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Abstract. The longest common palindromic subsequence (LCPS) problem
aims at finding a longest string that appears as a subsequence in each of a
set of input strings and is a palindrome at the same time. The problem is a
special variant of the well known longest common subsequence problem and has
applications in particular in genomics and biology, where strings correspond
to DNA or protein sequences and similarities among them shall be detected or
quantified. We first present a more traditional A∗ search that makes use of an
advanced upper bound calculation for partial solutions. This exact approach
works well for instances with two input strings and, as we show in experiments,
outperforms several other exact methods from the literature. However, the
A∗ search also has natural limitations when a larger number of strings shall
be considered due to the problem’s complexity. To effectively deal with this
case in practice, we investigate anytime A∗ variants, which are able to return a
reasonable heuristic solution at almost any time and are expected to find better
and better solutions until reaching a proven optimum when enough time given.
In particular we propose a novel approach in which Anytime Column Search
(ACS) is interleaved with traditional A∗ node expansions. The ACS iterations
are guided by a new heuristic function that approximates the expected length of
an LCPS in subproblems usually much better than the available upper bound
calculation. This A∗+ACS hybrid is able to solve small to medium-sized LCPS
instances to proven optimality while returning good heuristic solutions together
with upper bounds for large instances. In rigorous experimental evaluations
we compare A∗+ACS to several other anytime A∗ search variants and observe
its superiority.

Keywords: longest common palindromic subsequence problem, anytime algorithms,
A∗ search, hybrid algorithms, expected value.

1. Introduction

In computer science, a string s is a finite sequence consisting of symbols from a finite
set Σ called alphabet. The length of a string s, denoted by |s|, is defined as the number
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of symbols in s. Strings are generally used as a data type for storing, for example, words
or even complete texts. In the field of bioinformatics, strings are used to represent DNA
and protein sequences. As a consequence, many computational problems in bioinformatics
can be phrased in terms of so-called string problems. A string s is called palindrome iff
s = srev, where srev is the reverse string of s. Consider, for example, the palindrome
madam. Furthermore, given a string s, any string which can be obtained from s by deleting
zero or more characters is called a subsequence of s. A variety of applications are based
on so-called string comparison measures. One of the most well-known string comparison
measures in bioinformatics is the length of the Longest Common Subsequence (LCS) [38]
of two or more input strings. More specifically, the famous LCS problem consists in finding
the longest common subsequence of a set S = {s1, . . . , sm} of m ≥ 2 input strings. Even
though the LCS problem was originally defined in bioinformatics, the problem has also
found applications in other areas such as data comparison and data compression [31, 44].
Well known examples where the LCS problem plays important roles are the diff command
on Unix systems and the Git version control system.

In this work we tackle a variant of the LCS problem known as the Longest Common Palin-
dromic Subsequence (LCPS) problem. Given a set S of m ≥ 2 input strings over a finite al-
phabet Σ, the problem consists in finding a longest common subsequence that, at the same
time, is a palindrome. Palindromes appear to be of particular interest in the biological
context as palindromic motifs are frequently found in DNA sequences. A research project
on genome sequencing discovered palindromic regions on the Y-chromosome [34]. These
palindromic structures allow the Y-chromosome to repair itself by bending over at the mid-
dle if one side is damaged. Furthermore, biologists believe that identifying palindromic
DNA subsequences may help to understand genomic instability [11, 45]. Palindromic sub-
sequences seem to be important for the regulation, for example, of gene activity, because
they are often found close to promoters, introns and untranslated regions. There is also
strong evidence that palindromes of ' 500 base pairs on human chromosomes 11 and
22 have harmful consequences such as initiating chromosomal translocation, which may
result in cancer or developmental defects; see for example [43]. Finally, it is believed
that palindromes are frequently found in proteins [21]. However, their role in the protein
function is less understood. For biologists it is of importance to find not only palindromic
subsequences of an individual DNA sequence, but also the longest common palindromic
subsequence of multiple strings in order to learn about the relations between these strings.

With the exception of our preliminary work [17], prior work on the LCPS problem only
considered the special case with two input strings (2–LCPS) [12, 26, 29]. In particular,
these studies deal with exact approaches to solve the 2–LCPS problem. The generalization
to an arbitrary number of m ≥ 2 of input strings is challenging from a theoretical as well
as practical point of view. From [38] it is known that the LCS problem is NP–hard for
an arbitrary number m ≥ 2 of input strings, and since there exists a polynomial-time
reduction from the LCS problem to the LCPS problem, and vice versa [29], this implies
NP–hardness of the LCPS. Moreover, although still an open question, it is believed that
the computational complexity of the LCPS for a fixed m ≥ 2 is at least O(n2m), where n
is the length of the longest input string [1]. In a preliminary work [17], we proposed the
first algorithms for solving the general LCPS problem with an arbitrary number of input
strings. We introduced an exact A∗ search, a heuristic Beam Search (BS), and a hybrid
of both, labeled A∗+BS. The latter is a so-called anytime approach.

Generally speaking, an anytime algorithm is able to return a valid solution even if it is
interrupted at (almost) any time, and when it keeps running it is expected to find better
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and better solutions until reaching a proven optimum. The study of anytime algorithms is
an important field in optimization and artificial intelligence. In many challenging practical
applications exact techniques are appreciated but sometimes too time-demanding. Pure
heuristics, however, are also not satisfying as they usually do not provide performance
guarantees. According to Dean and Boddy [15] and Horvitz [27], who used the term
anytime algorithm for the first time in literature, these kind of methods offer to choose the
trade-off between solution quality against the computational requirements. The A∗+BS,
is—in contrast to classical A∗—able to provide good heuristic solutions early during the
search process, while maintaining completeness when given enough time. The algorithm
switches in regular intervals between the classical A∗ search strategy and a BS-oriented
width-limited breath-first search for quickly obtaining high-quality heuristic solutions.

This article is an extension of the above mentioned preliminary work presented at a con-
ference [17]. We propose an advanced anytime approach based on A∗—labeled A∗+ACS—
that differs in the following aspects from the previous A∗+BS proposal from [17]:

• The A∗ algorithm itself is improved by a more efficient implementation, utilizing in
particular a tighter upper bound calculation for partial solutions.

• Instead of standard beam search, a new mechanism for expanding nodes and finding
promising heuristic solutions is used. More specifically, the beam search component
of A∗+BS is replaced by Anytime Column Search (ACS) [48].

• In addition to the above-mentioned improved upper bound calculation, a novel
heuristic function is derived and used for guiding the search in the context of the
ACS iterations. This function approximates the expected length of the LCPS.

Our computational results show that A∗+ACS is a new state-of-the-art approach for the
LCPS problem concerning the quality of the obtained heuristic solutions. It substan-
tially improves over A∗+BS not only in terms of solution quality, but also in terms of
the anytime behavior and the evolution of the gaps between obtained upper bounds and
the heuristic solution values. Moreover, a comparison to other A∗-based anytime search
variants utilizing similar ingredients such as our new upper bound calculation shows the
particular benefits of the proposed A∗+ACS combination. Last but not least, we also ex-
perimentally compare our pure A∗ approach to the 2–LCPS algorithms from the literature.
This is especially interesting, since—as far as we know—no study existed yet providing a
comparison of the available 2–LCPS approaches. Our results show in particular, that the
proposed A∗ scales better than the other approaches with growing input string length.

1.1. Organization of the Work

The article is organized as follow. Section 2 surveys the existing literature concerning the
LCPS. In Section 3 we describe the A∗ search for the LCPS problem together with two
considered upper bounds calculations. The new heuristic function for evaluating partial
solutions based on the approximated expected length of the LCPS is provided in Sec-
tion 4. In Section 5 we present our new anytime algorithm A∗+ACS. All experimental
evaluations and comparisons are presented in Section 6. Finally, conclusions and an out-
look on promising future work are given in Section 7. We provide also a supplementary
document at https://www.ac.tuwien.ac.at/research/problem-instances/LCPS con-
taining more complete results and further implementation details for algorithms to which
we compare.
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2. Problem-Related Literature

The general LCS problem has been tackled by means of exact and heuristic approaches
during the last decades. The problem is polynomially solvable for any fixed value of
m by means of Dynamic Programming (DP) in O(nm) time [22]. Remember that n
is the length of the longest string among the m input strings. As a consequence, DP
is considered not practical for larger m. An approach that systematically enumerates
common subsequences has been proposed by Hsu and Du [28] and is further improved
by incorporating specialized branch & bound rules [18]. Singireddy [42] proposed an
integer linear programming approach based on branch & cut. Considering approximation
algorithms, Jiang and Li [30] suggested a simple Long Run (LR) algorithm which finds
an LCS consisting of a single letter, resulting in a |Σ|-approximation ratio. The best-next
heuristic from [51] also guarantees an approximation ratio of |Σ|. However, it typically
performs much better than LR considering practical solution quality. Concerning other
greedy and approximation algorithms for the LCS problem, see [4, 8, 9]. Within the last
ten years, many metaheuristic approaches for solving the LCS problem were proposed.
Easton and Singireddy [19] described a large neighborhood search that makes internal use
of the specialized branch & bound rules from [18]. This heuristic was able to outperform all
existing approximation and greedy algorithms proposed at that time. At approximately
the same time, Shyu and Tsai [41] proposed an ant colony optimization approach. A
breakthrough in solution quality was finally achieved with BS as described by Blum et
al. [6]. An extension of this BS approach was presented in [39]. This algorithm uses
a heuristic function—instead of an upper bound—for guiding the search process of BS.
Hybrid algorithms such as [36] and [5, 7] were able to further improve over this BS for
certain subsets of the commonly used benchmark instances. The currently best approach
appears to be an algorithm labeled Chemical Reaction Optimization from [40]. However,
this algorithm has not yet been re-implemented and is therefore to be considered with
care.

As mentioned before, apart from our preliminary work [17], the LCPS problem has only
been studied for two input strings; that is, the 2–LCPS problem version. Chowdhury
et al. [12] solved the 2–LCPS problem in two ways: (1) by using a standard dynamic
programming approach that requires O(n4) time and space and (2) by using a sparse
dynamic programming approach which runs in time O(R2 log2 n log logn+n) and requires
O(R2) space, where R denotes the number of matching position pairs between the strings.
The sparse approach uses a special data structure—a 3D balanced range search tree—for
which the 2-LCPS problem instances is initially transformed into a geometric problem
called Minimum Nested Depth Rectangular Structures (MNDRS). Hasan et al. [26] solved
the 2–LCPS problem by deriving and using weighted finite automata which they called
Common Palindromic Subsequence Automata (CPSA). The algorithm runs in time O(n+
R1|Σ|+ n+R2|Σ|+R1R2|Σ|), where R1 and R2 denote the numbers of states of the two
automata constructed for the input strings, respectively (bounded by O(n2)). Finally,
Inenaga and Hyyrö [29] presented an algorithm that solves the 2–LCPS by making use
of certain preprocessing steps, a reduction phase and special data structures, solving the
equivalent MNDRS problem; this method runs in time O(σR2 +n) and requires O(R2 +n)
space, where σ denotes the number of distinct characters that occur in both strings. The
authors also proved that the 2–LCPS is computationally at least as hard as the 4–LCS.
Abboud et al. [1] showed that if there exists an algorithm which solves the 2–LCPS problem
in O(n4−λ) time for some λ > 0, then a strong exponential time hypothesis fails. A proof
is given to conclude that the LCPS for m strings is at least as hard as the LCS for twice
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as many strings.

As we already pointed out, the first work considering the LCPS for an arbitrary number of
input strings is our preliminary work from [17]. The proposed A∗ was able to solve rather
small instances within a short time to optimality, but applying it to larger instances was
practically infeasible due to too excessive memory and time requirements. This issue was
addressed by extending the algorithm to the hybrid A∗+BS, which obtains reasonable
solutions also for larger instances within practical time and memory limitations.

3. A∗ Search for the LCPS

We start with some common notation definitions. As we already stated, let n be the
maximum length of the strings in S. The j-th letter of a string s is denoted by s[j], with
j = 1, . . . , |s|. We further state the concatenation of two strings by the operator “·”, i.e.,
s1 · s2 is the string obtained by appending string s2 to string s1. Notation s[j, j′], j ≤ j′,
refers to the substring of s starting at position j and ending at position j′; if j > j′,
we define s[j, j′] to correspond to the empty string ε. Finally, let |s|a be the number of
occurrences of letter a ∈ Σ in string s. Henceforth, a string s is called a (valid) partial
solution concerning input strings S = {s1, . . . , sm}, if s · srev is a common palindromic
subsequence of the strings in S.

A∗ search is a widely used problem solving technique belonging to the class of informed
search methods, in general for finding shortest or longest paths [25]. It is based on the best-
first search principle and acts on a weighted directed state graph G = (N,A) with node set
N and arc set A, expanding/processing always a node which is one of the most promising
ones at that moment. To estimate the quality of nodes, A∗ makes use of a function
f(v) := g(v) + h(v), v ∈ N , where g(v) denotes the so far best known cost of a path from
a dedicated root node in G to node v. Moreover, the heuristic function h(v) provides an
estimate for the still possible cost to reach from v a goal node. The performance of an
A∗ algorithm mostly depends on the tightness of the heuristic function. Problem-specific
aspects in order to realize an A∗ search for a specific problem are primarily to define (1)
the state graph including the root and goal nodes and (2) the heuristic function h. This
will be done in the following for the LCPS problem.

3.1. State Graph

Let pL, pR ∈ Nm be m-dimensional integer valued vectors such that 1 ≤ pL
i ≤ pR

i ≤ |si| for
all i = 1, . . . ,m. Given such vectors pL and pR, set S[pL, pR] := {si[pL

i , p
R
i ] | i = 1, . . . ,m}

consists of a continuous substring si[p
L
i , p

R
i ] for each input string si, i = 1, . . . ,m. Hereby,

pL is called the left position vector and pR is called the right position vector. Moreover,
S[pL, pR] is henceforth called a subproblem of the original LCPS problem. For the definition
of the state graph of the A∗ approach we only consider those subproblems that are induced
by valid partial solutions. More specifically, we say that a valid partial solution s induces
a subproblem S[pL, pR] iff the following two conditions hold:

1. si[1, p
L
i − 1] is a minimal string among all strings si[1, x] with 1 ≤ x ≤ pL

i − 1
containing s as a subsequence for all i = 1, . . . ,m.

2. si[p
R
i + 1, |si|] is a minimal string among all strings si[x, |si|] with pR

i + 1 ≤ x ≤ |si|
containing srev as a subsequence for all i = 1, . . . ,m.

5

Te
ch
ni
ca
lR

ep
or
ta

c-
tr-

18
-0
12



In this context, note that the same subproblem may be induced by more than one valid
partial solution. As an example consider S = (abccdccba, baccdccab), and partial solu-
tions s = ac and s′ = bc. It holds that pL = (4, 4) and pR = (6, 6) in both cases, and thus,
both partial solutions will be represented by a common node in the state graph. Here, s
and s′ have the same length, but this need not be the case in general.

The state graph of our A∗ search is a directed acyclic graph G = (V,A) in which each node
corresponds to a unique state v = (pL,v, pR,v) ∈ V and thus also to a unique LCPS subprob-
lem S[pL,v, pR,v]. For the reason outlined above, a node v may potentially be induced by
multiple valid partial solutions. The special root node r = ((1, . . . , 1), (|s1|, . . . , |sm|)) ∈ V
represents the original LCPS problem, which can be said to be induced by the empty
partial solution ε.

An arc (v, v′) ∈ A leading from a node v ∈ V to a node v′ ∈ V corresponds to the extension
of a partial solution s inducing v to a partial solution s′ inducing v′ by one specific letter
a ∈ Σ, i.e., s′ = s · a. Any path from the root node r to any node in V represents a valid
partial solution, which is directly given by the sequence of letters associated with the arcs.

A letter a ∈ Σ is called feasible for a node v ∈ V if it appears at least twice in each substring
of subproblem S[pL,v, pR,v]. Let a, b ∈ Σ be two feasible letters with respect to node v.
Moreover, let v′ be the node corresponding to the subproblem induced by appending a to
some feasible partial solution inducing v, and let v′′ be the node induced by appending b
to some feasible partial solution inducing v. We say that letter b is dominated by letter

a (or a is dominating b) iff pL,v′
i ≤ pL,v′′

i ∧ pR,v′′
i ≤ pR,v′

i ∀i = 1, . . . ,m. Obviously, arcs
that correspond to appending dominated letters do not need to be considered. Therefore,
an arc (v, v′) exists in our state graph G iff the letter that is used for obtaining v′ from
v is (1) feasible and (2) non-dominated. This subset of letters with respect to a node v
is henceforth denoted by Σnd

v ⊆ Σ. In other words, each node v ∈ V has an outgoing
arc (v, v′) ∈ A for each letter a ∈ Σnd

v . Letters that do not appear in at least one of the
substrings of S[pL,v, pR,v] are called infeasible letters. Moreover, letters that appear at least
once in each substring of S[pL,v, pR,v], and exactly once for at least one i ∈ {1, . . . ,m}, are
called singleton letters. Nodes v ∈ V without any outgoing arcs are goal nodes.

In order to solve the LCPS problem, we are looking for a longest path in the state graph
leading from the root node r to some goal node. In respect to the number of arcs, such
a longest path represents a longest partial solution s. The corresponding palindromic
subsequence is s · srev, but note that we may still be able to insert, as a last step, a
singleton letter a ∈ Σ in the middle, yielding the longer palindrome s · a · srev. Thus, we
have to either find a longest partial solution that allows such an extension by a singleton
letter or prove that no other equally long path with a singleton-extension exists, in which
case we may then return s · srev as LCPS. To account for this possible insertion of a final
middle element and to reflect by the path lengths in our state graph the actual lengths of
resulting palindromes, we assign each arc (u, v) ∈ A a length

`(u, v) =

{
3 if v is a goal node and S[pL,v, pR,v] contains a singleton letter

2 else.
(1)

When we refer to the length of a path from now on, we therefore mean the sum of these
lengths of all the arcs forming the path.

During our search—as described in detail below—nodes v ∈ V store as additional infor-
mation the length lv of the currently longest path from r to v.1

1In this context we emphasize that it is not necessary to store actual partial solutions s with the nodes.
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3.2. Upper Bounds for the Length of an LCPS

Remember that A∗ depends on a heuristic function h(v) for estimating the still possibly
length of a longest path from node v ∈ V to some goal node, i.e., for the length of the
LCPS of the subproblem represented by v. This function is generally implemented—in the
context of maximization problems such as the LCPS problem—in terms of an upper bound
in order to ensure admissibility, i.e., the completeness of the A∗ search. In the following we
present a combined upper bound UB composed of two individual upper bounds UB1 and
UB2, that is UB(v) = min{UB1(v),UB2(v)} for all v ∈ V . Hereby, UB1 is based on the
UB1 bound from [17], while UB2 is newly developed. In contrast to [17], an appropriate
pre-processing action for speeding up the calculation of UB1 in a significant way is used.

Let us denote by ca the minimum number of occurrences of a letter a ∈ Σ in the subproblem
represented by a current node v ∈ V , that is, ca := mini=1,...,m |si[pL,v

i , pR,v
i ]|a. A simple

upper bound is given by

UB1(v) = UB1(S[pL,v, pR,v]) :=

(
2 ·
∑

a∈Σ

⌊ca
2

⌋)
+ 1∃a∈Σ|ca mod 2=1. (2)

The last term considers the fact that at most one singleton letter can finally be added at
the end of a solution construction, with 1 denoting the unit step function that yields one
iff the condition in the subscript is fulfilled, i.e., there exists a letter in Σ with an odd
value of ca. In a naive fashion, UB1(v), v ∈ V is calculated in O(mn) time. However, the
repeated calculation of UB1 can be sped up by a pre-processing step that determines the
number of occurrences of each letter in all postfixes of all input strings in advance. More
precisely, we predetermine

ωi,j,a =
∣∣si[j, |si|]

∣∣
a

∀i = 1, . . . ,m, j = 1, . . . , n+ 1, a ∈ Σ. (3)

During the actual A∗ search, ca can then be efficiently determined for a current state v as
ca := mini=1,...,m(ω

i,pL,v
i ,a
− ω

i,pR,v
i +1,a

), and UB1 can be calculated in O(m|Σ|) time.

Although the second upper bound UB2 from [17] is comparably tight, it was judged to
be impractical due to being computationally too expensive. Therefore, in this article we
propose an alternative UB2 bound, which is based on the standard DP procedure for
calculating the LCS of two input strings; see, for example, [50]. More specifically, this
algorithm for determining the LCS of two strings si and sj consists in filling a (|si| +
1)× (|sj |+ 1) matrix Mij , whose entries Mij [x, y] finally correspond to the lengths of the
longest common subsequence for si[x, . . . , |si|] and sj [y, . . . , |sj |] with x = 1, . . . |si|+1, y =
1, . . . , |sj | + 1. Hereby, all entries with x = |si| + 1 or y = |sj | + 1 are set to zero. The
content of all other entries is determined with the following recursive formula:

Mij [x− 1, y − 1] =

{
Mij [x, y] + 1, if si[x] = sj [y]
max{Mij [x, y − 1],Mij [x− 1, y]}, otherwise.

What we call the complete upper bound UBcomp
2 (v) for a node v ∈ V—that is, for the

subproblem S[pL,v, pR,v] of still relevant substrings—can now be computed as

UBcomp
2 (v) := min

1≤i<j≤m

(
Mij [p

L,v
i , pL,v

j ]−Mij [p
R,v
i + 1, pR,v

j + 1]
)
. (4)

For any node in the graph the longest path to it and the respective partial solution can finally be
efficiently derived in a backward manner by iteratively identifying predecessors in which the lv-values
always decrease by two when lv is even or by three if lv is odd.
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UBcomp
2 is, for the following reasons, indeed an upper bound for the length of a LCPS

of S[pL,v, pR,v]. Let S′ = {s′1, . . . , s′m} and S′′ = {s′′1, . . . , s′′m} be two sets, each one
containing m strings. Moreover, let C = {s′1 · s′′1, . . . , s′m · s′′m}. Obviously it holds that
LCS(S′)+LCS(S′′) ≤ LCS(C), where LCS(S′) denotes the length of the LCS of the strings
in S′, etc. This immediately implies that LCS(S′) ≤ LCS(C) − LCS(S′′). Moreover, it
holds that the length of the LCPS for S′ cannot exceed LCS(S′). However, since the
number of strings in S can be large, we replace the complete upper bound UBcomp

2 with
the following final definition of UB2, which is a faster approximation of UBcomp

2 :

UB2(v) := min
i=1,...,m−1

(
Mi,i+1[pL,v

i , pL,v
i+1]−Mi,i+1[pR,v

i + 1, pR,v
i+1 + 1]

)
. (5)

Note that for the efficient evaluation of (5), we have to determine the matrices Mi,i+1, i =
1, . . . ,m− 1 in a preprocessing step, which can be achieved in O(mn2) time. We can then
calculate UB2(v) for any node v ∈ V in O(m) time.

3.3. Details of the A∗ Search for LCPS

A∗ maintains two sets of nodes: N stores all so far reached nodes, while Q, the set of open
nodes, is the subset of nodes in N that have not yet been expanded, i.e., whose outgoing
arcs and respective successors have not yet been considered. We realize node set N by
means of a hash map in order to be able to efficiently find an already existing node for a
state (pL,v, pR,v), or to determine that no respective node exists yet. The set of open nodes
Q is realized by means of a heap in which the nodes are partially sorted according to the
priority function f(v) = g(v) + h(v) := lv + UB(S[pL,v, pR,v]). In case of ties, nodes with
larger lv are preferred. In case of further ties, they are broken by considering the distance
between the positions pL,v and pR,v as measured by means of the k-norm, for some k > 0
being a parameter of the algorithm.

The pseudo-code of our A∗ search is shown in Algorithm 1. It starts with the root node
as unique node in N and Q. At each step, the first node v from Q—that is, the highest
priority node—is chosen and removed from Q. If this node is non-extensible it is a goal
node. In this case the algorithm derives the actual partial solution corresponding to the
longest path to v and returns with the resulting palindrome. Note that if a singleton
letter remains in S[pL,v, pR,v], it is added as middle letter. Since our priority function is
admissible, cf. [25], we can be sure that an optimal solution has been reached. Otherwise,
node v is extended by considering each possible extension a ∈ Σnd

v . Corresponding arc costs
`(v, v′) are normally two to account for letter a being added twice in the final palindrome,
but three in case only singleton letters remain in S[pL,v′ , pR,v′ ] to additionally account for
a respective final middle letter. For each obtained new state it is checked if a respective
node exists already in N . If this is not the case, a corresponding new node is added to
N and Q. Otherwise, the existing node’s length-value lv′ is updated in case the new path
via v represents a new longest partial solution.

Finally, note that all proposed upper bound functions presented in Section 3.2 have the
property of being monotonic (also called consistent), because the upper bound values of
child nodes are always at most as high as the upper bound values of their parents. Due
to monotonicity we can be sure that no re-expansions of already expanded nodes will be
necessary [25].

Deriving the left and the right position vectors and thus the state for each successor v′ of a
node v is the computationally most expensive step during the process of expanding a node
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Algorithm 1 A* Search for the LCPS Problem

1: Input: an instance (S,Σ)
2: Output: an optimal LCPS solution
3: create root node r = ((1, . . . , 1), (|s1|, . . . |sm|)) with lr = 0
4: add r to the initially empty node set N and the set of open nodes Q
5: loop
6: pop a node v with largest priority f(v) from open nodes Q
7: determine Σnd

v from pL,v and pR,v

8: if Σnd
v = ∅ then

9: // goal node reached
10: s← partial solution corresponding to a longest path from r to v
11: if S[pL,v, pR,v] contains a singleton letter a then
12: return palindrome s · a · srev

13: else
14: return palindrome s · srev

15: end if
16: else
17: // consider successors
18: for a ∈ Σnd

v do
19: compute node v′ that results from appending a at node v
20: if S[pL,v′ , pR,v′ ] contains only singleton letters then
21: `(v, v′)← 3
22: else
23: `(v, v′)← 2
24: end if
25: if v′ 6∈ N then
26: add new node v′ with lv′ = lv + `(v, v′) to N and Q
27: else if lv + `(v, v′) > lv′ then // a better path to v′

28: lv′ ← lv + `(v, v′)
29: update entry for v′ in Q with new priority value f(v′) = lv′ + UB(v′)
30: end if
31: end for
32: end if
33: end loop

v. More specifically, for each string si, i = 1, . . . ,m, pL,v′
i (respectively pR,v′

i ) of a child node
v′ of v, given by expanding a valid partial solution represented by v by means of a letter
a ∈ Σ, is determined as the position of the first occurrence of a in string si[p

L,v
i , pR,v

i ]

(respectively, the last occurrence of a in string si[p
L,v
i , pR,v

i ]). Finding these positions
can be done efficiently by establishing during pre-processing a successor (predecessor)
data structure as follows. The successor structure contains a value Succ[i, j, a] for each
i = 1, . . . ,m, j = 1, . . . , n, and a ∈ Σ corresponding to the minimal position p > j
such that si[p] = a. If there is no such position, the special value n + 1 is used. The
predecessor structure stores a value Pred[i, j, a] for all i = 1, . . . ,m, j = 1, . . . , n, and
a ∈ Σ corresponding to the maximal position p < j such that si[p] = a. In case of no such
position, zero is used here. Both structures can be built in O(mn|Σ|) time, and by using
it all successors of a node can be derived in O(m|Σ|) time.

Remember that in Section 3.1 we introduced a dominance relation between two letters
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a and b for extending a node v. Dominated letters are clearly sub-optimal choices and
therefore we avoid their further consideration. This pruning according to dominance may
be generalized: When a new state S[pL,v, pR,v] is obtained, we can check if there is some

other already considered node v′ ∈ N for which pL,v′
i ≤ pL,v

i ∧ pR,v
i ≤ pR,v′

i ∀i = 1, . . . ,m
holds and for which lv′ ≥ lv. Such a node v′ would dominate v in the sense that v cannot
lead to any better solution, and consequently, we can omit node v and the arc leading
to it from any further consideration. Unfortunately, this generalized dominance check
requires O(|N |m) time. In practical experiments with our A∗ search, it turned out that
the introduced overhead is substantial and can be dramatic especially for longer runs when
|N | becomes large. Usually the gained reductions in the number of avoided nodes cannot
outweigh this disadvantage. Therefore, we stay here with the simple dominance checks
among the successors of a node.

In the rest of the paper we investigate variants of search algorithms that build upon the
presented A∗ search. In particular, we aim for a better anytime behavior, i.e., providing
a first heuristic solution soon and continuously improving it over time.

4. Approximating the Expected Length of a LCPS for Random
Strings

In prior work on beam search algorithms for the LCS problem, Mousavi and Tabataba [39]
noticed that the LCS problem instances generally used in the related literature have prop-
erties close to those of random instances. That is, the probability for a letter a ∈ Σ to
appear at the i-th position of any of the input strings is (nearly) equal for all letters from Σ.
Based on this observation they derived a heuristic function for guiding their beam search
approach, which led to a new state-of-the-art performance at that time. In other words,
they discovered that their heuristic function guides beam search much better than the
available upper bound functions. However, since their heuristic function is not a proper
upper bound, it cannot be used to prove optimality. In the following we first revisit the
heuristic function from [39] in the context of the LCPS problem and then build upon it
by deriving an approximation for the expected length of a LCPS for random strings. This
function will later be used in combination with the previous upper bound in order to be
able to find good heuristic solutions quickly (due to using the heuristic function) but to
possibly prove optimality as well.

Mousavi and Tabataba came up with the following recursion which calculates the proba-
bility that a specific string s of length k is a subsequence of a string t of length q, where t
is generated uniformly at random: Pr[s ≺ t] = P(|s|, |t|) with

P(k, q) =





0 if k > q

1 if k = 0
1
|Σ| · P(k − 1, q − 1) + |Σ|−1

|Σ| · P(k, q − 1) else.

(6)

All probabilities P(k, q) for k, p = 0, . . . , n can be calculated and stored in O(n2) time
during preprocessing. Let us now consider a node v ∈ V from our state graph. Given P,
we can calculate the probability that the remaining subproblem S[pL,v, pR,v] contains a
specific palindrome of length k by

Pr(k, S[pL,v, pR,v]) =
m∏

i=1

P(k, |si[pL,v
i , pR,v

i ]|) =
m∏

i=1

P(k, pR,v
i − pL,v

i + 1). (7)
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In fact, Mousavi and Tabataba directly used these probabilities as heuristic function h(v)
to rank in their beam search all successor nodes at a current level for selecting the most
promising ones and filtering out the rest. Obviously, higher values of h(v) are preferred in
this ranking. For parameter k, they used at each level of the beam search the same value,
which they determined from the set of all nodes to be compared (Vext) simply by

k := min
v∈Vext, i=1,...,m

(
pR,v
i − pL,v

i + 1
)
.

While this approach can be meaningful in the context of a standard beam search, it cannot
be easily adopted in a more general search like A∗, where at each iteration a node has
to be evaluated efficiently in relation to the potentially huge set of all open nodes with
different distances to the root. Most importantly, there will not be a single meaningful
value for k, and it would not make sense to repeatedly re-evaluate all open nodes for
changing values of k.

Instead, we strive to approximate the real expected length of a LCPS for a set of strings
S = {s1, . . . , sm} under the assumption that the input strings are mutually independent
uniform random strings. Note that we will then use this approximation to evaluate a
subproblem S[pL,v, pR,v] represented by a node v ∈ V in an alternative way. Concerning
related work, Chvátal and Sankoff [13] considered the expected length of the LCS of two
random sequences of length n over an alphabet Σ. The authors derived explicit formulas
for small n, and lower and upper bounds for the so-called Chvátal–Sankoff constants γ|Σ|,
for |Σ| > 1, defined as the limits of the ratios between the expected length and n, as n
increases towards infinity. These constants are still not known so far, but Dančik and
Paterson [14] improved the upper bounds for γ2 based on the theory of Markov chains.
Dixon [16] considered the case for two binary strings of different lengths. He conjectured
an approximate upper bound for the expected length under certain additional conditions.
Znamenskij [54] came up with the hypothesis of an accurate formula for the expected
length for the case of two random strings of different length and an arbitrary alphabet.
An empirical indication for the correctness of this hypothesis is given, and numerical
experiments showed the precision of the formula with a high accuracy. A proof for Sankoff
and Mainville’s conjecture about the convergence of γ|Σ| as |Σ| tends toward infinity can
be found in [33]. We are not aware of any previous work on the expected length of a LCS
for more than two random strings or of a LCPS for random strings.

Let X be the random variable corresponding to the length of a LCPS for a set S of
randomly generated input strings. Clearly, X can never be larger than the length of the
shortest string in S, which we denote by lmax = mini=1,...,m |si|. The expected length

of an LCPS can be expressed as E[X] =
∑lmax

l=1 l · Pr[X = l] with Pr[X = l] denoting
the probability that this length is l. Furthermore, let Yl ∈ {0, 1} be the random variable
indicating if the strings from S have a common palindromic subsequence of length l, l ≥ 0.
Observe that the existence of a palindromic subsequence of size l > 1 always implies the
existence of palindromic subsequences of size l′ = 0, . . . , l − 1, since any palindromic
subsequence of length l can be trivially reduced to length l − 1 by removing an element
from the middle. Therefore, it holds that Pr[X = l] = E[Yl] − E[Yl+1] for l = 0, . . . , lmax,
i.e., the probability that there exists a palindromic subsequence of size l but no longer
one. We obtain

E[X] =

lmax∑

l=1

l · (E[Yl]− E[Yl+1]) =

lmax∑

l=1

E[Yl]. (8)
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In order to approximate E[Yl], we first observe that—for an alphabet of size |Σ|—there
are |Σ|dl/2e different palindromes of length l. This is because the first half and the possible
middle element can be assigned any letters from Σ and the second half must be equal
to the reverted first half. Because of (6), the probability that a specific palindrome s of
length l is a subsequence of all strings in S is equal to Pr[s ≺ S] =

∏m
i=1 P(l, |si|). In

the following we make the simplifying assumption that for each palindrome of length l
the event of appearing as common subsequence of S is independent of the events of the
other palindromes. Clearly, this does not entirely hold in reality and we introduce an
error, but it simplifies our considerations to a level with which we can deal further. The
probability that S has any common palindromic subsequence of length l ∈ N can then be
approximately expressed as

Ẽ[Yl] = 1− (1− Pr[s ≺ S])|Σ|
dl/2e

= 1−
(

1−
m∏

i=1

P(l, |si|)
)|Σ|dl/2e

, (9)

i.e., the inverse probability of the case that none of the |Σ|dl/2e palindromes of length l is
a common subsequence of S. Ultimately, we obtain the approximate expected length of
the LCPS

Ẽ[X] = lmax −
lmax∑

l=1

(
1−

m∏

i=1

P(l, |si|)
)|Σ|dl/2e

. (10)

To illustrate the error introduced by the assumed independence, we consider the following
special cases.

• Let S = {s1} and l = |s1|. At most one of the |Σ|dl/2e different palindromes of length
l can be a subsequence of s1 since s1 has to correspond to it. Our calculation yields

Ẽ[Yl] = 1− (1− 1/|Σ|l)|Σ|dl/2e ,
while the correct value corresponds to the probability that s1 is palindromic, which is

Ẽ[Yl] =
|Σ|dl/2e
|Σ|l = 1/|Σ|bl/2c.

• Let S = {s1} with |s1| ≥ 1 and l = 1. We have that Ẽ[Yl] = 1− (1− 1)|Σ| = 1, and
this corresponds to the correct probability for E[Yl].

• Let S = {s1, . . . , sm} with l = |s1| = . . . = |sm|.

Ẽ[Yl] = 1−
(

1− 1

|Σ|lm
)|Σ|dl/2e

while

E[Yl] =
1

|Σ|l(m−1)+bl/2c =
1

|Σ|bl·(2m−1)/2c .
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4.1. Numerically Stable and Efficient Calculation of Ẽ[X]

Calculating Ẽ[X] directly according to equation (10) is in practice hardly possible due to
the extremely large power values one obtains for not so small string lengths l. Classical
double precision floating point arithmetic is insufficient for strings with already more than
about 40 letters. However, the term from the sum on the right-hand side of (10) can be
decomposed to

(
1−

m∏

i=1

P(l, |si|)
)|Σ|dl/2e

=





. . .

(
1−

m∏

i=1

P(l, |si|)
)|Σ|p

· · ·



|Σ|p

︸ ︷︷ ︸
bdl/2e/pc times




|Σ|dl/2e mod p

(11)

for p ∈ N>0. We may use p = 25, for example, which will yield small enough values for all
intermediate results when using classical double precision floating point arithmetic.

While this decomposition avoids overflows there are other issues when
∏m
i=1 P (l, |si|) be-

comes small due to cancellation effects in the limited precision of classical floating point
arithmetic. In our implementation, we specifically check if

∏m
i=1 P (l, |si|) < 10−10 and

handle this case in the following different way.

To ease the further considerations, let us define x :=
∏m
i=1 P (l, |si|) and α := |Σ|dl/2e; we

now have to calculate (1 − x)α. The numerically problematic situation occurs when x is
close to zero and α is large. To resolve this issue, we make use of the fact that ln(1−x)/x
can be well approximated for small x by taking the first two terms of the Taylor series
expansion at x = 0, which is −1− x/2− o(x). This yields

(1− x)α = eα·ln (1−x) = eαx·
ln(1−x)

x ≈ eαx·(−1−x
2

). (12)

Here, however, the product αx may still be numerically problematic to calculate, in fact
already the calculation of α = |Σ|dl/2e alone may already exceed the limits of a classical
double precision floating point arithmetic. We therefore rewrite

αx = eln (αx) = ed
l
2
e·ln |Σ|+ln (x) (13)

and check if already d l2e · ln |Σ|+ ln (x) is so large that the overall result will be negligibly

small. More specifically, in our implementation we check for d l2e · ln |Σ|+ ln (x) > 300, in

which case (1− x)α < e−e
300

, and we therefore return zero as result.

Otherwise, we determine α̃ := αx · (−1 − x
2 ). If α̃ is close to zero (realized in our im-

plementation by |α̃| < 10−15}) we can use the fact that 1 − eα̃ ≈ −α̃ and consequently
approximate (12) well by returning 1 + α̃.

Last but not least, in the remaining case we consider α̃ to be in a reasonable range so
that we can calculate eα̃ in a numerically stable way and return this value as approximate
result of (1− x)α.

Summarizing the above, whenever x ≤ 10−10 we calculate

(1− x)α ≈





0 if d l2e · ln |Σ|+ ln (x) > 300

1 + α̃ if d l2e · ln |Σ|+ ln (x) ≤ 300 ∧ |α̃| < 10−15

eα̃ else,

(14)
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and for x ≤ 10−10, we can calculate (1−x)α safely by applying the decomposition rule (11).

In order to determine the approximate expected LCPS length Ẽ[X] according to (10), the
terms (1 − Ẽ[Yl]) must be calculated for l = 1, . . . , lmax, which requires O(mn) time. In
the case of larger n, this would be inefficient and be a bottleneck of our whole approach
to solve the LCPS problem. In order to reduce this complexity, we interpolate the values
for most l by means of a divide-and-conquer scheme. This approach exploits the fact
that the sequence of values {Ẽ[Yl]}l=1,...,lmax is monotonically decreasing with values in the
interval [0, 1]. The approach starts by defining the artificial border values Ẽ[Y0] := 1 and
Ẽ[Ylmax+1] := 0 and setting l = 0 and l′ = lmax + 1. Then it applies the following recursive
principle: If l + 1 < l′, we know the values for Ẽ[Yl] and Ẽ[Yl′ ] but not yet some lying
inbetween. In this case, if Ẽ[Yl] − Ẽ[Yl′ ] ≤ ε for some sufficiently small ε (ε = 10−6 in
our implementation), we determine Ẽ[Yl′′ ] for l′′ = l + 1, . . . , l′ − 1 by linear interpolation
between Ẽ[Yl] and Ẽ[Yl′ ]. Otherwise, we calculate the middle value Ẽ[Yd(l+l′)/2e] according

to our approximation above and recursively call the procedure for {Ẽ[Yl], . . . , Ẽ[Yd(l+l′)/2e]]}
and {Ẽ[Yd(l+l′)/2e]], . . . , Ẽ[Yl′ ]}.

Finally, recall that each node v ∈ N of our state graph represents a subproblem
S[pL,v, pR,v], and we can determine corresponding approximate expected LCPS lengths
according to (10) and the above described stable and efficient calculation method for
these:

EX(v) =

lmax∑

l=1

1−
(

1−
m∏

i=1

P(l, pR,v
i − pL,v

i + 1)

)|Σ|d l
2e
. (15)

Note that EX(v), in contrast to the upper bound functions from the previous section, does
not possess the property of being admissible in the context of A∗ search.

5. A Novel Anytime Algorithm for the LCPS

Classical A∗ search is targeted towards finding a proven optimal solution in the least
number of expanded nodes, but in general it yields no meaningful or particularly promising
heuristic solution before it terminates when the target node is selected for expansion.
In [17], we improved the anytime behavior of our A∗ algorithm for the LCPS in the
following way. The hybrid A∗+BS algorithm embeds a standard beam search into the
A∗ search framework such that, after performing a number of regular A∗ iterations, the
search strategy repeatedly is switched to a BS starting from the node with the highest
priority value from Q. Note that the new nodes discovered by the BS applications are
also incorporated into set N and the priority queue Q, and expanded nodes are removed
from Q. However, while this A∗+BS version from [17] exclusively considered new nodes,
the A∗+BS version that we consider for the experimental evaluation of this paper also
considers already encountered nodes—that is, nodes which are already present in Q—as
candidates for the beam of the next step in a BS run. We experimentally confirmed that
this change results in a significant performance improvement.

Nevertheless, after an intensive study of the A∗+BS algorithm, the following shortcomings
of A∗+BS were detected:
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1. Even though our new upper bound UB is tighter than the UB1 bound from [17], it
is still far from being a tight bound. Therefore, in case of larger instances the nodes
with the highest priority values in Q—that is, those nodes that are used to initialize
the BS runs—are generally close to the root node of the search tree and the chance
that they are promising starting nodes for BS is rather low.

2. The embedded BS does not ensure that the most promising nodes from each level
of the state graph are included in the beam corresponding to this level, as only
extensions of the starting node of each BS application are considered.

It was observed that these problems lead to the following behavior. The solution quality
of A∗+BS at a certain time can often be significantly exceeded by a single BS run whose
beam width is chosen such that its computation time is comparable. While the pure BS is
no anytime algorithm and does not provide any lower bound, this observation nevertheless
indicates room for improvement. Moreover, applying a rather large beam width in A∗+BS
leads to finding good heuristic solutions early, but afterwards these solutions are hardly
improved. On the other side, applying a rather small beam width leads to initial heuristic
solutions of lower quality which are improved over time, without, however, reaching the
final solution quality of A∗+BS when using a rather large beam width.

Therefore, we propose here the following potential improvements of A∗+BS. First, we
exchange the standard BS component with a beam search version known as Anytime
Column Search (ACS), proposed by Vadlamudi et al. [48]. The most interesting feature
of ACS is that it expands the most promising open nodes at each level of the state graph.
Moreover, we exchange the use of the upper bound for guiding ACS with the approximation
of the expected length of a LCPS as derived in the last section.

When consulting the related literature, we can find several attempts at improving the
anytime performance of A∗ algorithms as well as several attempts at using beam search
related algorithms in an anytime fashion. For completeness, we provide a short summary
of these approaches before outlining our A∗+ACS approach.

Concerning A∗ approaches, Hansen et al. [24] and Hansen and Zhou [23] proposed Anytime
Weighted A∗ which makes use of weighting the heuristic function by a constant factor
w > 0, i.e, f(v) := g(v) +w × h(v), in order to achieve a quick convergence to a heuristic
and usually sub-optimal solution. The authors showed that an obtained solution is a w-
approximation if heuristic h is admissible. A generalization of this idea, called Anytime
Restricted A∗ (ARA∗), was presented in [35]. The main idea is to exchange the constant
weight w of Anytime Weighted A∗ with a linearly decreasing sequence of weights, one for
each algorithm iteration. The value of the initial weight has—in general—a significant
impact on the convergence of ARA∗. Due to the fact that choosing appropriate weights
in ARA∗ is a problem specific task, Berg et al. [49] proposed Anytime Non-Parametric A∗

(ANA∗), eliminating the ad-hoc parameters involved in ARA∗ by adapting the greediness
of the search as path quality improves. Aine et al. [3] proposed Anytime Window A∗

(AWA∗), in which the nodes from the open list within one of the levels of depth from
a range defined by the window size are expanded, converging to a sub-optimal solution
at each iteration. The window size is adapted at each iteration to produce improved
solutions. A memory-bounded version of AWA∗ was proposed by Vadlamudi et al. [46].

On the other side, the literature offers beam search based algorithms, extended to be
anytime algorithms. Most of these algorithms work on the principle of initially perform-
ing a single beam search to get reasonably good, suboptimal (heuristic) solutions, and
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then initializing the beam of subsequent BS runs with nodes which were pruned in pre-
vious iterations (see [52, 53], for example). However, the literature does not provide a
work offering a comprehensive comparison of these algorithms. Recently, Vadlamudi [47]
presented Anytime Pack Search (APS), showing that it outperforms anytime algorithms
such as ANA∗ and AWA∗. This study considers problems from three different domains.
APS maintains a global priority queue Q. At each iteration, the β most promising nodes
from Q are picked and used as initial beam for the current run of beam search. Note
that the nodes for the initial beam may be from different levels of the search tree. When
performing the beam search at each iteration, the pruned nodes are being added to Q. In
the same paper, the authors proposed a version of APS, called Anytime Progressive Pack
Search (APPS), which aims at improving the anytime behavior of APS. This is done by
increasing the size of the initial beam (β) dynamically during the search process by means
of a step size parameter each time when no better solution has been found. Otherwise,
the beam size is reset to the initial value β. Experimental results show that APPS can
indeed achieve a better anytime behavior than APS.

5.1. A∗+ACS Algorithm

As indicated before, ACS is an iterative algorithm that, at each major iteration, expands
nodes with the highest priority values at each level of the state graph [48]. In order to do
so, the algorithm interprets the so far investigated parts of the state graph in a layered
fashion, where level j ≥ 0 contains any node v ∈ N having depth j, i.e., can be reached
from the root node r via j so far known arcs but not more. In our context of the LCPS,
level j thus contains the nodes for which corresponding partial solutions with up to j
letters are known. If a node is updated during the search process because a longer partial
solution—represented by a longer path to this node—is found, the node will change to the
respective higher level. In contrast to the classical A∗ search, ACS maintains an individual
priority list Ql of open nodes for each level j = 0, . . . , jmax, where jmax is an upper bound
for the depth of nodes; in our implementation we chose jmax = bUB(r)/2c. Initially, Q0

contains the root node and all other priority queues are empty. Each iteration of ACS
considers all the levels j = 0, . . . , jmax with non-empty queues Qi in turn and expands from
each β nodes (or less if Qj becomes empty). ACS terminates with an optimal solution only
when all priority lists become empty. However, ACS finds at least one complete solution
at each major iteration, which favors our goal of producing heuristic solutions as soon
as possible.

We now embed this ACS in our A∗ by interleaving classical A∗ iterations with ACS it-
erations. A pseudocode of this A∗+ACS is presented in Algorithms 2 and 3. The main
algorithmic framework is that of A∗. However, initially and after every batch of δ > 0
iterations of A∗, the algorithm executes one iteration of ACS. Algorithm 2 maintains in
sbest the so far best found complete solution. Each A∗ iteration still expands a node v
from the global open list Q having the largest priority value f(v). In this way the whole
approach maintains the completeness property of the classical A∗ search and maxv∈Q f(v)
provided by the top element of Q always is an upper bound for the optimum solution
value. In contrast, the level-wise priority queues Qj , j = 0, . . . , jmax, of ACS make use of
the approximate expected value function EX, cf. (15), for prioritizing the nodes. As we
already pointed out, this guidance function is not a bound and therefore cannot be used for
proving optimality. However, we expect it to lead the construction of heuristic solutions
in substantially better ways. Note that changes in Q (removals and additions) must be
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Algorithm 2 A∗+ACS for the LCPS Problem

1: Input: an instance (S,Σ)
2: Output: best found LCPS solution sbest

3: Parameters: ACS column width β, number of A∗ iterations inbetween ACS δ
4: create root node r = ((1, . . . , 1), (|s1|, . . . |sm|)) with lr = 0
5: add r to the initially empty node set N and the global set of open nodes Q
6: initialize per-level priority queues Q0 = {r} and Qi = ∅, j = 1, . . . , jmax

7: optimal ← false
8: sbest ← ε
9: loop

10: // perform an ACS iteration of width β
11: for j ← 0, . . . , jmax do
12: b← 0
13: while Qj 6= ∅ ∧ b < β do
14: // select and expand next node at level j
15: pop a node v with the largest EX(v)-value from Qj
16: remove v also from Q
17: ExpandNode(v)
18: if optimal ∨ time or memory limit reached then
19: return so far best solution sbest

20: end if
21: b ← b+ 1
22: end while
23: end for
24: // perform δ normal A∗ iteration
25: loop δ times
26: pop a node v with largest priority f(v) from Q
27: remove v also from Qblv/2c
28: ExpandNode(v)
29: if optimal ∨ time or memory limit reached then
30: return so far best solution sbest

31: end if
32: end loop
33: end loop

reflected by corresponding changes in the priority queues Qj , and vice versa. To do this
efficiently, we augment in our implementation the heap data structures for the priority
queues by corresponding hash tables, which enable a direct lookup of the priority queue
entries for given nodes. The actual expansion of a node, which is identical for the ACS
as well as the A∗ iterations, is separately shown in Algorithm 3. It follows the principles
already known from Algorithm 1. When a goal node is reached it is checked if it yields a
new best solution and sbest is updated in this case. At its end, Algorithm 3 always checks
if the length of the so far best solution is larger than or equal to the current maximum f -
value of Q, in which case the flag optimal is set to true and the main algorithm terminates
with the proven optimal solution sbest. Moreover, A∗+ACS also terminates when reaching
a specified time or memory limit, in which case it returns the best complete solution found
up to this point.

In summary, the ACS iterations augment the classical A∗ iterations in order to find promis-
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Algorithm 3 ExpandNode(v)

1: Input: Node v to be expanded
2: Uses/updates: V , N , Q, Q1, . . . , Qlmax, sbest, optimal
3: determine Σnd

v from pL,v and pR,v

4: if Σnd
v = ∅ then

5: // goal node reached
6: if |sbest| < f(v) then
7: s← partial solution corresponding to a longest path from r to v
8: if S[pL,v, pR,v] contains a singleton letter a then
9: sbest ← s · a · srev

10: else
11: sbest ← s · srev

12: end if
13: end if
14: else
15: // consider successors
16: for a ∈ Σnd

v do
17: compute node v′ that results from appending a at node v
18: if S[pL,v′ , pR,v′ ] contains only singleton letters then
19: `(v, v′)← 3
20: else
21: `(v, v′)← 2
22: end if
23: if v′ /∈ N then
24: calculate EX(v′) and f(v′)
25: add new node v′ with lv′ = lv + `(v, v′) to N , Q, and Qblv′/2c
26: else if lv′ < lv + `(v, v′) then // a better path to v′

27: remove v′ from Qblv′/2c
28: lv′ ← lv + `(v, v′)
29: update entry for v′ in Q with new f(v′)
30: add v′ in Qblv′/2c with E(v′)
31: end if
32: end for
33: end if
34: if |sbest| ≥ maximum f -value of nodes in Q then
35: optimal ← true
36: end if

ing heuristic solutions soon and possibly also improve them continuously over time. This
counter-balances the pure best-first strategy of A∗. The number of A∗ iterations δ be-
tween the executions of the ACS iterations as well as ACS’s width parameter β control
the balance between providing good heuristic solutions and improving the upper bound
over time.
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6. Experimental Results

All proposed algorithms as well as algorithms considered in the following for comparison
were implemented in C++ using GCC 4.7.3. All experiments were performed on a cluster
of machines with Intel Xeon E5649 CPUs with 2.53 GHz and a memory limit of 15GB in
single-threaded mode. The maximum computation time allowed for each run was limited
to 15 minutes, i.e., 900 seconds.

The following algorithms are considered in this section: (1) A∗+BS is the A∗/beam search
hybrid proposed in [17] but improved by the advanced upper bound calculation from Sec-
tion 3, (2) the A∗+ACS algorithm proposed in this work, (3) the anytime-A∗ variants APS
and APPS from [47] which we implemented for comparison reasons, and (4) a stand-alone
ACS algorithm—henceforth labeled ACS-ub—using the upper bound UB for prioritizing
the nodes. This last algorithm targeted towards primarily getting good heuristic solutions
is studied for comparison purposes in order to get an impression on the impact of the novel
heuristic guidance function EX() from Equation (15) in our A∗+ACS.

We also would like to point out that, during experimentation, we noticed that the original
APPS performed significantly worse with respect to the obtained solution quality when
the beam width was set back to the initial value each time a new incumbent was found.
Therefore, our implementation applies a purely progressive increase of the beam width
after each BS run.

All considered algorithms will be evaluated by the obtained solution quality and by the
percentage gap, which is calculated at any time point t > 0 as gap(t) := f∗(t)−sbest(t)

f∗(t) ·100%,

where sbest (t) denotes the value of the best found solution and f∗(t) the f -value of top node
of Q (representing an upper bound) at time t. In case of ACS-ub, this upper bound is cal-
culated as f∗(t) := maxi=0,...,jmax{f(ui)|Qi 6= ∅ ∧ ui is the top node of Qi at the time t}.

6.1. Benchmark Instances

We used a set of benchmark instances that were originally provided in [7] for the LCS
problem. This instance set consists of ten randomly generated instances for each com-
bination of the number of input strings m ∈ {10, 50, 100, 150, 200}, the length of input
strings n ∈ {100, 500, 1000}, and the alphabet size |Σ| ∈ {4, 12, 20}. This makes a
total of 450 problem instances. In general, the results of our algorithms will be pro-
vided as averages over the ten instances of each combination. In order to compare
the algorithms concerning the 2–LCPS problem, we generated a new set of larger in-
stances by using the instance generator from [7]. More specifically, for each combi-
nation of |Σ| ∈ {4, 12, 20} and n ∈ {100, 200, 300, 400, 500} we created ten instances
yielding a total of 150 2–LCPS instances. These benchmark instances are provided at
https://www.ac.tuwien.ac.at/research/problem-instances/LCPS.

6.2. Tuning of the Algorithms

In order to ensure a fair comparison, we employed the tuning tool irace [37] for deriving
well-working parameter values for all five considered algorithms. A∗+BS has the following
parameters: (δ) the number of A∗ iterations performed after each BS run, (β) the beam
width, and (k) the parameter for the k-norm used in tie-breaking. APS has the following
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Table 1: Tuning results concerning solution quality.

(a) A∗+BS

|Σ| δ β k

4 1 10000 0.5
12 10 2000 0.2
20 20 1000 0.1

(b) APS

|Σ| pack k

4 10000 0.1
12 10000 0.2
20 5000 0.1

(c) APPS

|Σ| pack step k

4 10000 10 0.2
12 10000 10 0.2
20 5000 5 0.1

(d) ACS-ub

|Σ| β k

4 20 0.2
12 20 0.5
20 100 1.0

(e) A∗+ACS

|Σ| δ β k

4 100 10 1.0
12 50 10 1.0
20 100 20 0.1

parameters: (pack) the number of nodes taken from the top of the queue in order to
form the initial beam, and (k). APPS has the same parameters as APS and in addition
(step) the amount of increase applied to pack after each BS run. Next, ACS-ub involves
parameter (β), which is the number of expansions at each level of the state graph, and
(k). Finally, A∗+ACS has the parameters: (δ) the number of A∗ iterations performed
after applying an iteration of ACS, (β) the number of expansion allowed at the same level
of ACS, and (k).

The irace tool was applied separately for each algorithm and for each alphabet size. Ana-
lyzing preliminary experiments, we found that the size of the alphabet has more influence
on the behavior of the algorithms than the lengths of the input strings and their number.
In order to obtain tuning instances, we generated for each |Σ| one random instance for
each combination of m and n. This makes a total of 15 tuning instances for each alphabet
size, and 45 tuning instances in total. The tuning process for each alphabet size was given
a budget of 1000 runs and each run was limited by a run time limit of 900 seconds and a
memory limit of 15 GB.

6.2.1. Tuning for Solution Quality

The first set of tuning experiments was aimed at tuning the algorithm performance with
respect to solution quality, that is, for obtaining the best possible solution quality at the
end of a run. In the following we present the parameter value domains used during tuning
as well as the best configurations for each algorithm as determined by irace. Note that
meaningful ranges for the domains were determined by preliminary experiments.

For parameter k we considered {0.1, 0.2, 0.5, 1.0, 2.0} for all algorithms. The do-
main of parameter β in A∗+BS and parameter pack in APS and APPS was {1, 50,
100, 500, 1000, 2000, 5000, 10000, 20000}. In contrast, in the context of ACS-ub
and A∗+ ACS parameter β was given domain {1, 5, 10, 20, 50, 100}. Finally, we con-
sidered δ ∈ {1, 5, 10, 20, 50, 100, 1000} for both A∗+BS and A∗+ ACS, and step ∈
{1, 5, 10, 50, 100, 200, 500} for APPS. The best configurations as determined by irace are
provided in Table 1.
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Table 2: Tuning results concerning small gaps.

(a) A∗+BS

|Σ| δ β k

4 20000 500 1.0
12 10000 1000 1.0
20 10000 500 0.5

(b) APS

|Σ| pack k

4 20000 1.0
12 20000 1.0
20 10000 1.0

(c) APPS

|Σ| pack step k

4 20000 500 1.0
12 10000 1000 1.0
20 20000 500 1.0

(d) ACS-ub

|Σ| β k

4 10 0.2
12 1 0.1
20 1 0.5

(e) A∗+ACS

|Σ| δ β k

4 5000 20 1.0
12 10000 10 1.0
20 5000 10 1.0

6.2.2. Tuning for Small Gaps

The tuning experiments from the previous section were repeated with the aim of ob-
taining small gaps, thus, considering in addition to the final solution quality also the
respective upper bounds. Naturally we expect for this case other parameter settings
to be ideal, in particular those putting more emphasize on classical A∗ search itera-
tions. The parameter domains were chosen as in the previous subsection, with the ex-
ception of the δ parameter in the case of A∗+BS and A∗+ACS and the step parame-
ter in APPS. These were chosen as δ ∈ {1, 100, 500, 1000, 5000, 10000, 20000, 50000} and
step ∈ {1, 10, 50, 100, 500, 1000, 5000}. The best configurations as determined by irace are
provided in Table 2. Indeed, it can be observed that the resulting values in particular for
parameter δ, the number of classical A∗ iterations, increase significantly when tuning for
small gaps.

6.3. Numerical Results and Comparison

Table 3 shows average results of the algorithms over all instance groups with the parameter
settings obtained by tuning for solution quality, while Table 4 shows the results with the
settings obtained when targeting small gaps. Note that we excluded the results of APPS
here as it turned out that they are very similar to those of APS.

Each of these tables consists of three sub-tables, one per alphabet size, and they have the
following format. The first two columns indicate the type of problem instances considered
in terms of n and m. Remember that the considered benchmark set consists of ten problem
instances per combination of |Σ|, n and m. Consequently, each table row provides the re-
sults of the four considered algorithms (A∗+BS, APS, ACS-ub, and A∗+ACS) as averages
over the ten respective instances. For each algorithm, column |s| lists the average final
solution quality, column tbest[s] the average time (in seconds) at which the best solution of
a run was found, column t[s] the overall average runtime, and, finally, column gap[%] the
average gap in percent. Note that the overall run time of an algorithm can only be smaller
than 900 seconds (the run time limit) when a proven optimal solution is found, or in case
the memory limit of 15 GB is reached before the run time limit. The former happens for
all algorithms in the context of all instances with n = 100, thus all considered algorithms
are able to prove optimality for all these instances. The latter happens, for example, in
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Table 3: Average results of the algorithms when tuned for solution quality.

(a) |Σ| = 4.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 28.9 1.2 5.3 0.0 28.9 1.0 1.8 0.0 28.9 < 0.1 2.4 0.0 28.9 < 0.1 1.9 0.0
10 500 159.9 13.7 368.7 45.4 159.9 9.5 251.0 44.4 161.2 130.1 415.5 43.5 162.3 61.2 573.6 42.6

1000 323.1 41.0 278.8 47.63 323.3 56.3 269.1 47.3 326.2 146.3 301.3 46.6 330.7 256.1 532.1 45.7

100 21.8 1.3 1.3 0.0 21.8 1.0 1.0 0.0 21.8 < 0.1 0.9 0.0 21.8 < 0.1 0.6 0.0
50 500 130.5 25.2 468.2 54.1 130.5 18.2 346.4 53.1 131.3 111.9 490.2 52.5 132.7 135.0 555.4 51.4

1000 267.9 177.8 576.6 56.0 267.8 83.0 507.1 55.7 268.9 314.7 683.1 55.5 273.0 92.7 722.1 54.5

100 20.1 1.7 1.7 0.0 20.1 1.2 1.2 0.0 20.1 < 0.1 1.2 0.0 20.1 < 0.1 0.8 0.0
100 500 123.5 53.5 616.2 56.3 123.5 64.3 459.4 55.4 124.1 107.3 651.4 54.9 125.1 86.0 688.4 54.0

1000 254.8 123.0 686.2 58.0 254.8 127.9 563.0 57.7 255.4 324.0 744.1 57.6 259.8 199.8 765.8 56.6

100 19.0 2.1 2.2 0.0 19.0 1.4 1.4 0.0 19.0 < 0.1 0.9 0.0 19.0 < 0.1 0.5 0.0
150 500 120.3 128.1 792.7 57.2 120.2 51.8 528.6 56.4 120.7 118.1 736.7 56.1 121.7 67.2 723.8 55.1

1000 249.0 170.3 750.3 58.8 249.0 155.8 580.1 58.6 249.8 337.8 780.8 58.4 253.3 192.7 752.6 57.6

100 18.5 1.8 1.8 0.0 18.5 1.7 1.7 0.0 18.5 0.1 1.1 0.0 18.5 < 0.1 0.7 0.0
200 500 118.0 99.1 843.3 57.9 118.0 74.5 601.5 57.2 118.4 216.6 852.4 56.9 119.5 25.6 778.4 55.9

1000 245.0 287.2 859.9 59.4 244.8 196.2 671.8 59.3 245.4 275.0 884.5 59.1 249.4 238.2 840.9 58.2

(b) |Σ| = 12.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0
10 500 61.5 3.5 453.0 65.1 61.8 15.5 371.4 62.0 62.3 77.1 400.9 61.3 62.4 26.4 649.7 60.6

1000 126.7 6.3 291.3 68.2 127.2 28.2 281.9 67.1 128.7 89.1 309.3 66.6 130.5 115.5 531.3 65.9

100 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0
50 500 43.3 5.7 555.7 73.8 43.6 25.2 548.0 70.6 43.8 41.4 580.8 70.4 44.3 96.0 617.5 69.3

1000 91.1 21.5 568.8 76.4 91.7 92.7 714.8 75.3 92.4 246.2 608.9 75.0 93.7 70.2 649.8 74.4

100 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0
100 500 39.0 19.2 798.0 75.8 39.0 46.9 829.4 72.8 39.1 35.8 856.4 72.4 39.6 88.0 798.4 71.5

1000 83.9 66.2 879.1 78.0 84.1 147.3 812.9 77.1 84.7 291.2 891.6 76.9 85.9 78.6 871.2 76.3

100 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0
150 500 37.0 22.6 900.0 76.8 37.1 68.8 900.0 73.9 37.2 52.8 900.0 73.7 37.6 22.6 881.7 72.8

1000 80.3 44.4 900.0 78.8 80.6 209.3 900.0 78.0 81.0 212.7 900.0 77.9 82.2 51.9 900.0 77.2

100 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0
200 500 35.8 60.6 900.0 77.3 36.0 90.8 900.0 74.4 36.0 31.8 900.0 75.0 36.0 0.6 900.0 73.7

1000 78.2 152.1 900.0 79.2 78.4 297.7 900.0 78.5 78.7 273.0 900.0 78.4 80.0 126.8 900.0 77.8

(c) |Σ| = 20.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0
10 500 38.7 9.7 351.4 69.5 38.6 7.7 523.2 65.2 38.9 5.8 319.1 64.6 38.9 1.4 801.9 63.8

1000 79.7 60.3 353.8 74.2 79.9 20.3 500.2 72.9 80.9 75.6 386.2 72.5 81.8 133.4 688.0 71.8

100 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0
50 500 25.0 4.3 750.3 76.8 25.0 15.0 900.0 71.2 25.1 23.2 740.1 72.2 25.1 74.9 858.7 71.0

1000 54.4 44.9 768.7 81.5 54.6 46.8 888.0 80.2 55.0 101.8 728.0 80.0 55.6 42.6 881.8 79.5

100 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0 1.3 < 0.1 < 0.1 0.0
100 500 21.8 8.1 900.0 78.6 21.9 26.0 900.0 73.2 22.1 56.3 893.6 73.5 22.1 5.9 900.0 72.7

1000 48.9 62.8 900.0 83.2 48.9 89.9 900.0 82.1 49.1 71.8 899.3 81.9 50.1 110.1 900.0 81.2

100 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0
150 500 20.6 8.3 900.0 79.4 20.9 46.5 900.0 74.2 21.0 43.0 900.0 73.7 21.0 8.7 900.0 73.3

1000 46.3 99.6 900.0 84.0 46.6 202.8 900.0 82.8 46.8 139.4 900.0 82.7 47.2 124.9 900.0 82.2

100 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0 1.1 < 0.1 < 0.1 0.0
200 500 19.5 74.0 900.0 80.1 19.5 49.0 900.0 74.8 19.9 65.6 900.0 73.2 20.0 91.3 900.0 73.5

1000 44.8 56.2 900.0 84.4 45.0 190.6 900.0 83.4 45.0 42.7 900.0 83.3 45.7 175.4 900.0 82.7

the case of the ten instances with |Σ| = 4, m = 10 and n = 1000 (see Table 3a). Note
that the best result in each table row is marked bold.

The following main observations can be made concerning these results.

• As mentioned already above, all algorithms are able to solve the problem instances
with n = 100 to optimality, this within a fraction of a second. Therefore, in what
follows, we will focus on the instances with n ∈ {500, 1000}.
• A∗+ACS outperforms all other algorithms in terms of solution quality, both when

tuned for solution quality and when tuned for minimizing the gap. In order to
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Figure 1: Critical difference plots concerning the results of the algorithms tuned for solu-
tion quality. The benchmark instances are split according to alphabet size.
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Figure 2: Critical difference plots concerning the results of the algorithms tuned for small
gaps. The benchmark instances are split according to alphabet size.

confirm this statistically—at least for the case of tuning for solution quality—we
performed Friedman’s tests simultaneously considering all four algorithms for the
subsets of the benchmark set with different alphabet sizes.2 Given that in all cases
the test rejected the hypothesis that the algorithms perform equally, pairwise com-
parisons were performed using the Nemenyi post-hoc test [20]. Obtained results
are shown in Figure 1 by means of so-called critical difference plots. In short, each
algorithm is positioned in the segment according to its average ranking concerning
the considered subset of instances. Then, the critical difference (CD) is computed
for a significance level of 0.05 and the performance of those algorithms that have
a difference lower than CD are regarded as equal—that is, no difference of statisti-
cal significance can be detected. This is indicated in the figures by horizontal bars
joining the respective algorithms. The figures show that, for each alphabet size,
A∗+ACS outperforms the other three algorithms with statistical significance.

• Furthermore, it can be observed that A∗+ACS outperforms the other three algo-
rithms also concerning the gap. Again, this holds both when tuned for solution
quality and when tuned for minimizing the gap. The corresponding critical differ-
ence plots—concerning the results obtained after tuning for minimizing the gap—are
shown in Figure 2. They confirm that A∗+ACS outperforms the other algorithms
with statistical significance. As all algorithms make use of the same upper bound
function, the difference in gaps must be attributed to the fact that A∗+ACS produces
significantly better primal solutions than the other algorithms.

• Concerning the remaining three algorithms, it can be observed that A∗+BS is gener-
ally the weakest algorithm with respect to solution quality. However, this algorithm
usually provides better gaps. This is with the exception of instances with |Σ| = 20
where A∗+BS also exhibits the weakest performance regarding the gaps. The best
algorithm among A∗+BS, APS and ACS-ub concerning solution quality is ACS-ub.

2All these tests and the resulting plots were generated using R’s scmamp package [10].
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Table 4: Average results of the algorithms when tuned for small gaps.

(a) |Σ| = 4.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 28.9 0.1 1.3 0.0 28.9 1.6 1.9 0.0 28.9 0.0 2.6 0.0 28.9 0.1 2.2 0.0
10 500 158.6 28.4 287.7 43.5 160.3 27.4 335.9 44.2 161.1 144.7 486.8 43.4 162.0 67.7 614.2 42.0

1000 320.2 132.6 351.0 47.2 324.2 36.2 200.6 47.1 326.2 233.4 526.9 46.6 330.0 143.3 542.3 45.4

100 21.8 0.2 0.7 0.0 21.8 1.2 1.2 0.0 21.8 0.0 0.8 0.0 21.8 0.1 0.6 0.0
50 500 129.4 48.6 476.0 52.2 130.9 37.7 341.7 52.9 131.3 147.9 676.8 52.3 132.3 93.7 551.2 50.9

1000 266.2 156.0 605.5 55.4 268.2 123.9 492.4 55.6 268.9 327.3 747.1 55.4 273.0 217.4 560.3 54.1

100 20.1 0.3 0.9 0.0 20.1 1.4 1.4 0.0 20.1 0.0 1.1 0.0 20.1 0.1 0.8 0.0
100 500 122.6 55.0 606.9 54.4 123.7 69.2 438.4 55.2 124.1 139.1 852.3 54.8 124.9 55.3 607.2 53.3

1000 253.8 141.7 675.9 57.4 255.2 195.5 527.0 57.6 255.6 469.6 889.5 57.4 259.5 226.7 672.4 56.2

100 19.0 0.3 0.7 0.0 19.0 1.6 1.6 0.0 19.0 0.0 0.7 0.0 19.0 0.1 0.7 0.0
150 500 119.3 24.8 719.1 55.6 120.5 104.7 500.9 56.3 120.7 161.8 894.1 55.9 121.4 25.3 848.4 54.7

1000 247.9 28.4 743.7 58.3 249.4 481.3 830.0 58.5 249.3 214.9 900.0 58.4 253.0 142.8 720.1 57.2

100 18.5 0.4 0.8 0.0 18.5 1.6 1.6 0.0 18.5 0.1 1.0 0.0 18.5 0.1 0.7 0.0
200 500 117.3 47.7 810.6 56.2 118.0 199.4 672.2 57.1 118.4 267.5 900.0 56.8 119.5 140.8 768.1 55.2

1000 244.3 93.1 831.8 58.8 245.0 377.7 614.5 59.2 245.4 365.6 900.0 59.1 249.4 349.7 802.3 57.8

(b) |Σ| = 12.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0 9.6 < 0.1 < 0.1 0.0
10 500 61.4 1.2 270.2 60.8 61.8 32.2 402.4 61.9 62.3 68.1 332.5 61.3 62.2 20.0 601.2 59.5

1000 125.7 3.3 338.6 67.0 128.1 70.6 353.7 66.8 128.7 98.2 332.3 66.6 130.0 151.0 592.1 65.3

100 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0 5.6 < 0.1 < 0.1 0.0
50 500 43.1 2.5 426.9 69.7 43.7 38.2 418.7 70.5 43.8 44.1 574.6 70.4 44.1 80.1 621.3 68.5

1000 91.0 76.2 658.4 75.0 91.9 153.1 622.3 75.2 92.3 249.5 736.4 75.1 93.2 74.0 685.5 74.0

100 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0 4.6 < 0.1 < 0.1 0.0
100 500 38.9 4.3 656.2 71.6 39.0 72.4 640.3 72.7 39.1 35.4 804.6 72.6 39.2 35.8 840.1 71.0

1000 83.6 17.5 759.3 76.8 84.3 248.6 696.7 77.0 84.7 287.7 854.4 76.9 85.4 143.9 896.2 75.9

100 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0 3.8 < 0.1 < 0.1 0.0
150 500 37.0 6.5 784.6 72.7 37.1 107.3 762.7 73.7 37.2 49.3 892.7 73.7 37.3 146.8 891.5 72.1

1000 80.1 18.4 839.8 77.7 80.9 329.1 756.2 77.8 81.0 202.6 900.0 77.9 81.7 171.5 900.0 76.9

100 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0 3.3 < 0.1 < 0.1 0.0
200 500 35.6 8.4 867.2 73.5 36.0 140.2 850.0 74.2 36.0 18.1 900.0 74.5 36.0 20.3 900.0 72.9

1000 77.9 26.3 900.0 78.2 78.6 469.9 867.9 78.4 78.8 343.4 900.0 78.3 79.4 117.8 900.0 77.5

(c) |Σ| = 20.

m n A∗+BS APS ACS-ub A∗ + ACS

|s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%] |s| tbest[s] t[s] gap[%]

100 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0 5.4 < 0.1 < 0.1 0.0
10 500 34.4 39.4 457.4 66.8 38.7 15.2 493.4 64.9 38.9 8.2 532.6 64.1 38.9 17.8 581.5 62.4

1000 70.3 96.9 403.1 75.1 80.2 35.3 374.9 72.8 80.9 157.0 580.5 72.2 81.3 115.6 700.3 71.2

100 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0 2.5 < 0.1 < 0.1 0.0
50 500 23.2 44.8 749.8 72.2 25.0 22.3 873.8 70.7 25.1 38.6 900.0 71.8 25.0 6.7 735.4 70.2

1000 50.2 155.7 786.3 80.9 54.8 87.8 654.5 80.2 55.0 115.4 900.0 79.9 55.5 124.3 825.6 79.0

100 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0 1.3 2.9 < 0.1 0.0
100 500 20.4 151.5 900.0 73.7 21.9 46.9 900.0 72.9 22.1 68.5 900.0 73.6 21.9 24.1 900.0 71.6

1000 45.6 197.9 900.0 82.5 49.0 139.7 900.0 81.9 49.0 32.0 900.0 81.8 49.7 73.6 900.0 80.9

100 1.1 4.2 < 0.1 0.0 1.1 2.9 < 0.1 0.0 1.1 2.9 < 0.1 0.0 1.1 2.9 < 0.1 0.0
150 500 19.0 10.0 900.0 74.8 20.9 60.9 900.0 73.4 21.0 79.8 900.0 72.8 20.9 41.7 900.0 72.1

1000 43.2 114.9 900.0 83.3 46.7 244.5 900.0 82.7 46.7 100.4 900.0 82.7 47.0 47.2 900.0 81.8

100 1.1 3.9 < 0.1 0.0 1.1 4.7 < 0.1 0.0 1.1 4.7 < 0.1 0.0 1.1 4.7 < 0.1 0.0
200 500 18.1 52.1 900.0 76.2 19.7 104.0 900.0 74.7 19.9 112.9 900.0 73.9 19.8 288.6 900.0 73.4

1000 42.2 341.8 900.0 83.6 45.0 280.5 900.0 83.3 45.0 48.9 900.0 83.3 45.1 36.6 900.0 82.6

The most important information from the result tables is additionally shown in a graphical
way in Figure 3, which depicts the average improvements (in percent) in terms of solution
quality of A∗+ACS over the other algorithms. There is one figure for each combination
of |Σ| and n. The same information—that is, the average improvement in percent—
concerning the gap is shown in Figure 4.

24

Te
ch
ni
ca
lR

ep
or
ta

c-
tr-

18
-0
12



10 50 10
0

15
0

20
0

m

0

1

2

3

4
Im

pr
. (
in
 %

) o
f A

*+
AC

S |Σ|= 4
A*+BS
ACS-ub
APS

10 50 10
0

15
0

20
0

m

0

1

2

3

4

Im
pr
. (
in
 %

) o
f A

*+
AC

S |Σ|= 12
A*+BS
ACS-ub
APS

(a) Instances with n = 500.
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(b) Instances with n = 1000.
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Figure 3: Improvements in solution quality of A∗+ACS over the other algorithms.
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(b) Instances with n = 1000.
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Figure 4: Improvements in the gap of A∗+ACS over the other algorithms.

6.4. The Anytime Performance of the Algorithms

As stated above, apart from the solution quality and the optimality gap finally obtained by
the algorithms when the time limit is reached, another important aspect of their behavior
concerns the anytime performance. In order to visualize the anytime performance, we
plot the evolution of the solution quality over time (averaged over ten problem instances
of the same type). Figure 5 shows these plots for the representative case with m = 50 and
n = 1000 considering all three alphabet sizes. In addition to the line plots for the average
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behavior, boxplots indicating the variance are shown every 200 seconds.3 The evolution
of the obtained average gaps over time are shown in the same way in Figure 6. Note
that information is only plotted concerning complete—in the sense of non-expandable—
solutions. This is the reason why, for instance, the anytime line plot of APS in the three
graphics of Figure 5 does not start at time zero.

The following observations can be made with respect to the anytime plots on solution
quality.

• A∗+ACS outperforms all other approaches during all stages of the search process.
That is, A∗+ACS finds better solutions than the other algorithms already very early
during the search process. Moreover, A∗+ACS does not seem to suffer as much
from early stagnation as A∗+BS. This boost of solution quality can primarily be
attributed to the incorporation of the new approximate expected length calculation
(15) as heuristic function, which turns out to be a much better guidance than classical
upper bounds. A direct indication for this is obtained when comparing the anytime
plots of A∗+ACS and ACS-ub (which does not make use of the approximate expected
length function).

• APS and A∗+BS, which both make use of embedded BS runs in order to find good
heuristic solutions, show a similar anytime behavior considering solution quality.
However, a rather large beam size (β) is required in order to obtain the best possible
solution quality at the end of a run. This fact is obviously negative for the anytime
performance of the algorithms, as they perform very few major iterations. The role
of the A∗ iterations is almost irrelevant for A∗+BS.

• ACS-ub not only outperforms A∗+BS and APS concerning the final solution quality,
it also shows an improved anytime performance when comparing with the ones of
APS and A∗+BS.

When considering the anytime plots concerning the evolution of the gaps, the following
can be observed:

• A∗+ACS produces significantly better gaps when compared to those of the three
other algorithms, over the whole run-time of the algorithms. This means that the
significantly increased number of A∗ iterations (when compared to the parameter
setting aimed for solution quality; see Tables 1e and 2e) pays off for A∗+ACS. How-
ever, it is also interesting to remark that, even with the parameter setting aimed for
minimizing the gaps, the algorithm still provides a performance concerning solution
quality that outperforms all other approaches.

• Even though A∗+BS uses a number of A∗ iterations that is one order of magnitude
larger than the one used by A∗+ACS, this does not really pay off for the algorithm.
In the case of the instances with |Σ| = 20, for example, A∗+BS shows, by far, the
worst anytime performance in the comparison.

• ACS-ub and APS show a similar anytime performance concerning the evolution of
the gaps.

• Generally, A∗+ACS shows a very good balance between ensuring good gaps and
providing high quality heuristic solutions. This can be explained by the use of
both, an improved upper bound function and a strong guidance by our approximate
heuristic, see (15).

3We provide the complete set of graphics, concerning all combinations of n and m, as supplementary
material under https://www.ac.tuwien.ac.at/research/problem-instances/LCPS.
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Figure 5: Evolution of solution quality over time for the exemplary case with m = 50 and
n = 1000. The algorithms were tuned for solution quality.

6.5. Computational Study for the 2–LCPS Problem

As mentioned in Section 2, the existing works from the literature on the LCPS problem
are primarily consider exact algorithms for the problem variant with two input strings
(m = 2), that is, the 2–LCPS problem. We decided to implement all these approaches,
that is, the DP and the MNDRS approaches from [12] and the CPSA approach from
[26]; see also Section 2. However, as some of these approaches were only described from
a theoretical point of view in the original papers, we sometimes had to make our own
design decisions for what concerns, for example, suitable concrete data structures. A de-
tailed description of our implementations can be found in the supplementary material un-
der https://www.ac.tuwien.ac.at/research/problem-instances/LCPS. In addition
to these three approaches we tested a basic Constraint Programming (CP) model, de-
tailed in Appendix A in conjunction with MiniZinc 2.1.5 and its Gecode backbone solver.

Finally, we will also compare to our pure A∗ search as described in Section 3.3. Compared
to the hybrid A∗ approaches, pure A∗ can be expected to require less node expansions to
prove optimality.

The five approaches now considered were applied once with a computation time limit of
900 seconds and a memory limit of 15 GB to the 150 2–LCPS instances described in
Section 6.1. Results are shown in Table 5, which lists for each instance group (n, |Σ|)
consisting of ten instances and for each approach the number of instances the method
was able to solve to proven optimality (#opt), the number of instances for which the
method was terminated either due to exceeding the time limit (#te) or the memory limit
(#me), and the average computation times of all successful runs (or “–” if no run could
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Figure 6: Evolution of the optimality gaps over time for the exemplary case with m = 50
and n = 1000. The algorithms were tuned for minimizing the gap.

Table 5: Results for the 2–LCPS instances.

n |Σ| A∗ MNDRS CPSA DP CP

#opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s] #opt #te #me t[s]

4 10 0 0 0.2 10 0 0 0.4 10 0 0 0.4 10 0 0 1.1 10 0 0 15.8
100 12 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.2 10 0 0 1.1 10 0 0 4.9

20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.2 10 0 0 1.1 10 0 0 1.3

4 10 0 0 0.6 10 0 0 8.5 10 0 0 27.4 10 0 0 25.6 0 10 0 −
200 12 10 0 0 0.3 10 0 0 0.2 10 0 0 2.7 10 0 0 20.7 0 10 0 −

20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 0.8 10 0 0 13.7 0 10 0 −
4 10 0 0 5.2 10 0 0 45.7 10 0 0 431.3 10 0 0 61.5 0 10 0 −

300 12 10 0 0 0.3 10 0 0 1.4 10 0 0 22.1 10 0 0 60.9 0 10 0 −
20 10 0 0 0.2 10 0 0 < 0.1 10 0 0 5.9 10 0 0 54.0 0 10 0 −
4 10 0 0 26.6 9 0 1 158.9 0 10 0 − 0 0 10 − 0 10 0 −

400 12 10 0 0 7.9 10 0 0 7.6 10 0 0 154.0 0 0 10 − 0 10 0 −
20 10 0 0 2.9 10 0 0 1.6 10 0 0 31.1 0 0 10 − 0 10 0 −
4 10 0 0 64.9 0 0 10 − 0 10 0 − 0 0 10 − 0 10 0 −

500 12 10 0 0 24.3 10 0 0 17.8 10 0 0 745.0 0 0 10 − 0 10 0 −
20 10 0 0 9.8 10 0 0 4.9 10 0 0 108.2 0 0 10 − 0 10 0 −

prove optimality). The average computation times are also provided in graphical form in
Figure 7. Note that the y-axis of these plots uses a logarithmic scaling. Moreover, cases
in which the memory limit was exceeded are marked with a black asterisk, while cases in
which the maximum allowed computation time was exceeded are marked with “>900”.

The obtained results allow to draw the following conclusions:

• Our A∗ approach is the only algorithm that can find an optimal solution and prove
its optimality within the time limit and respecting the imposed memory constraint
over all considered instances.

• MNDRS is the second-best algorithm, only starting to fail for instances with |Σ| = 4
and n ∈ {400, 500}. In particular, in those cases MNDRS fails due to exceeding the
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Figure 7: Average computation times of the algorithms for 2–LCPS.

memory limit with the data structures it requires.

• CPSA fails for the same problem instance types as MNDRS. However, in contrast
to MNDRS it fails due to exceeding the computation time limit.

• DP is only able to solve problem instances up to n = 300. Starting from n = 400,
the algorithm fails due to the memory limit.

• The CP approach is clearly the weakest one in the comparison. This approach is
only able to solve the problem instances with n = 100. In all other cases, CP fails
due to reaching the computation time limit. In fact, starting from n = 400, CP is
not able to provide any solution within the allowed computation time.

• Concerning the computation time requirements, we can observe that A∗ and
MNDRS—when able to solve an instance—are the fastest approaches. A∗ has ad-
vantages in the context of instances with |Σ| = 4. For instances with |Σ| = 12 both
algorithms require comparable times, and for |Σ| = 12 MDRS is on average slightly
faster. On the other side, CP is by far the most time consuming approach.

Finally, we would like to stress again that A∗ is the only algorithm which was able to solve
all instances to optimality, respecting the time and memory limits. This confirms that
the way of merging the nodes in the state graph of the A∗ search has a crucial impact on
reducing the algorithms’ memory consumption.
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7. Conclusion and Future Work

We considered the LCPS problem and studied a variety of algorithms for it. For exactly
solving the problem, the A∗ search from [17] was extended in particular by a more effective
upper bound calculation. This algorithm is able to reliably solve LCPS instances with two
input strings to proven optimality in short time, even when the strings have lengths up
to 500 letters. None of the other solution approaches we considered performed equally
consistent.

When it comes to solve the LCPS for a larger number of strings, however, the classical A∗

search clearly also has its limits due to the complexity of the problem. In this case, any-
time algorithms are particularly interesting for practice, as they deliver promising heuristic
solutions almost immediately, can be expected to continuously improve on them, and still
retain the chance of finishing with proven optimality when the time allows. The first
algorithm of this kind for the LCPS was the hybrid A∗+BS proposed in our preliminary
work [17], which embeds beam search in the A∗ framework. As a weakness we recognized
that calling the beam search more frequently with lower beam width is usually substan-
tially less effective than calling it only fewer times with larger beam width. Unfortunately,
this property stays in contrast to the goals of an anytime approach, where we expect to
obtain improved solutions more continuously.

With A∗+ACS, we provide now a clearly superior approach. It replaces the beam search
with iterations of anytime column search, which expands nodes at all levels more uni-
formly and therefore leads to a more continuous improvement. Most importantly, we also
introduced a novel heuristic function that represents an approximation for the expected
length of the LCPS. Using this function as guidance within the ACS iterations instead of
the classical upper bound calculation leads to substantially better heuristic solutions. In
order to still obtain quality guarantees and optimality proofs when time allows, classical
A∗ iterations still rely on the (improved) upper bound calculation.

Different parameter settings are suitable for A∗+ACS whether one aims just on pure
heuristic performance or when considering also upper bounds and wanting to minimize
optimality gaps. We performed detailed parameter tuning for both cases using irace, and
the obtained settings also provide a solid basis for reasonable choices when confronted
with new instances. Our computational evaluation and comparison of different A∗-based
anytime approaches for the LCPS clearly showed the benefits and superiority of the new
A∗+ACS w.r.t. final solution quality, final remaining optimality gap, as well as the overall
anytime-behavior.

In future work it would be interesting to develop a parallel variant of A∗+ACS. In fact,
performing classical A∗ node expansions as well as ACS iterations in parallel while main-
taining the priority queues as shared resources would be quite natural. While we focused
here on the LCPS, there are also the classical LCS and other problem variants like the
repetition-free LCS [2] and the arc-annotated LCS [32], for which the proposed approaches
seems to be promising. Actually, A∗+ACS represents a novel more general anytime search
framework that can easily be adapted to other problems, providing that suitable upper
bound and heuristic guidance functions can be defined.
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Appendices

A. Constraint Programming model for the LCPS

For comparison purposes, we consider the following basic CP model for the LCPS problem,
which was implemented in MiniZinc 2.1.5. Comparing FlatZinc, Chuffed and Gecode as
backbone solvers, we found Gecode to usually work best for this model.

The model uses the following variables. Let r ∈ {1, ..., l}, with l = min{|si| | i = 1, . . . ,m}
denote the length of the solution string, which shall be maximized. Decision variable
Ti,j ∈ {1, . . . , |si|} represents the index of the solution string’s j-th letter in the i-th input
string, for i = 1, . . . ,m and j = 1, . . . , r.

The LCPS is now expressed as follows.

max r (16)

Ti,j < Ti,j+1 ∀i = 1, . . . ,m, j = 1, . . . , r − 1 (17)

si[Ti,j ] = si+1[Ti+1,j ] ∀i = 1, . . . ,m− 1, ∀j = 1, . . . , r (18)

s1[T1,j ] = s1[T1,r−j+1] ∀ j = 1, . . . , br/2c (19)

Constraints (17) ensure that the sequence of indices Ti,1, . . . , Ti,r is strongly monotonically
increasing for each input string si. Constraints (18) guarantee that for each j = 1, . . . , r,
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the letter at position Ti,j in string si is the same over all i = 1, . . . ,m. Last but not
least, constraints (19) guarantee that the solution is palindromic. Preliminary experiments
indicated in this respect that stating these constraints redundantly for all input strings
speeds up the solving process.
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