
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-19-001
January 2019

SAT-Encodings for
TreecutWidth and
Treedepth

Robert Ganian, Neha Lodha,
SebastianOrdyniak, and Stefan Szeider

This is the authors’ copy of a paper that appeared in the proceedings of ALENEX’19,
the SIAMConference onAlgorithmEngineering and Experiments, January 7-8, 2019,
SanDiego, USA. This is an updated version of December 2019, containing the correc-
tion of aminor error.
www.ac.tuwien.ac.at/tr

SAT-Encodings for Treecut Width and Treedepth

Robert Ganian∗ Neha Lodha∗ Sebastian Ordyniak† Stefan Szeider∗

Abstract
The decomposition of graphs is a prominent algorithmic task
with numerous applications in computer science. A graph
decomposition method is typically associated with a width
parameter (such as treewidth) that indicates how well the
given graph can be decomposed. Many hard (even #P-hard)
algorithmic problems can be solved efficiently if a decom-
position of small width is provided; the runtime, however,
typically depends exponentially on the decomposition width.
Finding an optimal decomposition is itself an NP-hard task.
In this paper we propose, implement, and test the first practi-
cal decomposition algorithms for the width parameters tree-
cut width and treedepth. These two parameters have recently
gained a lot of attention in the theoretical research commu-
nity as they offer the algorithmic advantage over treewidth
by supporting so-called fixed-parameter algorithms for cer-
tain problems that are not fixed-parameter tractable with re-
spect to treewidth. However, the existing research has mostly
been theoretical. A main obstacle for any practical or exper-
imental use of these two width parameters is the lack of any
practical or implemented algorithm for actually computing
the associated decompositions. We address this obstacle by
providing the first practical decomposition algorithms.

Our approach for computing treecut width and treedepth
decompositions is based on efficient encodings of these de-
composition methods to the propositional satisfiability prob-
lem (SAT). Once an encoding is generated, any satisfiability
solver can be used to find the decomposition. This allows
us to leverage the surprising power of todays state-of-the
art SAT solvers. The success of SAT-based decomposition
methods crucially depends on the used characterisation of
the decomposition method, as not every characterisation is
suitable for that task. For instance, the successful leading
SAT encoding for treewidth is based on a characterisation
of treewidth in terms of elimination orderings. For treecut
width and treedepth, however, we propose new characterisa-
tions that are based on sequences of partitions of the vertex
set, a method that was pioneered for clique-width. We imple-
mented and systematically tested our encodings on various
benchmark instances, including famous named graphs and
random graphs of various density. It turned out that for the

∗Algorithms and Complexity Group, TU Wien, Vienna, Austria
†Algorithms Group, University of Sheffield, Sheffield, UK
The authors acknowledge support by the Austrian Science Fund (FWF,

projects W1255-N23, P31336, and P27721).

considered width parameters, our partition-based SAT en-
coding even outperforms the best existing SAT encoding for
treewidth.

We hope that our encodings—which we will make
publicly available—will stimulate the experimental research
on the algorithmic use of treecut width and tree depth,
and thus will help to bride the gap between theoretical
and experimental research. For future work we propose
to scale our approach to larger graphs by means of SAT-
based local improvement, a method that have been recently
shown successful for the width parameters treewidth and
branchwidth.

1 Introduction
Graph decompositions have been a central topic in the area
of combinatorial algorithms, with applications in many areas
of computer science. A graph decomposition method is typ-
ically associated with a width parameter that indicates how
well the given graph can be decomposed. Tree decomposi-
tions, for instance, give rise to the width parameter treewidth.
In most cases, finding an optimal decomposition, i.e., one
of smallest width, is an NP-hard task, so that for practical
purposes one often relies on heuristics that compute subopti-
mal decompositions. However, there are several reasons why
one is interested in optimal decompositions. If the purpose
of the decomposition is to facilitate the solution of a hard
problem by means of dynamic programming, then a subop-
timal decomposition may impose an exponential increase on
time and space requirements for the dynamic programming
algorithm, and therefore may render the approach infeasible
for the instance under consideration. For instance. Kask et
al. [22] noted about inference on probabilistic networks of
bounded treewidth: “[. . .] since inference is exponential in
the tree-width, a small reduction in tree-width (say even by
1 or 2) can amount to one or two orders of magnitude re-
duction in inference time.” Besides such algorithmic appli-
cations, optimal decompositions are also useful for scientific
purposes, for instance to evaluate a heuristic method that pro-
vides an upper bound on the decomposition width, or to sup-
port theoretical investigations by facilitating the construction
of gadgets for hardness reductions.

An appealing approach to finding optimal decompo-
sitions are SAT-encodings, where one translates a given
graph G and an integer w into a propositional formula
F (G,w) whose satisfying assignments correspond to a de-

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

composition of G of width at most w. The satisfiabil-
ity of the formula can then be checked by a state-of-the
art SAT-solver [27, 28]. This approach was pioneered by
Samer and Veith [34] for treewidth. Their encoding was
further expanded on in subsequent works [1, 2] and today
it still remains one of the most efficient methods for com-
puting optimal tree decompositions. SAT-encodings have
also been developed for other graph parameters, including
clique-width [18], branchwidth [25], as well as pathwidth
and special treewidth [26]. This line of research revealed
that the efficiency of the SAT-encoding based approach cru-
cially depends on the underlying characterisation of the con-
sidered decompositional parameter. Whereas for treewidth
the elimination-ordering based characterisations have been
shown to be best suited for SAT-encodings, other decom-
position parameters require other characterisations. A very
efficient SAT-encoding for clique-width was based on the
newly developed partition-based characterisation of clique-
width [18]. Partition-based encodings have also been shown
to be efficient for other width parameters [25, 26].

In this paper we develop SAT-encodings for the width
parameters treecut width and treedepth. These two param-
eter are both less general than treewidth, i.e., any graph
class where either of these two parameters is bounded, is
also of bounded treewidth, but there exist graph classes of
bounded treewidth where neither of these two parameters are
bounded. Neither of the two parameters (treecut width and
treedepth) is more general than the other, though. The pa-
rameters are of interest as they offer certain algorithmic ad-
vantages over treewidth; in particular, they support so-called
fixed-parameter algorithms for certain problems that are not
fixed-parameter tractable with respect to treewidth (see any
of the handbooks on parameterized complexity [7, 5, 10]), as
well as having a significantly lower parameter dependency
than treewidth for certain problems [13, 8].

So far, both parameters have mainly been the subject
of theoretical investigations. By our encodings we provide
the first practical methods for computing the associated
decompositions and therefore provide a first step of bridging
theoretical with experimental research.

1.1 Treecut Width The parameter treecut width was in-
troduced by Wollan [36]. Treecut width is an edge-separator
based decompositional parameter whose relationship to the
fundamental notion of graph immersions is analogous to the
relationship between treewidth and graph minors [29]. Kim
et al. [23] gave a linear time 2-approximation algorithm for
treecut width, however, such an error factor is prohibitive for
practical use. Ganian et al. [14, 15] provided the first algo-
rithmic results for treecut width, and pointed out that sev-
eral problems that are not fixed-parameter tractable for the
parameter treewidth are fixed-parameter tractable for the pa-
rameter treecut width.

Given that treecut width arguably has the most com-
plicated and unintuitive characterisation among all studied
width parameters, our first step was to find a way to simplify
the definition of treecut width. Such a simplification has re-
cently been proposed by Kim et al. [23], showing that the
definition of treecut decompositions becomes significantly
more manageable on 3-edge-connected graphs and that com-
puting decompositions for general graphs can be reduced
to the 3-edge-connected case. Using this simpler definition
together with an explicit preprocessing procedure for gen-
eral graphs (presented in Section 2.3), we introduce a SAT-
encoding for 3-edge-connected graphs based on a partition-
based characterisation of treecut width in Section 3. As
our experiments show, the encoding performs extraordinary
well; outperforming even our arguably much simpler en-
coding for treedepth and the current best-performing SAT-
encoding for treewidth [1, 2, 34].

1.2 Treedepth The parameter treedepth was introduced
by Nešetřil and Ossona de Mendez [30] in the context of their
graph sparsity project [31]. This parameter has been shown
to have algorithmic applications for a number of problems
where treewidth cannot be used. For instance, Gutin et
al. [17] showed that the Mixed Chinese Postman problem
is fixed-parameter tractable for treedepth, but W[1]-hard for
treewidth and even pathwidth. Several further algorithmic
results on treedepth have been presented recently by Iwata et
al. [21], Koutecký et al. [24], Ganian and Ordyniak [16], and
Gajarský and Hliněný [12]. Exact algorithms for computing
treedepth are known, e.g., the problem is known to be fixed-
parameter tractable [33] and can be solved slightly faster
than O(2n) [11], however, until now no implementation of
an exact algorithm for treedepth was available.

We introduce and implement two SAT-encodings for
treedepth. The first one explicitly guesses the tree-structure
of a treedepth decomposition and the second one is based on
a novel partition-based characterisation of treedepth. Since
the partition-based encoding greatly outperformed our first
encoding, we mostly focus on the partition-based encoding
and provide the first encoding only in the the full version of
the paper. The experimental results for our partition-based
encoding are very promising, showing an extraordinarily
good performance on sparse classes of graphs such as paths,
cycles, and complete binary trees. We also introduce three
novel preprocessing and symmetry breaking procedures for
treedepth.

Statements whose proofs are located only in the full version
are marked with ?.

1.3 Related Work We have already mentioned the suc-
cessful application of SAT-encodings for graph decomposi-
tions above [1, 2, 18, 25, 34]. At this juncture we would
like to briefly give some further context on SAT-encodings.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

While every problem in NP admits a polynomial-time SAT-
encoding, it is well known that different encodings can be-
have quite differently in practice [32]. There are some formal
criteria which indicate whether an encoding will behave well
or not. However, only by an experimental evaluation one can
see what really works well and what does not [4]. For in-
stance, while encoding size is certainly a factor to take into
consideration, larger encodings can work better if they allow
a fast propagation of conflicts, so that the power of state-of-
the art SAT-solvers which are based on the conflict-driven
clause learning paradigm (CDCL) [27, 28] can be harvested.
SAT-encodings are not only useful for the solution of hard
combinatorial problems in industry, such as the verification
of hardware and software [3], but are increasingly often used
in the context of Combinatorics, for instance in the context
of Ramsey Theory [37]. A very recent highlight is the cele-
brated solution to the Pythagorean Triples Problem [20, 19].

Lastly, we would like to mention that developing
partition-based encodings comes with challenges that are
specific to each width parameter, as it almost always requires
the development of a novel characterization that is compati-
ble with such an encoding. Indeed, the existence of such an
encoding for the probably most prominent width parameter,
treewidth, remains open.

2 Preliminaries
We use [i] to denote the set {0, 1, . . . , i}. A weak partition
of a set S is a set P of nonempty subsets of S such that any
two sets in P are disjoint; if additionally S is the union of all
sets in P we call P a partition. The elements of P are called
equivalence classes. Let P, P ′ be partitions of S. Then P ′

is a refinement of P if for any two elements x, y ∈ S that
are in the same equivalence class of P ′ are also in the same
equivalence class of P (this entails the case P = P ′).

2.1 Formulas and Satisfiability We consider proposi-
tional formulas in Conjunctive Normal Form (CNF formu-
las, for short), which are conjunctions of clauses, where a
clause is a disjunction of literals, and a literal is a proposi-
tional variable or a negated propositional variable. A CNF
formula is satisfiable if its variables can be assigned true or
false, such that each clause contains either a variable set to
true or a negated variable set to false. The satisfiability prob-
lem (SAT) asks whether a given formula is satisfiable.

We will now introduce a few general assumptions and
notation that is shared among our encodings. Namely, for our
encodings we will assume that we are given an undirected
graph G = (V,E) and an integer ω, which represents the
width that we are going to test. Moreover, we will assume
that the vertices ofG are numbered from 1 to n and similarly
the edges are numbered from 1 to m.

For the counting part of our encodings we will employ
the sequential counter approach [34] since this approach has

turned out to provide the best results in our setting. To
illustrate the idea behind the sequential counter consider the
case that one is given a set S of (propositional) variables and
one needs to restrict the number of variables in S that are
set to true to be at most some integer k. For convenience, we
refer to the elements in S using the numbers from 1 to |S|. In
this case one introduces a counting variable #(s, j) for every
s ∈ S and j with 1 ≤ j ≤ k, which is true whenever there
are at least j variables in { s′ | s′ ≤ s and s, s′ ∈ S } that
are set to true. Then this can be ensured using the following
clauses. A clause ¬s ∨ #(s, 1) for every s ∈ S, a clause
¬#(s − 1, j) ∨ #(s, j) for every s ∈ S and j with s > 1
and 1 ≤ j ≤ k, a clause ¬s∨¬#(s− 1, j− 1)∨#(s, j) for
every s ∈ S and j with s > 1 and 1 < j ≤ k, and a clause
¬s ∨ ¬#(s− 1, k) for every s ∈ S with s > 1. This adds at
most O(|S|k) variables and clauses to the original formula.

2.2 Graphs We use standard terminology for graph the-
ory, see for instance [6]. All graphs in this paper are undi-
rected and may contain multiedges. Given a graph G, we
let V (G) denote its vertex set and E(G) its (multi-) set of
edges. The (open) neighbourhood of a vertex x ∈ V (G) is
the set {y ∈ V (G) : xy ∈ E(G)} and is denoted by NG(x).
For a vertex subset X , the neighbourhood of X is defined
as
⋃

x∈X NG(x) \ X and denoted by NG(X); we drop the
subscript if the graph is clear from the context. For a vertex
set A (or edge set B), we use G − A (G − B) to denote the
graph obtained fromG by deleting all vertices inA (edges in
B), and we use G[A] to denote the subgraph induced on A,
i.e., G− (V (G) \ A). Let T be a rooted tree and t ∈ V (T).
We write Tt to denote the subtree of T rooted in t, i.e., the
component of T \{{t, p}} containing t, where p is the parent
of t in T . We denote by hT (t), the height of t in T , i.e., the
length of the path between the root of T and t in T plus one,
and we denote by h(T) the height of T , i.e., the maximum
of hT (t′) over all t′ ∈ V (T). Let G be a graph. We say that
two vertices u and v of G are 3-edge-connected in G if there
are at least 3 pairwise edge disjoint paths between u and v
in G. We say a subset C of V (G) is a 3-edge-connected
component of G if every pair of distinct vertices in C is 3-
edge-connected and C is maximal w.r.t. this property. For a
graph G and a subset V ′ ⊆ V (G), we denote by δG(V ′) the
(multi-)set of edges of G having one endpoint in V ′ and one
endpoint in V (G) \ V ′ and omit the subscript G if it can be
inferred from the context. An apex vertex is a vertex adjacent
to all other vertices in the graph.

2.3 Treecut Width The notion of treecut width and tree-
cut decomposition was originally introduced for general
graphs [29, 36]. Here we use a simpler definition, which
allows for an easier encoding, and only applies for 3-edge-
connected graphs. Using known results [23], we will then
show that the treecut width for general graphs can be defined

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

in terms of the treecut widths of its 3-edge-connected com-
ponents.

5

69

0

7

1

3

8

4

2

9

7

0

1

3

8

2

4

6

5

∅

10, 5, 6 2, 4, 7 3, 8, 9

(5, 4) (3, 2) (5, 4) (5, 4)

(0, 4)

Figure 1: A width-6 treedepth decomposition (top right) and
a width-5 treecut decomposition (bottom) of the Petersen
graph (top left). The treecut decomposition lists the adhesion
(left value) and torso-width (right value) of each node.

Let G be a 3-edge connected undirected graph (possibly
with multi-edges and loops). A treecut decomposition of G
is a pair (T, χ), where T is a rooted tree and χ : V (T) →
2V (G) such that {χ(t) | t ∈ V (T) } forms a near partition
of V (G), i.e., a partition of V (G) allowed to contain the
empty set. For a subgraph T ′ of T , we denote by χ(T ′) the
set
⋃

t∈V (T ′) χ(t). Let t ∈ V (T). We denote by Vt the set
χ(Tt). The adhesion of t, denoted by ad(t), is the (multi-)set
δG(Vt). Moreover, the torsowidth of t, denoted by tor(t), is
equal to |χ(t)| plus the number of neighbours of t in T . The
width of (T, χ) is the maximum width of any of its nodes t ∈
V (T), which in turn is equal to max{|ad(t)|, tor(t)}. The
height of (T, χ) is simply the height of T . Finally, the treecut
width ofG, denoted by tcw(G), is the minimum width of any
of its treecut decompositions. Figure 1 illustrates a treecut
decomposition for the Peterson graph.

The following lemma shows that if a graph is not
3-edge-connected, then it can be modified and split into
parts in such a way that its treecut width can be computed
from the treecut width of the (modified) parts. Since a
recursive application of this lemma eventually results in 3-
edge-connected graphs, the lemma allows us to apply our
encoding for 3-edge-connected graphs to arbitrary graphs.

LEMMA 2.1. Let G be a multigraph, C be a minimal cut of
size at most two resulting in the partition (A,B) of V (G),
and let AC and BC be the endpoints of the edges in C in A
and B, respectively. If C contains two edges and |AC | =
|BC | = 1, then tcw(G) = max{2, tcw(G[A]), tcw(G[B])}.
Otherwise, tcw(G) = max{tcw(GA), tcw(GB)}, where
GA (GB) is obtained fromG[A] (G[B]) after adding an edge
between the vertices in AC (BC); note that an edge is only
added if |AC | = 2 or |BC | = 2, respectively.

Proof. The proof is closely based on the ideas in [23, Sec-
tion 3]. Namely, in the case that C does not contain two
edges sharing the same endpoints, the proof follows imme-
diately from [23, Lemma 3 and 4]. Moreover, if C con-
tains two edges sharing the same endpoints, say a ∈ A
and b ∈ B, it follows from [23, Lemma 3] that tcw(G) =
max{tcw(G[A ∪ {b}]), tcw(G[B ∪ {a}]). Moreover, using
the definition of treecut width for arbitrary graphs and re-
calling that b has precisely 2 neighbours in A (and similarly
a has precisely 2 neighbours in B), it is then easy to see
that tcw(G[A ∪ {b}]) = max{2, tcw(G[A])} and similarly
tcw(G[B ∪ {a}]) = max{2, tcw(G[B])}, from which the
lemma follows. More precisely, this follows immediately by
observing that (1) tcw(G[{a, b}]) = 2 and (2) a treecut de-
composition (T, χ) ofG[A] (G[B]) of width w can be turned
into a treecut decomposition of G[A ∪ {b}] (G[B ∪ {a}]) of
width max{2, w} by adding a leaf l containing b (a) as a leaf
to an arbitrary node of T . Note that l has torsowidth at most 2
and the torsowidth of the neighbor of l in T is not increased;
to see this one needs to use the definition of treecut width on
general graphs and the fact that l is a thin node [14]. �

We also give the known relations between treecut width,
treewidth, and maximum degree.

LEMMA 2.2. ([14, 29, 36]) For every graph G, tw(G) ≤
2tcw(G)2 + 3tcw(G) and tcw(G) ≤ 4∆(G) · tw(G), where
∆(G) and tw(G) denote the maximum degree and treewidth
of G, respectively.

We close this section by showing explicit values of tree-
cut width for complete graphs (Kn) and complete bipartite
graphs (Kn,n), which we later employ to verify the correct-
ness of our encoding.

LEMMA 2.3. (?) For every n ≥ 3, it holds that
tcw(Kn+1) = n+ 1 and tcw(Kn,n) = 2n− 2.

2.4 Treedepth The second decompositional parameter for
which we will introduce a SAT-encoding is treedepth [31].
Treedepth is closely related to treewidth, and the structure
of graphs of bounded treedepth is well understood [31]. A
useful way of thinking about graphs of bounded treedepth is
that they are (sparse) graphs with no long paths.

The treedepth of an undirected graph G, denoted by
td(G), is the smallest natural number k such that there is

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

an undirected rooted forest F with vertex set V (G) of height
at most k for which G is a subgraph of C(F), where C(F)
is called the closure of F and is the undirected graph with
vertex set V (F) having an edge between u and v if and only
if u is an ancestor of v in F . A forest F for which G is a
subgraph of C(F) is also called a treedepth decomposition,
whose depth is equal to the height of the forest. Informally
a graph has treedepth at most k if it can be embedded in the
closure of a forest of height k. Note that if G is connected,
then it can be embedded in the closure of a tree instead of a
forest. A treedepth decomposition of the Peterson graph is
illustrated in Figure 1.
We conclude with some useful facts about treedepth.

LEMMA 2.4. ([31]) For every graph G, tw(G) ≤ td(G)
and pw(G) ≤ td(G), where pw(G) is the pathwidth of G.

3 Treecut Width
In this section we will introduce our encoding for treecut
width. The encoding is based on a different characterisation
of treecut width, one that is well-suited for SAT-encodings.

3.1 Partition-Based Formulation Here we present a
partition-based characterisation of treecut width, in terms
of what we call derivations, which is well-suited for an en-
coding into SAT. Let G be a graph. A derivation P of G
of length l is a sequence (P1, . . . , Pl) of weak partitions of
V (G) such that:

D1 P1 = ∅ and Pl = {{V (G)}} and

D2 for every i ∈ {1, . . . , l}, Pi is a refinement of Pi+1.

We will refer to Pi as the i-th level of the derivation P
and we will refer to elements in

⋃
1≤i≤l Pi as sets of the

derivation. Let p ∈ Pi for some level i with 1 ≤ i ≤ l. We
say that a set c ∈ Pi−1 is a child of p at level i if c ⊆ p
and denote by ciP(p) the set of all children of p at level i.
Moreover, we denote by χi

P(p) the set p\(⋃c∈ciP(p) c). Then
the width of p at level i is equal to the maximum of |δG(p)|
and torpP(i), where torpP(i) is equal to |χi

P(p)|+ |ciP(p)|+ 1
if i 6= l and equal to |χi

P(p)| + |ciP(p)| otherwise. We
will show that any treecut decomposition can be transformed
into a derivation of the same width, and vice versa. The
following example illustrates the close connection between
treecut decompositions and derivations.

Example: The treecut decomposition given in Fig. 1 of the
Petersen graph can be translated into the derivation P =
(P1, . . . , P3) defined by:

P1 = ∅, P2 =
{{

0, 5, 6
}
,
{

1
}
,
{

2, 4, 7
}
,
{

3, 8, 9
}}

,

P3 =
{{

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
}}

.

As can be verified easily, the width of P is equal to 5.

We show that derivations provide an alternative charac-
terisation of treecut decompositions.

THEOREM 3.1. (?) Let G be a graph and ω and d two
integers. G has a treecut decomposition of width at most
ω and height at most d if and only if G has a derivation of
width at most ω and length at most d+ 1.

3.2 Encoding Let G be a graph with m edges and n
vertices, and let ω and d be positive integers. We will assume
that the vertices of G are represented by the numbers from 1
to n and the edges of G by the numbers from 1 to m. The
aim of this section is to construct a formula F (G,ω, d) that
is satisfiable if and only if G has a derivation of width at
most ω and length at most d. Because of Theorem 3.1 (after
setting d to n) it holds that F (G,ω, d) is satisfiable if and
only ifG has treecut width at most ω. To achieve this aim we
first construct a formula F (G, d) such that every satisfiable
assignment encodes a derivation of length at most d and then
we extend this formula by adding constrains that restrict the
width of the derivation to ω.

3.2.1 Encoding of a Derivation The formula F (G, d)
uses the following variables. A set variable s(u, v, i), for
every u, v ∈ V (G) with u ≤ v and every i with 1 ≤ i ≤ d.
Informally, s(u, v, i) is true whenever u and v are contained
in the same set at level i of the derivation. Note that s(u, u, i)
is true whenever u is contained in some set at level i.
Furthermore, the formula contains a leader variable l(u, i),
for every u ∈ V (G) and every i with 1 ≤ i ≤ d. Informally,
the leader variables will be used to uniquely identify the
sets at each level of a derivation (using the smallest vertex
contained in the set as the unique identifier), i.e., l(u, i) is
true whenever u is the smallest vertex in a set at level i of the
derivation.

We now describe the clauses of the formula. The
following clauses ensure (D1) and (D2).

¬s(u, v, 1) ∧ s(u, v, d) for u, v ∈ V (G), u ≤ v
¬s(u, v, i) ∨ s(u, v, i+ 1)
******* for u, v ∈ V (G), u ≤ v, 1 ≤ i < d

The following clauses ensure that if a vertex v is in some set
with at least one other vertex at level i, then s(v, v, i) is true.

(¬s(u, v, i) ∨ s(u, u, i)) ∧ (¬s(u, v, i) ∨ s(v, v, i))
******* for u, v ∈ V (G), u < v, 2 ≤ i ≤ d

The following clauses ensure that the relation of being in the
same set is transitive.

(¬s(u, v, i) ∨ ¬s(u,w, i) ∨ s(v, w, i))
∧(¬s(u, v, i) ∨ ¬s(v, w, i) ∨ s(u,w, i))
∧(¬s(u,w, i) ∨ ¬s(v, w, i) ∨ s(u, v, i))
******* for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ d

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

The following clauses ensure that l(u, i) is true if and only if
u is the smallest vertex contained in some set at level i of a
derivation.

(A) (l(u, i) ∨ ¬s(u, u, i) ∨ ∨
v∈V (G),v<u

s(v, u, i))∧

(B) (¬l(u, i) ∨ s(u, u, i)) ∧ ∧
v∈V (G),v<u

(¬l(u, i)∨

(*) ¬s(v, u, i))
for u ∈ V (G), 1 ≤ i ≤ d

PartA ensures that if u is contained in some set at level i and
no vertex smaller than u is contained in a set with u at level i,
then u is a leader. Part B ensures that if u is a leader at level
i, then u is contained in some set at level i and furthermore
no vertex smaller than u at level i is in the same set as u.
The formula F (H, d) contains at mostO(n2d) variables and
O(n3d) clauses.

3.2.2 Encoding of a Derivation of Bounded Width
Next, we describe how F (G, d) can be extended to restrict
the width of the derivation. Towards this aim we first need
new variables allowing us to define adhesion and torsowidth.
Namely, for every u ∈ V (G), e ∈ E(G) such that at
least one of the endpoints of e is larger or equal to u, and
i ∈ {2, . . . , d − 1}, we use the variable ad(u, e, i), which
will be true if u is a leader of some set V ′ at level i and
e ∈ δG(V ′). This is ensured by the following clauses.

¬l(u, i) ∨ ¬s(u, v, i) ∨ s(u,w, i) ∨ ad(u, e, i)

for u, v, w ∈ V (G), e = {v, w} ∈ E(G), u ≤ v,
u ≤ w, and 1 < i < d.

¬l(u, i) ∨ ¬s(u, v, i) ∨ ad(u, e, i)

for u, v, w ∈ V (G), e = {v, w} ∈ E(G), u ≤ v,
w < u, and 1 < i < d.

Note that we do not require the reverse direction here
since the sole purpose of the variables ad(u, e, i) is to ensure
that the adhesion never exceeds the width.

Towards defining torsowidth, we introduce the variable
tor(u, v, i) for every u, v ∈ V (G), u ≤ v, and 1 ≤ i ≤ d,
which will be true, whenever u is a leader of a set V ′ at level
i, v is in V ′, and either v is a leader at level i − 1, or v is
not in a set at level i − 1. This is ensured by the following
clauses.

¬l(u, i) ∨ ¬s(u, v, i) ∨ ¬l(v, i− 1) ∨ tor(u, e, i)
** for u, v ∈ V (G), u ≤ v, and 2 < i ≤ d
¬l(u, i) ∨ ¬s(u, v, i) ∨ ¬s(v, v, i− 1) ∨ tor(u, e, i)
** for u, v ∈ V (G), u ≤ v, and 1 < i ≤ d

Finally, we use the sequential counter introduced in
Section 2.1 to ensure that both the adhesion as well as the
torsowidth do not exceed the given width. Namely, for every
u ∈ V (G) and i with 1 < i < d, we ensure that the number
of variables in {ad(u, e, i) | e ∈ E(G) } that are set to true

does not exceed ω. Similarly for every u ∈ V (G) and i
with 1 < i < d, we ensure that the number of variables
in { tor(u, v, i) | v ∈ V (G) ∧ u ≤ v } that are set to true
does not exceed ω − 1 and that the number of variables in
{ tor(u, v, d) | v ∈ V (G) ∧ u ≤ v } does not exceed ω.

This completes the construction of F (G,ω, d). By
construction, F (G,ω, d) is satisfiable if and only G has a
derivation of width at most ω and length at most d. Due to
Theorem 3.1, we obtain:

THEOREM 3.2. The formula F (G,ω, d) is satisfiable if and
only if G has a treecut decomposition of width at most ω and
depth at most d. Moreover, such a treecut decomposition can
be constructed from a satisfying assignment of F (G,ω, d) in
linear time w.r.t. the number of variables of F (G,ω, d).

4 Treedepth
In this section we introduce a SAT-encoding for treedepth,
which is also based on partitions. We also developed an
encoding for treedepth that is based on guessing the tree of
the treedepth decomposition, however, the encoding has, to
our surprise, performed much worse than the partition-based
encoding. Namely, the encoding, which we introduce for
completeness in the full version of the paper, only terminated
on 17 out of the 39 famous graphs.

4.1 Partition-Based Formulation Let G be a graph. We
will base our definition of derivations for treedepth on the
derivations defined for treecut width in Section 3.1. A
derivation P of G of length l is a sequence (P1, . . . , Pl)
of weak partitions of V (G) satisfying (D1) and (D2) and
additionally the following properties:

(D3) for every p ∈ Pi, |χi
P(p)| ≤ 1, and

(D4) for every edge {u, v} ∈ E(G), there is a p ∈ Pi such
that {u, v} ⊆ p and χi

P(p) ∩ {u, v} 6= ∅.

It will be useful to recall the notions defined for derivations in
Section 3.1. We will show that any treedepth decomposition
of depth ω can be transformed into a derivation of length
ω + 1, and vice versa. The following example illustrates the
connection between treedepth and such derivations.

Example: The treedepth decomposition given in Fig. 1 of
the Petersen graph can be translated into the derivation P =
(P1, . . . , P7) defined by:

P1 = ∅, P2 =
{{

4
}
,
{

8
}
,
{

5
}}

,

P3 =
{{

2, 4
}{

3, 8
}
,
{

5, 6
}}

,

P4 =
{{

1, 2, 3, 4, 5, 6, 8
}}

,

P5 =
{{

0, 1, 2, 3, 4, 5, 6, 8
}}

P6 =
{{

0, 1, 2, 3, 4, 5, 6, 7, 8
}}

,

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

P7 =
{{

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
}}

.

The next theorem shows that such derivations provide an
alternative characterisation of treedepth.

THEOREM 4.1. (?) Let G be a connected graph and ω an
integer. G has a treedepth decomposition of depth at most ω
if and only if G has a derivation of length at most ω + 1.

4.2 Encoding of a Derivation Here we construct the for-
mula F (G,ω) that is satisfiable if and only ifG has a deriva-
tion of length at most ω, which together with Theorem 4.1
implies that G has treedepth ω− 1. Since we are again using
derivations, the formula F (G,ω) is relatively similar to the
formula F (G, d) introduced in Section 3.2.1. In particular,
we again have a set variable s(u, v, i), for every u, v ∈ V (G)
with u ≤ v and every i with 1 ≤ i ≤ ω, which has the
same semantics as before. It also contains all the clauses
introduced in Section 3.2.1 apart from the clauses restrict-
ing the leader variables. Additionally, we have the following
clauses, which ensure that (D3) holds, i.e., that there is at
most one vertex in χi

P(p).

¬s(u, v, i) ∨ s(u, u, i− 1) ∨ s(v, v, i− 1)
*** for all u, v ∈ V , u < v, and 2 ≤ i ≤ ω

Finally, the following clauses ensure (D4).

¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(u, u, i− 1) ∨ s(u, v, i)
¬s(u, u, i) ∨ ¬s(v, v, i) ∨ s(v, v, i− 1) ∨ s(u, v, i)
*** for uv ∈ E, u < v, and 2 ≤ i ≤ ω

This completes the construction of the formula F (G,ω).
By construction, F (G,ω) is satisfiable if and only G has a
derivation of length at most ω. Because of Theorem 4.1, we
obtain:

THEOREM 4.2. The formula F (G,ω) is satisfiable if and
only if G has a treedepth at most ω − 1. Moreover, a
corresponding treedepth decomposition can be constructed
from a satisfying assignment of F (G,ω) in linear time in
terms of the number of variables of F (G,ω).

4.3 Preprocessing and Symmetry Breaking To increase
the efficiency of our encoding, we implemented a number of
preprocessing procedures and symmetry breaking rules. Our
first symmetry breaking rule is based on the next lemma.

LEMMA 4.1. (?) Let G be a graph and let u and v be two
adjacent vertices inG such thatNG(u)\{v} ⊆ NG(v)\{u}.
Then there is an optimal treedepth decomposition F of G
such that v is an ancestor of u in F .

To employ the above lemma in our encoding, we iterate over
all edges ofG and whenever we find an edge {u, v} ∈ E(G)
such that NG(u) \ {v} ⊆ NG(v) \ {u}, we add the clause
¬s(u, u, i) ∨ s(v, v, i) for every i with 2 ≤ i ≤ ω. We also

introduce two preprocessing procedures, whose correctness
is shown the lemma below. One allows us to remove certain
vertices of degree one and the other allows us to remove
apex vertices, i.e., vertices (whose) closed neighborhood is
the whole vertex set.

LEMMA 4.2. (?) Let G be a graph. If v is a vertex of G
incident to two vertices l and l′ of degree one, then td(G) =
td(G − {l′}). Moreover, if v is an apex vertex of G, then
td(G) = td(G− {v}) + 1.

The following lemma allows us to remove certain ver-
tices of degree 1 from the graph.

LEMMA 4.3. Let G be a graph and let v be a vertex of
G incident to two vertices l and l′ of degree one. Then
td(G) = td(G− {l′}).

Proof. Because G \ {l′} is a subgraph of G, we obtain that
td(G) ≥ td(G − {l′}). Towards showing that td(G) ≤
td(G − {l′}), let F be an optimal treedepth decomposition
of G \ {l′}. Because of Lemma 4.1, we can assume that v is
an ancestor of l in F . Consequently, the forest F ′ obtained
from F after adding l′ as a leaf to v has the same depth as F
and is a treedepth decomposition of G. �

Our final lemma allows us to remove all apex vertices.

LEMMA 4.4. Let G be a graph and let a be an apex vertex
of G. Then td(G) = 1 + td(G \ {a}).

Proof. Towards showing that td(G) ≤ 1 + td(G \ {a}), let
F be an optimal treedepth decomposition of G \ {a}. Then,
F ′, which is obtained from F by simply adding a, making
it adjacent to all roots of F , and setting it to be the new root
of F ′, is a treedepth decomposition of G of width at most
1 + td(G− {a}), as required.

Towards showing that td(G) ≥ 1 + td(G− {a}), let F
be an optimal treedepth decomposition ofG. By Lemma 4.1,
we can assume that a is a root of F . Moreover, because a is
adjacent to every vertex in G, it follows that a must be the
only root of F . Hence F ′ obtained from F \{a} after making
all children of a in F to roots is a treedepth decomposition
of G− {a} of depth at most td(G)− 1, as required.

5 Experiments
We implemented the SAT-encoding for treecut width and the
two SAT-encodings for treedepth and evaluated them on var-
ious benchmark instances; for comparison we also computed
the pathwidth and treewidth of all graphs using the currently
best performing SAT-encodings [34, 25]; note that [34] is
still the best-known SAT-encoding for treewidth, since the
performance gains of later algorithms [2, 1] are almost en-
tirely due to preprocessing, whereas the employed SAT-
encoding is virtually identical. Our benchmark instances in-

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

clude 39 famous named graphs from the literature [35], var-
ious standard graphs such as complete graphs (Kn), com-
plete bipartite graphs (Kn,n), paths (Pn), cycles (Cn), com-
plete binary trees (Bn), and grids (Gn,n) as well as random
graphs. To test the correctness of our encodings, we com-
pared the obtained values to known values (the treedepth of
standard graphs is known or easy to compute; in the case of
treecut width, the values for complete and complete bipar-
tite graphs are given in Lemma 2.3). We also compared the
obtained values to related parameters such as maximum de-
gree, pathwidth, and treewidth (using Lemmas 2.2 and 2.4)
and verified that the decompositions obtained from the en-
codings are well-formed.

Throughout we used the SAT-solver Glucose 4.0 (with
standard parameter settings) as it performed best in our initial
tests. We ran the experiments on a 4-core Intel Xeon CPU
E5649, 2.35GHz, 72 GB RAM machine with Ubuntu 14.04
with each process having access to at most 8 GB RAM.
Our implementation, which was done in python 2.7.3 and
networkx 1.11, is available via GitHub 1.

Table 1: Experimental results for standard graphs. A “P ”
indicates that the instance is solved by preprocessing.

graph class
treecut width treedepth

|V | |E| |V | |E|
paths (Pn) P P 255 254
cycles (Cn) P P 255 255
complete binary trees (Bn) P P 255 254
n× n grids (Gn,n) 49 84 36 60
complete bip. graphs (Kn,n) 30 225 22 121
complete graphs (Kn) 30 435 P P

5.1 Results and Discussion Our experimental results for
the standard, random, and famous graphs are shown in
Tables 1, 2, and 3, respectively. Throughout we use |V |,
|E|, ∆, pw, tw to denote the number of vertices, the number
of edges, the maximum degree, the pathwidth, and the
treewidth of the input graph, respectively. We employed a
timeout per SAT call of 2000 seconds and an overall timeout
of 6 hours for our experiments with the famous and random
graphs. Moreover, we used 900 seconds per SAT call and an
overall timeout of 3 hours for the standard graphs.

As can be seen in Table 3, we were able to compute the
exact treecut width and treedepth for almost all of the famous
graphs; specifically 37 out of 39 instances for treecut width
and 35 out of 39 instances for treedepth. For the remaining
two respectively four instances, we were able to obtain rel-
atively tight lower and upper bounds. Even though we are

1https://github.com/nehal73/TCW TD to SAT

Table 2: Percentage of random graphs solved within the
timeout for treecut width and treedepth for combinations
of |V | (represented by the rows) and p (edge probability;
represented by the columns).

treecut width

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

20 100 100 100 100 100 100 100 100 100
25 100 100 75 90 100 100 100 100 100
30 100 25 10 55 85 100 100 100 100
40 50 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0

treedepth (partition-based encoding)

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 100 100 100 100 100 100 100 100 100
15 100 100 100 100 100 100 100 100 100
20 100 100 100 45 10 0 0 0 15
30 100 0 0 0 0 0 0 0 0
40 10 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0

treedepth (tree-structure based encoding)

|V | 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 100 100 100 100 100 100 100 100 100
15 100 85 35 10 0 5 10 50 100
20 75 5 0 0 0 0 0 0 30
25 25 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0

aware that encodings for different width measures are not di-
rectly comparable, it is interesting to note that our encodings
outperform the currently best performing SAT-encoding for
treewidth [34], which solves only 26 out of 39 instances, and
are in line with the currently best performing SAT-encoding
for pathwidth [26], solving 37 out of 39 instances. It is also
worth mentioning that the surprisingly strong performance
of our encodings is not due to preprocessing; indeed, none
of the preprocessing or symmetry-breaking rules for treecut
width nor treedepth were applicable for the famous graphs.
Finally, we would like to mention that our second encoding
for treedepth could only solve 17 out of 39 instances. This
further underlines the strength of partition-based encodings
for computing decomposition-based parameters.

Table 1 shows the scalability of our encodings for the
standard graphs. Namely, for each of the standard graphs
and both of our encodings, the table gives the maximum
number of vertices and edges for which the encoding was

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

Table 3: Experimental results for the famous graphs. “cpu” denotes the overall CPU time in seconds including preprocessing
and verification of the computed decomposition. An asterisk (∗) in the cpu column indicates that the given instance could
not be solved within the timeout; in this case the width column gives the lower bound and upper bound obtained within the
timeout.

Instance |V | |E| ∆
treecut width treedepth

pw tw
width cpu width cpu

Diamond 4 5 3 2 0.00 3 0.15 2 2
Bull 5 5 3 2 0.00 3 0.07 2 2
Butterfly 5 6 4 2 0.00 3 0.06 2 2
Prism 6 9 3 4 0.13 5 0.10 3 3
Moser 7 11 4 4 0.12 5 0.15 3 3
Wagner 8 12 3 4 0.21 6 0.26 4 4
Pmin 9 12 3 4 0.13 5 0.14 4 3
Petersen 10 15 3 5 0.71 6 0.34 5 4
Herschel 11 18 4 5 0.86 5 0.13 4 3
Grötzsch 11 20 5 6 1.07 7 0.29 5 5
Goldner 11 27 8 7 2.12 5 0.25 4 3
Dürer 12 18 3 4 0.85 7 0.37 4 4
Franklin 12 18 3 4 0.71 7 0.34 5 4
Frucht 12 18 3 4 0.83 6 0.23 4 3
Tietze 12 18 3 5 1.20 7 0.39 5 4
Chvátal 12 24 4 6 1.85 8 0.68 6 6
Paley13 13 39 6 10 6.31 10 4.60 8 8
Poussin 15 39 6 9 22.36 9 2.64 6 6
Sousselier 16 27 5 6 6.31 8 1.20 5 5
Hoffman 16 32 8 4 8.83 8 1.74 7 6
Clebsch 16 40 5 8 7.68 10 18.41 9 8
Shrikhande 16 48 6 10 18.86 11 49.77 9 7-10
Errera 17 45 6 9 17.84 10 19.93 6 6
Paley17 17 68 6 14 51.20 14 7569.02 12 11
Pappus 18 27 3 6 35.26 8 1.92 7 5-7
Robertson 19 38 4 8 42.64 10 63.01 8 7-9
Desargues 20 30 3 6 56.18 9 12.36 7 5-7
Dodecahedron 20 30 3 6 87.05 9 10.84 6 5-7
FlowerSnark 20 30 3 6 76.37 9 17.45 7 5-7
Folkman 20 40 4 8 78.64 9 11.77 7 6
Brinkmann 21 42 4 8 75.38 11 838.41 8 7-10
Kittell 23 63 7 10 65.11 12 2422.53 7 7
McGee 24 36 3 6 71.78 11 2825.19 8 5-8
Nauru 24 36 3 6 52.68 10 158.20 8 5-8
Holt 27 54 4 [7-9] * [11-13] * 9 7-10
Watsin 50 75 3 5 202.49 [10-13] * 7 5-8
B10Cage 70 105 3 [5-11] * [10-23] * [11-16] 5-17
Ellingham 78 117 3 6 15002.47 [10-14] * 6 5-7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

able to compute the exact width within the timeout. Note
that not all of the standard graphs are interesting for both
treecut width and treedepth (indicated by a “P ” in the table).
This is because some of the graphs can be solved entirely by
preprocessing; for instance the treedepth of complete graphs
can be computed using Lemma 4.2. Moreover, the treecut
width of paths, cycles, and trees can be computed using
Lemma 2.1. As one can see, our treecut width encoding
is able to solve Kn, Kn,n, and Gn,n up to n = 30,
n = 15, and n = 7, respectively. Similarly, our treedepth
encoding is able to solve Bn, Kn,n, Cn, Gn,n, and Pn up
to n = 8, n = 11, n = 255, n = 6, and n = 255,
respectively. Given the simplicity of the treedepth encoding
it is surprising that it performs slightly worse than the treecut
width encoding on complete bipartite graphs and grids.
However, its extraordinary performance on paths, complete
binary trees and cycles seems to indicate that the encoding is
well suited for sparse graphs.

Finally, Table 2 provides the scalability of our three en-
codings for uniformally generated random graphs for vary-
ing edge densities and number of vertices. In line with our
previous observations the encoding for treecut width scales
significantly better than our two encodings for treedepth
(solving almost all random graphs upto 30 instead of 15 ver-
tices) and both encodings show a slight preference for very
sparse graphs. For the case of treedepth, the results once
again show a significant advantage for our partition-based
encoding over the tree-structure based encoding.

6 Conclusion and Future Work
We implemented the first practical algorithms for comput-
ing the algorithmically important parameters treecut width
and treedepth. Our experimental results show that due to
our novel partition-based characterisations for the consid-
ered width parameters, our algorithms perform very well
on small to medium sized graphs. In particular, our algo-
rithms perform better than the current best SAT-encoding for
treewidth, which even though not directly comparable serves
as a good reference point. We would also like to point out
that our algorithms will be very helpful in the future to eval-
uate the accuracy of heuristics for the considered decompo-
sition parameters and can be scaled to larger graphs if the
aim is just to compute lower bounds and upper bounds for
the parameters. We see our algorithms as a first step towards
turning the yet mostly theoretical applications of both pa-
rameters into practice.

Extending the scalability of our algorithms to even
larger graphs can be seen as the main challenge for fu-
ture work. Here, SAT-based local improvement approaches
such as those that have recently been developed for branch-
width and treewidth [25, 9], provide an interesting venue for
future work. In fact, the work on local improvement for
treewidth [9] showed that, compared to other exact meth-

ods, SAT-encodings are particularly suitable for this ap-
proach, hence it can be expected that our SAT-encodings
for treedepth and treecut width will serve well in a local im-
provement approach. Other promising directions include the
development of more efficient preprocessing procedures, or
splitting the graph into smaller parts by using, e.g., balanced
cuts or separators.
Errata and acknowledgments. The short version of this
article which appeared at ALENEX 2019 contained 2 erro-
neous treedepth values in Table 3. This was caused by an
incorrect transition from the preprocessing to the solver: in
particular, the solver requires the graph to be connected, and
hence it is necessary to provide it with the individual con-
nected components that arise from preprocessing. The issue
is fixed in the presented version.

We thank James Trimble (of the School of Computing
Science at the University of Glasgow) for spotting this issue.
We also thank Vaidyanathan P. R. (of the Algorithms and
Complexity Group at TU Wien) for his help with resolving
the transition issue described above.

References

[1] Max Bannach, Sebastian Berndt, and Thorsten Ehlers.
Jdrasil: A modular library for computing tree decomposi-
tions. In Costas S. Iliopoulos, Solon P. Pissis, Simon J.
Puglisi, and Rajeev Raman, editors, 16th International Sym-
posium on Experimental Algorithms, SEA 2017, June 21-23,
2017, London, UK, volume 75 of LIPIcs, pages 28:1–28:21.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[2] Jeremias Berg and Matti Järvisalo. SAT-based approaches
to treewidth computation: An evaluation. In 26th IEEE
International Conference on Tools with Artificial Intelligence,
ICTAI 2014, Limassol, Cyprus, November 10-12, 2014, pages
328–335. IEEE Computer Society, 2014.

[3] Armin Biere. Bounded model checking. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artifi-
cial Intelligence and Applications, pages 457–481. IOS Press,
2009.

[4] Magnus Björk. Successful SAT encoding techniques. J. on
Satisfiability, Boolean Modeling, and Computation, 7:189–
201, 2009.

[5] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lok-
shtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk,
and Saket Saurabh. Parameterized Algorithms. Texts in
Computer Science. Springer, 2013.

[6] Reinhard Diestel. Graph Theory. Springer-Verlag, Heidel-
berg, 4th edition, 2010.

[7] Rodney G. Downey and Michael R. Fellows. Fundamentals
of Parameterized Complexity. Texts in Computer Science.
Springer, 2013.

[8] Michael Elberfeld, Martin Grohe, and Till Tantau. Where
first-order and monadic second-order logic coincide. ACM
Trans. Comput. Log., 17(4):25:1–25:18, 2016.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

[9] Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider.
SAT-based local improvement for finding tree decomposi-
tions of small width. In Serge Gaspers and Toby Walsh, ed-
itors, Theory and Applications of Satisfiability Testing - SAT
2017 - 20th International Conference, Melbourne, VIC, Aus-
tralia, August 28 - September 1, 2017, Proceedings, volume
10491 of Lecture Notes in Computer Science, pages 401–411.
Springer, 2017.

[10] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory, volume XIV of Texts in Theoretical Computer Science.
An EATCS Series. Springer Verlag, Berlin, 2006.

[11] Fedor V. Fomin, Archontia C. Giannopoulou, and Michal
Pilipczuk. Computing tree-depth faster than 2n. Algorith-
mica, 73(1):202–216, 2015.

[12] Jakub Gajarský and Petr Hlinený. Faster deciding MSO
properties of trees of fixed height, and some consequences.
In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Rad-
hakrishnan, editors, IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2012, December 15-17, 2012, Hyderabad, In-
dia, volume 18 of LIPIcs, pages 112–123. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[13] Jakub Gajarský and Petr Hlinený. Kernelizing MSO proper-
ties of trees of fixed height, and some consequences. Logical
Methods in Computer Science, 11(1), 2015.

[14] Robert Ganian, Eun Jung Kim, and Stefan Szeider. Al-
gorithmic applications of tree-cut width. In Giuseppe F.
Italiano, Giovanni Pighizzini, and Donald Sannella, editors,
Proc. MFCS 2015, volume 9235 of LNCS, pages 348–360.
Springer, 2015.

[15] Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On
structural parameterizations of the bounded-degree vertex
deletion problem. In Rolf Niedermeier and Brigitte Vallée,
editors, 35th Symposium on Theoretical Aspects of Computer
Science, STACS 2018, February 28 to March 3, 2018, Caen,
France, volume 96 of LIPIcs, pages 33:1–33:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[16] Robert Ganian and Sebastian Ordyniak. The complexity
landscape of decompositional parameters for ILP. Artif.
Intell., 257:61–71, 2018.

[17] Gregory Z. Gutin, Mark Jones, and Magnus Wahlström.
Structural parameterizations of the mixed chinese postman
problem. In Nikhil Bansal and Irene Finocchi, editors,
Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, volume
9294 of Lecture Notes in Computer Science, pages 668–679.
Springer, 2015.

[18] Marijn Heule and Stefan Szeider. A SAT approach to clique-
width. ACM Trans. Comput. Log., 16(3):24, 2015.

[19] Marijn J. H. Heule and Oliver Kullmann. The science of brute
force. Commun. ACM, 60(8):70–79, 2017.

[20] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek.
Solving and verifying the boolean pythagorean triples prob-
lem via cube-and-conquer. In Nadia Creignou and Daniel Le
Berre, editors, Theory and Applications of Satisfiability Test-
ing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, volume 9710 of Lecture
Notes in Computer Science, pages 228–245. Springer Verlag,

2016.
[21] Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On

the power of tree-depth for fully polynomial FPT algorithms.
In Rolf Niedermeier and Brigitte Vallée, editors, 35th Sym-
posium on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France, vol-
ume 96 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

[22] Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter.
Pushing the power of stochastic greedy ordering schemes for
inference in graphical models. In Wolfram Burgard and Dan
Roth, editors, Proceedings of the Twenty-Fifth AAAI Confer-
ence on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. AAAI Press, 2011.

[23] Eun Jung Kim, Sang-il Oum, Christophe Paul, Ignasi Sau, and
Dimitrios M. Thilikos. An FPT 2-approximation for tree-cut
decomposition. Algorithmica, 80(1):116–135, 2018.

[24] Martin Koutecký, Asaf Levin, and Shmuel Onn. A param-
eterized strongly polynomial algorithm for block structured
integer programs. CoRR, abs/1802.05859, 2018.

[25] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. A SAT
approach to branchwidth. In Nadia Creignou and Daniel Le
Berre, editors, Theory and Applications of Satisfiability Test-
ing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, volume 9710 of Lecture
Notes in Computer Science, pages 179–195. Springer Verlag,
2016.

[26] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-
encodings for special treewidth and pathwidth. In Serge
Gaspers and Toby Walsh, editors, Theory and Applications
of Satisfiability Testing - SAT 2017 - 20th International Con-
ference, Melbourne, VIC, Australia, August 28 - September 1,
2017, Proceedings, volume 10491 of Lecture Notes in Com-
puter Science, pages 429–445. Springer, 2017.

[27] Sharad Malik and Lintao Zhang. Boolean satisfiability from
theoretical hardness to practical success. Commun. ACM,
52(8):76–82, 2009.

[28] Joao Marques-Silva and Inês Lynce. SAT solvers. In Lucas
Bordeaux, Youssef Hamadi, and Pushmeet Kohli, editors,
Tractability: Practical Approaches to Hard Problems, pages
331–349. Cambridge University Press, 2014.

[29] Dániel Marx and Paul Wollan. Immersions in highly edge
connected graphs. SIAM J. Discrete Math., 28(1):503–520,
2014.

[30] Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-
depth, subgraph coloring and homomorphism bounds. Eur.
J. Comb., 27(6):1022–1041, 2006.

[31] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity -
Graphs, Structures, and Algorithms, volume 28 of Algorithms
and combinatorics. Springer, 2012.

[32] Steven David Prestwich. CNF encodings. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Arti-
ficial Intelligence and Applications, pages 75–97. IOS Press,
2009.

[33] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil,
and Somnath Sikdar. A faster parameterized algorithm for
treedepth. In Javier Esparza, Pierre Fraigniaud, Thore Hus-

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

feldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming - 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, volume 8572 of Lecture Notes in Computer Science,
pages 931–942. Springer, 2014.

[34] Marko Samer and Helmut Veith. Encoding treewidth into
SAT. In Theory and Applications of Satisfiability Test-
ing - SAT 2009, 12th International Conference, SAT 2009,
Swansea, UK, June 30 - July 3, 2009. Proceedings, volume
5584 of Lecture Notes in Computer Science, pages 45–50.

Springer Verlag, 2009.
[35] Eric Weisstein. MathWorld online mathematics resource,

2016. http://mathworld.wolfram.com.
[36] Paul Wollan. The structure of graphs not admitting a fixed

immersion. J. Comb. Theory, Ser. B, 110:47–66, 2015.
[37] Hantao Zhang. Combinatorial designs by SAT solvers. In

Armin Biere, Marijn Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pages
533–568. IOS Press, 2009.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
9-
00
1

