branching programs, strong lower bounds on

the FBDD size of many explicitly defined Boolean functions are known [34]. For
instance, we can use the following result due to Bollig and Wegener [10].

Theorem 3 ([10]). There is a Boolean function g in n variables that can be
computed by a Boolean circuit of size O(n3/2) but has FBDD size Ω(2

√
n).

Corollary 3. There is a Boolean function g in n variables with a PCNF encod-
ing F of size polynomial in n such that any regular reductionless Q-resolution
refutation of F has size Ω(2

√
n).

6.2 Tree-like Long-Distance Q-Resolution

In this subsection, we are going to prove lower bounds on the size of tree-like
long-distance Q-resolution. As in the case of reductionless Q-resolution, a long-
distance Q-resolution derivation π = C1, . . . , Ck can be represented by a labelled
DAG G(π). A derivation π is called tree-like if the DAG G(π) is a tree.

We want to show that every tree-like long-distance Q-resolution refutation
of a PCNF encoding of a Boolean function f can be efficiently turned into
a bounded-depth circuit computing f . First, we generalize the construction of
the branching programs BuF described at the beginning of this section to long-
distance Q-resolution derivations. Let π = C1, . . . , Ck be a long-distance Q-
resolution derivation from a PCNF formula F . For each universal variable u ∈
var∀(F), we construct a labelled DAG BuF (π) in the same way as for a reduction-
less Q-resolution derivation, except for the following modification: if clause Ci is
derived from a clause Cj by universal reduction and u ∈ var(Cj) \ var(Ci), we
set vi = v0, where λ(v0) = 0. It is readily verified that we obtain a branching
program of size at most k, as stated in the following lemma.
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Lemma 5. If π = C1, . . . , Ck is a long-distance Q-resolution derivation from
a PCNF formula F and u ∈ var∀(F) is a universal variable, then BuF (π) is a
branching program on Du

F of size at most k.

A universal winning strategy can be computed from a long-distance Q-resolution
refutation as follows [2]. We maintain a kind of decision list [28] for each universal
variable that is intended to encode a strategy function. Specifically, we consider
sequences L = (ϕ1 → ψ1), . . . , (ϕk → ψk) where each of the ϕi and ψi are
propositional formulas. Such a list, which we call a generalized decision list,
represents a Boolean function fL in the following way. Consider an assignment τ :⋃k
i=1 var(ϕi) ∪ var(ψi) → {0, 1} to all the variables appearing in formulas on

the list. If there is no index i with 1 ≤ i ≤ k such that τ satisfies ϕi, we
define fL(τ) = 1. Otherwise, let i be the smallest index such that τ satisfies ϕi.
Then fL(τ) = ψi[τ ]. The size of a decision list L = (ϕ1 → ψ1), . . . , (ϕk → ψk)

is |L| = ∑k
i=1(|ϕi|+ |ψi|).

Given a long-distance Q-resolution refutation π = C1, . . . , Ck of a PCNF
formula F , we construct a family LF (π) = {Lu | u ∈ var∀(F) } of generalized
decision lists representing a universal winning strategy for F . For Q ∈ {∃,∀},
let CQi = { ` ∈ Ci | var(`) ∈ varQ(F) } denote the restriction of Ci to existential
or universal literals. Moreover, for a Boolean function f , let φ(f) denote an
encoding of f as a propositional formula. We consider applications of universal
reduction in the same order as they appear in the proof. Let Ci be a clause
derived by universal reduction from a clause Cj , and let u ∈ var(Cj) \ var(Ci).
Let πi = C1, . . . , Ci and πj = C1, . . . , Cj denote the subderivations ending in
clauses Ci and Cj , respectively. We add an entry


C∃i ∧

∧

v∈var(C∀
i )

v ↔ φ(f(BvF (πi)))


→ φ(f(BuF (πj))) (1)

at the end of the decision list Lu. Observing that the functions f(BuF (πj)) corre-
spond to the (negated) phase functions introduced for the purpose of efficiently
extracting universal winning strategies from long-distance Q-resolution refuta-
tions [2], it can be verified that the strategy functions computed by the corre-
sponding algorithm coincide with the functions computed by the decision lists
defined according to (1).

Proposition 3 ([2]). Let π be a long-distance Q-resolution refutation of a PCNF
formula F . The set { fLu

| Lu ∈ LF (π) } is a universal winning strategy.

We now argue that this winning strategy can be represented by a bounded-
depth circuit for certain proofs in tree-like long-distance Q-resolution. Specifi-
cally, we will show that this is the case for every tree-like refutation of a PCNF
encoding of a Boolean function. We first observe that the branching programs BuF
for tree-like proofs are decision trees. A decision tree is a branching program that
can be turned into a tree by deleting the sink nodes.
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Lemma 6. If π = C1, . . . , Ck is a tree-like long-distance Q-resolution deriva-
tion from a PCNF formula F , then BuF (π) is a decision tree for each universal
variable u ∈ var∀(F).

Proof. It is not difficult to see that after deleting the sink nodes labelled with 0
and 1 from BuF (π), the corresponding DAG can be obtained from G(π) by delet-
ing vertices and edges as well as contracting induced paths. Since G(π) is a tree,
the result is also a tree. ut

Every decision tree can be efficiently translated into a CNF formula by tak-
ing the conjunction over the negations of its consistent paths [28]. Moreover, a
generalized decision list L = (ϕ1 → ψ1), . . . , (ϕk → ψk) can be represented by a
circuit

φ(L) =

k∨

i=1


(

i−1∧

j=1

¬ϕj ∧ ϕi)→ ψi


 . (2)

Lemma 7. Let L = (ϕ1 → ψ1), . . . , (ϕk → ψk) be a generalized decision list
such that d is the maximum depth of any formula ϕi and ψi, for 1 ≤ i ≤ k.
Then φ(L) is equivalent to fL. Moreover, φ(L) has depth at most d + 4 and
|φ(L)| = O(|L|2).

Let F be the PCNF encoding of a Boolean function f and consider a tree-
like long-distance Q-resolution refutation π of F . Because F contains only a
single universal variable, each entry in a decision list of LF (π) given by (1)
simplifies to C → φ(f(BuF (πj))), and the right hand side of this implication can
be efficiently transformed into a CNF because BuF is a decision tree by Lemma 6.
We thus obtain the following result.

Proposition 4. There is a polynomial p(·) and a constant d such that, for any
tree-like long-distance Q-resolution refutation π of the PCNF encoding of a func-
tion f , there exists a Boolean circuit of size at most p(|π|) and depth at most d
computing f .

Proof. By Lemma 5 and Lemma 6, each labelled DAG BuF (π′) is a decision tree of
size at most |π| for the universal variable u of F and each subproof π′ of π. Each
such decision tree can be efficiently encoded as a CNF formula and the decision
list has no more than |π| entries of size polynomial in |π|, so it follows from
Lemma 7 that there is a polynomial p(·) such that φ(Lu) has size at most p(|π|)
and depth at most 6. Finally, {fLu

} is a universal winning strategy for F by
Proposition 3, so fLu

must coincide with f . ut
Since any bounded-depth circuit computing the n-bit parity function has size

exponential in n [16], Proposition 4 allows us to obtain the following exponential
lower bound on the size of refutations of QParity in tree-like long-distance Q-
resolution.

Theorem 4. Any refutation of QParityn in tree-like long-distance Q-resolution
requires size exponential in n.

14

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
9-
00

4



7 Conclusion

We studied the proof complexity of fragments of long-distance Q-resolution.
We proved that reductionless Q-resolution cannot p-simulate even tree-like Q-
resolution. Since reductionless Q-resolution can be used to derive learned clauses
in QCDCL solvers [22], this is another indication that QCDCL1 proofs cor-
respond to a fairly weak fragment of (long-distance) Q-resolution [20]. The
QParity formulas, on the other hand, have short refutations in reduction-
less Q-resolution. These formulas require Q-resolution refutations of exponential
size [6], so Q-resolution and reductionless Q-resolution turn out to be incompa-
rable.

The existence of short proofs of QParity also marks the breakdown of an
elegant technique for obtaining lower bounds on the size of Q-resolution refu-
tations through strategy extraction [6]. Evidently, strategies corresponding to
reductionless Q-resolution proofs do not correspond to bounded-depth circuits.

We proved that arguments based on strategy extraction can nevertheless be
used to obtain lower bounds for restricted versions of long-distance Q-resolution.
Specifically, we showed that regular reductionless Q-resolution proofs correspond
to read-once branching programs, and that tree-like long-distance Q-resolution
proofs correspond to bounded-depth circuits, allowing us to transfer known lower
bounds.

Obtaining a characterization of the strategies corresponding to (even reduc-
tionless) long-distance Q-resolution refutations that could be used in obtaining
lower bounds remains as an intriguing open problem.
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