
Algorithms and Complexity Group | Institute of Logic and Computation | TUWien, Vienna, Austria

Technical Report AC-TR-18-011
December 2018

A∗-Based Construction of
Decision Diagrams for a
Prize-Collecting
Scheduling Problem

Matthias Horn, JohannesMaschler, Günther
R. Raidl and Elina Rönnberg

www.ac.tuwien.ac.at/tr

A∗-Based Construction of Decision Diagrams for a
Prize-Collecting Scheduling Problem∗

Matthias Horn1, Johannes Maschler1, Günther Raidl1,
Elina Rönnberg2

1Institute of Computer Graphics and Algorithms, TU Wien, Austria

2Department of Mathematics, Linkping University, Sweden

{horn|maschler|raidl}@ac.tuwien.ac.at, elina.ronnberg@liu.se

Decision diagrams (DDs) have proven to be useful tools in combinatorial optimization.
Relaxed DDs represent discrete relaxations of problems, can encode essential structural
information in a compact form, and may yield strong dual bounds. We propose a novel
construction scheme for relaxed multi-valued DDs for a scheduling problem in which a
subset of elements has to be selected from a ground set and the selected elements need
to be sequenced. The proposed construction scheme builds upon A∗ search guided by
a fast-to-calculate problem-specific dual bound heuristic. In contrast to traditional DD
compilation methods, the new approach does not rely on a correspondence of DD lay-
ers to decision variables. For the considered kind of problem, this implies that multiple
nodes representing the same state at different layers can be avoided, and consequently
also many redundant isomorphic substructures. For keeping the relaxed DD compact,
a new mechanism for merging nodes in a layer-independent way is suggested. For our
prize-collecting job sequencing problem, experimental results show that the DDs from our
A∗-based approach provide substantially better bounds while frequently being an order-of-
magnitude smaller than DDs obtained from traditional compilation methods, given about
the same time. To obtain a heuristic solution and a corresponding lower bound, we fur-
ther propose to construct a restricted DD based on the relaxed one, thereby substantially
exploiting already gained information. This approach outperforms a standalone restricted
DD construction, basic constraint programming and mixed integer linear programming
approaches, and a variable neighborhood search in terms of solution quality on most of
our benchmark instances.

Keywords. decision diagrams, A∗ search, scheduling, sequencing

∗This project is partially funded by the Doctoral Program “Vienna Graduate School on Computational Optimization”,
Austrian Science Foundation (FWF) Project No. W1260-N35. The work of Elina Rönnberg is supported by the
Center for Industrial Information Technology (CENIIT), Project-ID 16.05.

1

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

1. Introduction

In the last decade decision diagrams (DDs) have shown to be a powerful tool in combinatorial opti-
mization (Andersen et al. 2007, Bergman et al. 2014b, Cire and van Hoeve 2013). For a variety of
problems that classical mixed integer programming (MIP) and constraint programming (CP) tech-
niques cannot address effectively (due, e.g., weak dual bounds), new state-of-the-art methodologies
could be obtained with DDs at the core. These problems comprise prominent ones such as the min-
imum independent set, set covering, and maximum cut problems (Bergman et al. 2016b,a) as well
as diverse sequencing and scheduling problems (Cire and van Hoeve 2013), including variants of the
traveling salesman problem (TSP). Note that, common for the first group of mentioned problems is
that an optimal subset of elements needs to be selected from some ground set, while for the sequencing
problems, an optimal order (permutation) of all elements shall be determined.

Decision diagrams are in essence data structures that provide graphical representations of the so-
lution space of an optimization problem. More specifically, a relaxed DD represents a superset of all
feasible solutions in a compact way and can therefore be seen as a discrete relaxation of the problem.
A relaxed DD can be used to obtain a dual bound, but it also provides a fruitful basis for alternative
branching schemes (Bergman et al. 2016a) and constraint propagation (Andersen et al. 2007), for
example.

For the kind of problems where a subset of elements is to be selected, so-called binary decision
diagrams (BDDs) are typically used. Here, solutions are usually represented by binary vectors and
each layer of the BDD is associated with a boolean decision variable indicating whether an element
is selected or not. In contrast, for problems in which an optimal sequence of elements shall be found,
it is more natural to apply so-called multi-valued DDs (MDDs). Then, a solution is represented by
a permutation of the given elements, and consequently a layer in the MDD is associated with the
decision which element appears at the respective position in the permutation.

We contribute in considering DDs for a problem that combines the selection aspect with the se-
quencing aspect, i.e., a problem in which a subset of initially unknown size needs to be selected from
some ground set of elements and the selected elements need to be ordered to form a complete solution.
Problem-specific constraints restrict the solution space so that not all subsets have a feasible order.
More specifically, the problem we consider is the prize-collecting job sequencing problem with one com-
mon and multiple secondary resources (PC-JSOCMSR) from Horn et al. (2018). In this problem, each
job is associated with a prize and the objective is to select a subset of jobs and find a feasible schedule
such that the total prize is maximized. Note that besides the PC-JSOCMSR, the type of problems
that combines the element selection aspect with the sequencing aspect is not uncommon. For example,
the prominent class of orienteering problems (Gunawan et al. 2016), also called selective TSP, falls
into this category as well as order acceptance and single machine scheduling (Ouz et al. 2010, Silva
et al. 2018), prize-collecting single machine scheduling (Cordone et al. 2018), and other scheduling
problems in which the number of tardy jobs shall be minimized (which corresponds to selecting and
scheduling a subset of the jobs), see., e.g., Moore (1968), Lee and Kim (2012). More generally, similar
problems also appear as pricing problems in column generation approaches, for example for vehicle
routing and parallel machine scheduling problems. Last but not least, assortment problems also ex-
hibit the selection aspect—although sometimes with decisions beyond binary ones—and occasionally
the sequencing aspect, for example when optimizing over time (?).

For the type of problem with both selection and sequencing decisions we consider, it is natural to
build upon MDDs similar to those from Cire and van Hoeve (2013), as solutions can be represented
by permutations of the chosen elements. In contrast, it does not seem possible to effectively cover
the sequencing aspect in some BDD variant. A particularity of our case is that feasible solutions may
have arbitrary size in terms of the number of selected elements. This leads us to a novel technique
for constructing relaxed MDDs. The method is inspired by A∗ search, a commonly used algorithm
in path planning and problem solving (Hart et al. 1968). A priority queue is maintained for open
nodes that still need further processing. A fast-to-calculate exogenous dual bound function is used
as heuristic function to iteratively select the next node to be processed. To keep the constructed

2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

relaxed MDD compact, nodes are merged in a carefully selected way when the open list reaches
a certain size. We show for the PC-JSOCMSR that the relaxed MDDs obtained by the A∗-based
method yield substantially stronger bounds than relaxed MDDs of comparable size constructed by
two standard techniques. The main reasons for this advantage are (a) the guidance by the dual bound
heuristic, (b) that our construction is able to effectively avoid multiple nodes for identical states
at different layers of the MDD, and (c) that similar nodes can also be merged across different layers.
Substantial redundancies that cannot be avoided in the standard construction techniques are therefore
less problematic in our approach.

In order to not just obtain dual bounds, we further describe the construction of a restricted DD
that yields promising heuristic solutions for the PC-JSOCMSR. Restricted DDs in general represent
subsets of all feasible solutions. Hereby we contribute with a novel way of utilizing a previously
constructed relaxed DD in order to substantially speed up the construction of a restricted DD.

Rigorous experiments including comparisons with MIP and CP approaches as well as with a variable
neighborhood search heuristic on large benchmark instances with up to 500 jobs show the advantages
of the proposed relaxed and restricted MDD construction techniques, respectively.

The article is structured as follows. Section 2 reviews DDs with a focus on MDDs for sequencing
problems, introduces notations, and discusses related work. The PC-JSOCMSR is formally introduced
in Section 3. Section 4 presents the A∗-based construction of relaxed DDs in a rather problem-
independent way, while Section 5 adds the problem-specific aspects, such as the definition of states,
the transitions between them, and the way how nodes are merged. In Section 6, we explain how
to boost the construction of a restricted DD by exploiting an existing relaxed DD. Experimental
results are presented in Section 7. Finally, Section 8 concludes this work and outlines further research
directions.

2. Decision Diagrams for Combinatorial Optimization

Decision diagrams were originally introduced in the field of electrical circuits and formal verifica-
tion, see e.g. Lee (1959). For a comprehensive reading on DDs in optimization, their variants, appli-
cations, and successes, we refer to the book by Bergman et al. (2016a).

In the context of this work, a DD is a directed weighted acyclic multi-graphM = (V,A) with node set
V and arc set A. In the literature, the node set V is usually partitioned into layers V = V1∪ . . .∪Vn+1,
where n corresponds to the number of decision variables representing a solution. The first and the
last layer are singletons and contain the root node r ∈ V and the destination node t ∈ V , respectively.
Each arc a = (u, v) ∈ A is associated with a value val(a) and directed from a source node u in some
layer Vi to a destination node v in the subsequent layer Vi+1, i ∈ {1, . . . , n}. Such an arc refers to
the assignment of value val(a) to the i-th decision variable. While the domain of values in BDDs
is restricted to {0, 1}, MDDs have arbitrary finite domains corresponding to those of the respective
decision variables.

Each path from the root node r to the target node t corresponds to a solution encoded in the DD.
An exact DD has a one-to-one correspondence between feasible solutions and the existing r-t paths.
Let us consider a sequencing problem where a subset of the permutations π = (π1, . . . , πn) of the
ground set {1, . . . , n} forms the set of feasible solutions. Figure 1a shows an example for an exact
MDD with n = 3 encoding the permutations (1,3,2), (2,1,3), (2,3,1), (3,2,1), and (3,1,2).

Each arc a ∈ A has a length z(a) (or prize, cost, etc.) which gives the corresponding variable
assignment’s contribution to the objective value if it is chosen. The total length of an r-t path thus
corresponds to the solution’s objective value. We assume throughout this work that the considered
optimization problem is a maximization problem. Consequently, we are looking for a longest r-t path.

As long as the DD is not too large, a longest path can be found efficiently as the DD is acyclic.
Unfortunately, exact DDs for NP-hard optimization problems will in general have exponential size.
This is where relaxed DDs come into play: They are more compact and they approximate an exact DD
by encoding a superset of all feasible solutions. The longest path of a relaxed DD therefore provides

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

r

v u

t

(a) Exact MDD

π1 ∈ {1, 2, 3}

π2 ∈ {1, 2, 3}

π3 ∈ {1, 2, 3}

1|1 2|10 3|5

3|1 1|5 3|10 2|1 1|5

2|1
3|5 1|10

2|15

r

v′

t

(b) Relaxed MDD

1|1 2|10 3|5

3|1 1|5 3|10 2|1
1|5

2|1
3|5 1|10

2|15

r

v u

t

(c) Restricted MDD

1|1 2|10 3|5

3|1 1|5 1|5

2|1
3|5

2|15

Figure 1: Examples of an exact, a relaxed, and a restricted MDD for a sequencing problem with ground
set {1, 2, 3}. Each arc label shows both the element to be assigned to the corresponding
variable and the arc length as val(a)|z(a). The longest path is highlighted. For the exact
MDD, the longest path encodes the optimal permutation π∗ = (2, 3, 1) with a total prize of
30. The relaxed MDD approximates the exact MDD by merging nodes u and v into node
v′. The corresponding longest path encodes the infeasible solution π = (2, 3, 2) and yields
the upper bound 35. In the restricted MDD, node v and its incident arcs are removed and
therefore only a subset of all feasible solutions is encoded. Its longest path is the permutation
π = (3, 1, 2) of length 25, which provides a lower bound.

an upper bound to the original problem’s optimum solution value. A restricted DD, in contrast,
encodes only a subset of the feasible solutions, and its longest path therefore yields a lower bound and
a possibly promising heuristic solution. Figure 1b and 1c show a relaxed and a restricted DD for the
exact DD in Fig. 1a.

Each node u ∈ V carries problem-specific information through its state σ(u) that is reached by all
the partial solutions corresponding to the paths from the root node to node u. In our case, when
the MDDs represent subsets of permutations, each state includes the subset of elements by which the
partial solutions may still be extended, thereby defining which outgoing arcs exist; we denote this set
as P (u).

Decision diagrams are usually derived from a dynamic programming (DP) formulation of the con-
sidered problem, and therefore a strong relationship exists between the DP’s state transition graph
and the nodes of the DD (Hooker 2013). We will see this relationship in more detail when considering
the PC-JSOCMSR specifically in Section 5.

There are two fundamental methods for compiling relaxed DDs of limited size. These are, to the
best of our knowledge, used in almost all so far published works where relaxed DDs are applied to
address combinatorial optimization problems. The top-down construction (TDC) starts with just the
root node and creates the DD iteratively layer by layer, essentially performing a breadth-first search.
The size of the DD is controlled by imposing an upper bound β, called width, on the number of nodes
at each layer. If the size of a current layer exceeds β, then some nodes of this layer are selected and
merged so that the layer’s size is reduced to at most β. This merging is done in such a way that no
paths corresponding to feasible solutions are lost; new paths corresponding to infeasible solutions may
emerge, however.

The second frequently applied approach for constructing relaxed DDs is incremental refinement
(IR). It starts with a trivial relaxed DD, e.g., a DD of width one, which has just one node in each
layer. Then two major steps are repeatedly applied until some termination condition is fulfilled, e.g.,
a maximum number of nodes is reached. In the filtering step, the relaxation represented by the DD is
strengthened by removing arcs that cannot be part of any path corresponding to a feasible solution.
In the refinement step, nodes are split into pairs of new replacement nodes in order to remove some

4

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

of the paths that correspond to infeasible solutions.
Besides TDC and IR, Bergman and Cire (2017) proposed to consider the compilation of a relaxed

DD as an optimization problem and investigated a MIP formulation. While this approach is useful
for benchmarking different compilation methods on small problem instances, it is computationally too
expensive for any practical application. In another work, Römer et al. (2018) suggested a local search
framework that serves as a more general scheme to obtain relaxed DDs. It is based on a set of local
operations for manipulating and iteratively improving a DD, including the node splitting and merging
from IR and TDC, respectively, and arc redirection as a new operator. Again, both approaches are
strongly layer-oriented.

Especially in the context of binary DDs, a commonly used extension that frequently yields more
compact DDs are so-called long arcs (Bryant 1986, Minato 1993). They skip one or more layers and
represent multiple variable assignments with one arc. In zero-suppressed DDs, variables corresponding
to skipped layers take the value zero, while in one-suppressed DDs they get value one. Alternatively,
a long arc may indicate that the skipped variables can take either value. For example, Bergman et al.
(2014b) suggested to use zero-suppressed DDs for the independent set problem, while Kowalczyk and
Leus (2018) applied them to solve the pricing problem in a branch-and-price algorithm for parallel
machine scheduling.

In conjunction with scheduling and sequencing problems, MDDs were already successfully applied
e.g. to single machine scheduling problems (Cire and van Hoeve 2013), the time-dependent traveling
salesman problem with and without time windows, the time-dependent sequential ordering prob-
lem (Kinable et al. 2017), and job sequencing with time windows and state-dependent processing
times (Hooker 2017).

All these approaches utilize MDDs for permutations similar to our example in Fig. 1. An alternative
way of representing sets of permutations as DDs has been described by Minato (2011). It builds upon
zero-suppressed decision diagrams and encodes permutations by binary decision variables that indicate
the transposition of pairs of elements. While this approach offers interesting advantages concerning
certain algebraic operations, it appears nontrivial to efficiently express typical objective functions from
routing and scheduling in terms of arc lengths on such DDs.

2.1. MDDs for Problems with Both Selection and Sequencing Decisions

To address problems like the PC-JSOCMSR, the above described MDDs for permutations can be
extended in natural ways.

A commonly used approach for modeling problems with multiple different goal states is to use a
single target node t and connect each other node that corresponds to a feasible end state to this
target node with a special termination arc of length zero. Such a termination arc a has a special value
val(a) = T and does not correspond to any classical variable assignment. See Fig. 2a for an example
of such an approach in our case.

A simpler method can be used for optimization problems where appending an element to a solution,
if feasible, always leads to a solution that is not worse. This is, in particular, the case when all arc
lengths are non-negative. Here, we can avoid additional artificial arcs and simply redirect all arcs that
lead to a non-extendable state directly to the target node t; see Fig. 2b. These redirected arcs may
now skip layers. In contrast to the previously discussed long arcs, however, our arcs here still represent
single variable assignments. In the remainder of this work, we consider just this simpler redirection
approach without explicit termination arcs. However, the algorithmic concepts we present can also be
adapted in a straightforward way to the more general DD structure with termination arcs.

A further advantage of our MDDs for problems with both selection and sequencing decisions is
illustrated in Fig. 2b–c. In Fig. 2b, consider the substructures rooted at nodes v and v′ and note
thereby that due to the variable solution length, isomorphic substructures appear. In Fig. 2c, the
MDD is condensed by storing this substructure just once, with all arcs leading to the two substructures
in Fig. 2b redirected to the single substructure. In this way, many redundancies might be avoided
and substantially more compact MDDs representing the same set of solutions may be obtained. Note,

5

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

r

v

v′

t

(a)

π1

π2

π3

π4

π5

1|1
2|1 3|1 4|1 5|1

3|14|16|1 1|1 2|1 1|1 3|1

3|15|15|1 6|1 1|1 2|1

5|1 6|1

T|0

T|0

T|0

T|0

T|0
T|0 T|0

T|0

r

v

v′

t

(b)

5|1

1|1
2|1 3|1 4|1

4|16|1 1|1 2|1 1|1 3|1

1|1 2|1

3|1
3|1

5|1 5|1 6|1

5|1
6|1

r

v′

t

(c)

5|1

1|1
2|1

3|1

4|1

4|1

6|1

3|1

1|1

1|1 2|1

3|1
3|1

5|1

5|1
6|1

Figure 2: MDD variants for a problem with both selection and sequencing decisions encoding the
same set of solutions: (a) using artificial termination arcs with val(a) = T; (b) redirecting
all arcs leading to non-extendable states directly to the target node (if appending an element
may never yield a worse feasible solution); (c) additionally avoiding multiple instances of
isomorphic substructures (shaded parts).

however, that classical DD construction techniques such as TDC and IR are not able to create such
an MDD as they rely on the notion that an arc originating at layer i, i = 1, . . . , n, (or a long arc
passing a layer i) assigns a value to the i-th decision variable. The A∗-based construction method we
will propose in Section 4 does not rely on the layer-to-variable relationship but more generally just
assumes that on any r-t path, the i-th arc represents an assignment to the i-th variable.

3. Prize-Collecting Job Sequencing with One Common and Multiple
Secondary Resources

We consider here specifically the prize-collecting job sequencing with one common and multiple sec-
ondary resources (PC-JSOCMSR), which was introduced by Horn et al. (2018).

Given is a set of jobs where each job is associated with a prize. Among these jobs, a subset of
maximum total prize shall be selected and feasibly scheduled. Each job has individual time windows
and can only be performed during one of these. The processing of each job requires two resources: a
common resource, which all the jobs need for a part of their processing, and a secondary resource which
is shared by only a subset of the other jobs but needed for the whole processing time. Each resource
can only be used for processing one job at a time. As example, consider an application similarly as
the one described by Van der Veen et al. (1998): The common resource might be an oven and the
secondary resources molds of different types; jobs correspond to different products to be processed in
the oven and each product requires a particular mold. There is some preprocessing, where the mold
is already required before the prepared product can be put with its mold into the oven; after the heat
treatment, the product is taken from the oven but still needs to be cooled within the mold for some
time. Only thereafter, the mold can be used for a successive product.

Figure 3 illustrates a solution in which jobs 8, 1, 7, 10, and 4 have been selected and scheduled. The
processing of a job is illustrated as a bar with the white part referring to the usage of the common
resource. The top row shows when a job uses the common resource (e.g., the oven) and rows one to
three show the schedule for each of the three secondary resources (e.g., the three molds).

6

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

time

res.

1 10

7

8 4

8 1 107 40

1

2

3

s1,s8 s7 s10 s4

Figure 3: A feasible schedule of jobs 1, 4, 7, 8, 10 of a PC-
JSOCMSR instance with n = 10 jobs and m = 3
secondary resources.

0,qj

secondary resource
pj

pprej p0j
common
resource

ppostj

qj qj

Figure 4: Phases of a job j ∈ J with
respective times and re-
quired resources.

3.1. Formal Definition

More formally, we denote the set of (renewable) resources by R0 = {0}∪R, where resource 0 refers to
the common resource and R = {1, . . . ,m} to m secondary resources. The set of jobs to be considered
is J = {1, . . . , n}, where n denotes the number of jobs. Each job j ∈ J has an assigned secondary
resource qj ∈ R needed for its whole processing time pj > 0, while the common resource is required
for the time p0

j , starting after a pre-processing time ppre
j ≥ 0 from the the job’s start time. The

remaining time for which the secondary resource is still needed, but the common resource is not, is
the post-processing time ppost

j = pj − ppre
j − p0

j ≥ 0. A selected job must always be performed without
preemption. Figure 4 illustrates a job with its required resources and respective times.

If a job j ∈ J is scheduled it must be performed without preemption within one of its ωj disjunctive
time windows Wj = {Wjk | k = 0, . . . , ωj} with Wjk = [W start

jk ,W end
jk], where W end

jk −W start
jk ≥ pj ,

j ∈ J . For job j, let the release time be T rel
j = mink=0,...,ωj

W start
jk and the deadline be T dead

j =

maxk=0,...,ωj
W end

jk . The overall time interval to consider is then
[
Tmin, Tmax

]
with Tmin = minj∈J T rel

j

and Tmax = maxj∈J T dead
j . Note that the existence of unavailability periods of resources is also covered

by the above formulation since these can be translated into time windows of the jobs.
Last but not least, each job j ∈ J is associated with a prize zj > 0 and the objective is to select

a subset of jobs S ⊆ J and find a feasible schedule for them so that the total prize of these jobs is
maximized:

Z∗ = max
S⊆J

Z(S) = max
S⊆J

∑

j∈S
zj . (1)

A feasible schedule assigns each job in S a feasible starting time. Since each job requires the
common resource and since this resource can be used only by one job at a time, any feasible schedule
is characterized by the sequence π = (πi)i=1,...,|S| in which the selected jobs use the common resource;
for example π = (8, 1, 7, 10, 4) for the solution in Fig. 4. For such a sequence, valid job starting times
can always be computed in a straightforward greedy way. This is done by assigning the jobs in the
given order the earliest possible starting times with respect to their time windows and the resource
availabilities considering all earlier scheduled jobs. Such a schedule is referred to as a normalized
schedule. It is easy to see that any feasible schedule always has a corresponding normalized schedule
that is also feasible. Consequently, it is sufficient to search the space of all normalized schedules and
thus all respective job sequences to solve PC-JSOCMSR.

3.2. Earlier Work on the PC-JSOCMSR

Originally, Van der Veen et al. (1998) has considered a variant of the problem in which all jobs have
to be scheduled and the objective is to minimize the makespan. A crucial condition in this work was
that the post-processing times were assumed to be negligible compared to the total processing times
of the jobs. This simplifies the problem substantially since it implies that the start time of each job
only depends on its immediate predecessor. The problem could therefore be modeled as a Traveling

7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Salesman Problem (TSP) with a special cost structure that allows to solve the problem efficiently in
time O(n log n).

The variant of the problem with general post-processing times, but still with the aim to schedule
all jobs and minimize the makespan, has been treated in Horn et al. (2019a) by an A∗/beam search
anytime algorithm. The authors showed the problem to be NP-hard and could solve instances with
up to 1000 jobs to proven optimality. The good computational performance is mainly thanks to a
detailed study of the problem structure which yielded a tight dual bound calculation.

The prize-collecting problem variant we consider here, the PC-JSOCMSR, was first described in
Horn et al. (2018), where an exact A∗ algorithm is proposed; see also ? for an extended version
of the original conference paper. To determine tight bounds for this problem variant turned out
to be more difficult due to the prize-collecting aspect and the time windows. Different variants of
upper bound calculations based on Lagrangian and linear programming relaxation were investigated.
Comparisons to a compact MIP model and a MiniZinc CP model solved by different backends indicated
the superiority of the A∗ search. Nevertheless, only instances with up to 30 jobs could be consistently
solved to optimality. For instances with 80 jobs, an optimal solution was only found and verified for
a few of them.

To obtain dual bounds and heuristic solutions for larger PC-JSOCMSR instances, Maschler and
Raidl (2018a) investigated classical TDC and IR approaches to construct relaxed MDDs and a top-
down construction for restricted MDDs. In addition, an independent general variable neighborhood
search (GVNS) metaheuristic was considered. Instances with up to 300 jobs were studied. It turned
out that IR frequently yields relaxed DDs of roughly comparable size with stronger upper bounds than
TDC. Differences are particularly significant for instances with a larger number of jobs. IR’s running
times are, however, in general higher than those of TDC for constructing MDDs of comparable size.
The heuristic solutions obtained from the restricted DDs were usually better than or on par with the
solutions obtained from the GVNS, except for the largest skewed instances, where the GVNS performed
better. In our experimental investigations in Section 7 we will also compare to these approaches.

3.3. Applications

As already briefly sketched, the PC-JSOCMSR may arise in the context of the production or process-
ing of certain products on a single machine (the common resource), for example to perform a heat
treatment. Some raw material is put into specific molds or fixtures (the secondary resources), which
are then sequentially processed on the single machine. In order to use the fixtures/molds again, some
post-processing may be required (e.g., cooling). The raw material may only be available on certain
times within a limited time horizon and the task is to select the in some sense most valuable subset
of products to produce or process on the single machine within the limited time horizon.

Our interest in the PC-JSOCMSR has been primarily motivated from work on two real-world
applications in which the PC-JSOCMSR appears as a simplified subproblem at the core.

The first application concerns the scheduling of particle therapies for cancer treatments (Maschler
and Raidl 2018b). Here, the common resource corresponds to a synchrotron (i.e., a particle accelerator)
in which proton or carbon particles get accelerated to almost light speed and are directed to one of a
few treatment rooms in which one patient gets radiated at a time. The typically two to four differently
equipped treatment rooms are the secondary resources. Preparations like positioning and a possible
anesthesia yield a pre-processing time, while specific medical inspections that are performed after
the radiation yield a post-processing time. In the long-term planning, the planning horizon consists
of several weeks and due to the overall problem’s complexity, a decomposition approach is used in
which the PC-JSOCMSR appears as subproblem for each day: To utilize the available working time
at a considered day as best as possible, a most valuable subset of all remaining treatments to be
performed is selected and scheduled. Not scheduled treatments have to be dealt with at other days.
The availability of further required resources, such as medical stuff, is taken into account by setting
the jobs’ time windows accordingly. Note that the sketched approach is closely related to solving a
pricing problem in the context of column generation.

8

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

The second application is pre-runtime scheduling of avionic systems (electronic systems in aircraft)
as introduced in Blikstad et al. (2018) and ?. The industrially relevant instances considered in these
articles are too complex and large-scale to be addressed directly and instead they need to be solved
by some decomposition. The PC-JSOCMSR appears as an important sub-structure both in the exact
decomposition approach in Blikstad et al. (2018) and in the matheuristic approach in ?. Briefly
described, the considered system consists of a set of nodes and each of these contains a set of modules
(processors) with jobs to be scheduled. In each node, there is a single module called the communication
module, which corresponds to the common resource in PC-JSOCMSR. Each node also has a set of
application modules, which correspond to the secondary resources. By solving a PC-JSOCMSR,
partial and simplified schedules for the nodes can be constructed. In Blikstad et al. (2018) and ?,
this is of relevance in a subproblem where a restriction of the original problem is to be solved and the
objective is to schedule as many jobs as possible. Also, to create partial schedules for the nodes would
be of interest in rolling-horizon methods for this type of problem.

For more details on both applications we refer to ?. Benchmark instances reflecting the structure
of these two applications have been used in the mentioned earlier works on the PC-JSOCMSR, and
we will adopt the larger instances from those and extend the benchmark set in our experimental
evaluation.

3.4. Further Related Work

The PC-JSOCMSR might also be modeled as a more general Resource-Constrained Project Scheduling
(RCPS) problem with maximal time lags by splitting each job according to the resource usage into
three sub-jobs; for a survey on RCPS see Hartmann and Briskorn (2010). These three sub-jobs must
be executed sequentially without any time lags. However, since each job of the PC-JSOCMSR problem
requires three jobs in a RCPS problem and the RCPS also is known to be difficult to solve in practice,
this approach does not seem likely to yield better results than a well chosen problem-specific approach.

4. A∗-Based Construction of a Relaxed MDD

We propose to construct relaxed MDDs for the PC-JSOCMSR problem and possibly other problems
with both selection and sequencing decisions in a novel way that essentially adapts the classical TDC
towards the spirit of A∗ search. Instead of following a breadth-first search we turn towards a best-first
search where layers do not play a role anymore. The key characteristics of this scheme are:

1. It naturally avoids multiple nodes for identical states at different layers and consequently multiple
copies of isomorphic substructures (cf. Section 2.1 and Fig. 2).

2. Node expansions and the selection of nodes to be merged are guided by an auxiliary upper bound
function.

3. Partner nodes for merging are selected by considering state similarity and merging of nodes
across different layers is enabled in a natural way.

These features allow to obtain more compact relaxed MDDs that provide tighter upper bounds than
the so far used classical construction techniques.

4.1. A∗ Search

A∗ search (Hart et al. 1968) is a commonly applied technique in path planning and problem solving.
It is well known for its ability to efficiently find best paths in very large (state) graphs. The following
brief overview on A∗ search builds upon the notation already introduced in our DD setting. A∗

search follows a best-first-search strategy and uses as key ingredient a heuristic function Zub(u) that
estimates, for each node u reached, the cost to get to the target node t in a best way, the so-called

9

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

cost-to-go1. All not yet expanded nodes, called open nodes, are maintained in a priority queue, the
open list Q. This list is partially sorted according to a priority function

f(u) = Z lp(u) + Zub(u) (2)

where Z lp(u) denotes the length of the so far best best path from the root node r to node u. Initially, Q
contains just the root node. The A∗ search then always takes a node with highest priority from Q and
expands it by considering all outgoing arcs. Destination nodes that are reached in better ways via the
expanded node are updated and newly reached nodes are added to Q. Considering maximization, a
heuristic function Zub that never underestimates the real cost-to-go (i.e., is an upper bound function)
is called admissible. A∗ search terminates when t is selected from Q for expansion. If an admissible
heuristic is used, then Z lp(t) is optimal. From now on let us assume that Zub is indeed admissible. The
efficiency of A∗ search mostly relies on how well the heuristic function estimates the real cost-to-go.

4.2. Constructing Exact MDDs by A∗ Search

When performing the A∗ search, all encountered nodes and arcs that correspond to feasible transitions
are stored. If the construction process is carried out until the open list becomes empty and thereby
all nodes have been expanded, then a complete MDD is obtained. Alternatively, the A∗ search’s
criterion can be applied, and then the search is terminated already when the target node is selected
for expansion. In this case, typically substantially less nodes will have been expanded, and the obtained
MDD is in general incomplete. Nevertheless, we know due to the optimality condition of A∗ search
that at least one optimal path is contained and thus an optimal solution is indeed represented.

4.3. Constructing Relaxed MDDs

To obtain a compact relaxed MDD we now extend the above A∗-based construction by limiting the
open list. This is achieved by merging similar and less promising nodes when the open list exceeds a
certain size φ. Details on how we choose the nodes to be merged will be presented in Section 4.4 .
Selected nodes are merged in the same problem-specific ways as in traditional relaxed DD construction
techniques. In particular, it has to be guaranteed that no paths corresponding to feasible solutions
get lost. Section 5.2 will show how this is done in for the PC-JSOCMSR.

When performing this MDD construction until the open list becomes empty, we now obtain a
complete relaxed MDD that indeed represents a superset of all feasible solutions and yields an upper
bound on the optimal solution value.

Alternatively, we may also here already terminate early once the target node is selected for expan-
sion. Due to the merging and the optimality condition of A∗ search, we have then obtained a path
whose length is a valid upper bound to the optimal solution value, and this bound cannot be further
improved by continuing the MDD construction. Only longer paths corresponding to weaker bounds
may later arise due to further node merges. Let us denote this best obtained bound by Zub

min.
Thus, the termination criterion to be used depends on the goal for which the MDD is constructed.

If we are only interested in the upper bound or, for example, a DD-based branch-and-bound (Bergman
et al. 2016a) shall be performed, the early termination may be very meaningful and can save much
time. However, should we indeed need a representation of a complete superset of all feasible solutions,
the construction has to be continued.

Algorithm 1 shows the proposed MDD construction technique in pseudo-code. After the initializa-
tion phase, the main loop is entered. At each major iteration, a node u with maximum priority f(u)
is taken from the open list Q. As long as the target node t was not chosen for expansion, the node’s
f value provides a valid upper bound and Zub

min is updated accordingly in Line 7. If t was chosen, the
optional early termination takes places.

1Note that the term cost-to-go is more fitting in the context of minimization. We aim at maximizing the total length,
benefit, or prize, and one might therefore consider “length-to-go” more suitable. Nevertheless, we stay here with the
term cost-to-go as it is commonly used in the literature.

10

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Algorithm 1: A∗-based construction of a relaxed MDD

Input: open list size limit φ
Output: relaxed MDD M = (V,A) and upper bound to optimal solution value

1 create root node r corresponding to initial state;

2 open list Q← {(r, f(r) = Zub(r))};
3 Zub

min ← Zub(r); t-expanded← false;
4 while Q 6= ∅ do
5 u← pop node with largest f(u) from Q;
6 if not t-expanded then
7 Zub

min ← min(Zub
min, f(u)) ;

8 if u = t then
9 t-expanded← true;

10 // optional, if just the upper bound is of interest:

11 return incomplete MDD M and upper bound Zub
min;

12 if u not yet expanded then
13 // expand node u:
14 foreach feasible successor state Σ of σ(u) do
15 if 6 ∃v ∈ V | σ(v) = Σ then
16 add new node v to V with σ(v) = Σ, Z lp(v) = 0;

17 add new arc a = (u, v) to A;

18 if Z lp(u) + z(a) > Z lp(v) then
19 Z lp(v)← Z lp(u) + z(a);

20 Q← Q ∪ {(v, f(v) = Z lp(v) + Zub(v))};

21 else
22 // re-expand node u:
23 foreach arc a = (u, v) ∈ A do
24 if Z lp(u) + z(a) > Z lp(v) then
25 Z lp(v)← Z lp(u) + z(a);

26 Q← Q ∪ {(v, f(v) = Z lp(v) + Zub(v))};

27 // reduce size of Q:
28 if |Q| > φ then
29 try to merge nodes in Q until |Q| ≤ φ according to Alg. 2;

30 return relaxed MDD M and upper bound Zub
min;

Next, the case when node u has not yet been expanded is handled by considering all feasible
transitions from state σ(u) and creating new nodes and arcs accordingly. If thereby a new path to
a node v increases Z lp(v), then node v is (re-)inserted into Q. If node u was already expanded, a
re-expansion has to take place because a longer path to u, yielding a larger Z lp(u), has been found
in an iteration after the node’s original expansion. This is done by propagating the updated Z lp(u)
to all its successor nodes and evaluating if they also need re-expansions. Note that, in general, we
cannot avoid such re-expansions even when the upper bound function is consistent since node merges
may lead to new longer paths.

After each node expansion, the algorithm checks if the size of the open list |Q| exceeds the limit
φ. If this is the case, then the algorithm tries to reduce Q by merging nodes as explained in the next
section. Algorithm 1 terminates regularly when the open list becomes empty and returns the relaxed
MDD together with the best obtained upper bound Zub

min.

11

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Algorithm 2: Reduce Q by merging nodes

Input: open list Q, global set of collector nodes V c (initially empty)
Output: possibly reduced open list Q

1 for u ∈ Q in increasing order of values Z lp(·) do
2 if |Q| ≤ φ then
3 break;

4 while u not expanded ∧ ∃v ∈ V c | L(v) = L(u) ∧ u 6= v ∧ v not expanded do
5 create new node v′ with merged state σ(v′) = σ(u)⊕ σ(v);
6 remove u from Q and v from Q and V c;
7 if ∃v′′ ∈ V | σ(v′′) = σ(v′) then
8 f ′′old ← f(v′′);
9 redirect all incoming arcs from v′ to v′′;

10 if f(v′′) > f ′′old then
11 Q← Q ∪ {(v′′, f(v′′) = Z lp(v′′) + Zub(v′′))};
12 v′ ← v′′;

13 else
14 add node v′ to V ;

15 Q← Q ∪ {(v′, f(v′) = Z lp(v′) + Zub(v′))};
16 u← v′;

17 if u not expanded then
18 insert u into V c;

19 return Q;

4.4. Reducing the Open List by Merging

Merging different nodes usually introduces new paths corresponding to infeasible solutions, and this
typically weakens the upper bound obtained. Therefore we aim at quickly identifying nodes for merging
that (a) are less likely to be part of some finally longest path; (b) are associated with similar states,
since this should imply that the merged state still is a strong representative for both; (c) do not
introduce cycles in the MDD as they would lead to infinite solutions; and (d) ensure that the open list
gets empty after a finite number of expansions. The last two aspects are crucial conditions to ensure a
proper termination of the approach, and they are not trivially fulfilled due to the possibility to merge
across different layers.

Aspect (a) is considered by iterating over the nodes in the open list in an increasing Z lp-order and
trying to merge each node with a suitably selected partner node in a pairwise fashion until the size of
the open list does not exceed φ anymore. The motivation for the increasing Z lp-order is that A∗ search
has so far postponed the expansion of these nodes while other nodes with comparable Z lp values have
already been expanded. Therefore, the nodes with small Z lp values can be argued to be less likely to
appear in a longest path.2

The selection of the partner node for merging is done considering aspects (b) to (d) by utilizing a
global set of so-called collector nodes V c. To this end, we define a problem-specific labeling function
L(u) that maps the data associated with a node u—in particular its state σ(u)—to a simpler label of a
restricted finite domain DL, thereby partitioning the nodes into subsets of similar nodes. Our labeling
function, for example, may drop, aggregate, or relax parts of the states considered less important and
condense the information in this way. Similar principles as in state-space relaxation (Christofides et al.

2We remark that we considered in preliminary experiments also an increasing f order, thus processing the priority queue
essentially in reverse order. While we obtained mostly MDDs of roughly comparable quality, they were sometimes
significantly larger and more computation time was needed.

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

1981) can be applied. The labeling function, however, may additionally also consider the upper bound
Zub(u) as criterion for similarity; experimental results in Section 7 will show the particular usefulness
of this. The global set of collector nodes V c is initially empty and realized as a dictionary (e.g., hash
table) indexed by the labels so that for each label in DL, there is at most one collector node in V c,
and thus |V c| ≤ |DL|. In this way, we can efficiently determine for any node u if a related collector
node with the same label L(u) already exists and, in this case, directly access it.

Algorithm 2 shows the whole procedure to reduce the open list. As long as the open list is too large,
nodes are selected in increasing Z lp-order. For a chosen node u, it is checked if it is not yet expanded
and if a corresponding collector node v, that is also not yet expanded, exists (Line 4). In this case,
u and v are merged, yielding the new node v′ with state σ(v′) = σ(u) ⊕ σ(v), where ⊕ denotes the
problem-specific state merging operation. All incoming arcs from u and v will be redirected to the
new node v′. Consequently, u is removed from Q and v from Q as well as V c. Next, we have to
integrate the new node v′ into the node set V by avoiding multiple nodes in the set V associated
with the same state (Line 7). Furthermore v′ becomes a collector node in V c, essentially replacing the
former collector node v. Node v′ may, however, have a different label than the former v, and some
other collector node with the same label as v′ may already exists in V c. In this case, we iterate the
merging with these nodes by continuing the while-loop in Line 4.

Note that Algorithm 2 shows the main idea pointing out the important steps. In a concrete imple-
mentation, a few additional corner cases need to be considered, in particular when collector nodes get
changed (e.g., expanded) between two calls of Algorithm 2.

5. A∗-Based MDD Construction for PC-JSOCMSR

We now consider the problem-specific details to apply the A∗-based construction of a relaxed MDD
specifically to PC-JSOCMSR. The root node r represents the empty schedule. An arc a corresponds
to job val(a) being appended to a partial solution represented by a permutation π and this job being
scheduled at its earliest feasible time. The length associated with arc a is the prize of its corresponding
job, i.e., z(a) = zval(a). In this way, the length of a path from r to some node u corresponds to the
total prize of all so far scheduled jobs. The target node t subsumes all states that cannot be further
extended, and thus we want to find a maximum length r-t path.

In the following we define the states and state transitions as well as the underlying DP formulation
for PC-JSOCMSR, as introduced in Horn et al. (2018).

5.1. States and State Transitions

A state in PC-JSOCMSR must describe all relevant aspects in order to determine the earliest starting
time of any successive job that can be scheduled. For a node u this is the tuple σ(u) = (P (u), t(u))
consisting of

• the set P (u) ⊆ J of jobs that can still be feasibly scheduled, and

• the vector t(u) = (tr(u))r∈R0 of the earliest times from which each resource r is available for
performing a next job.

To simplify the consideration of the time windows, we introduce the function

eft(j, t) = min({t′ ≥ t | ∃k :
[
t′, t′ + pj

]
⊆Wjk} ∪ {Tmax}), (3)

that yields the earliest feasible time, not smaller than the provided time t ≤ Tmax, at which job j can
be scheduled according to the time windows Wj of the given job j ∈ J . The value eft(j, t) = Tmax

indicates that job j cannot be feasibly included in the schedule at time t or later.
The state of the root node is σ(r) = (P (r), t(r)) = (J, (Tmin, . . . , Tmin)) and represents the original

instance of the problem, with no jobs scheduled or excluded yet, and the target node’s state is σ(t) =

13

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

(P (t), t(t)) = (∅, (Tmax, . . . , Tmax)). An arc a = (u, v) represents the transition from state (P (u), t(u))
to state (P (v), t(v)) that is achieved by scheduling job j = val(a), j ∈ P (u), at its earliest possible time
w.r.t. vector t(u). When performing this transition, the start time of job j w.r.t. state (P (u), t(u)) is

s ((P (u), t(u)), j) = eft
(
j,max(t0 − ppre

j , tqj)
)
. (4)

The transition function to obtain the successor state (P (v), t(v)) of state (P (u), t(u)) when scheduling
job j ∈ P (u) is

τ ((P (u), t(u)), j) =

{
(P (u) \ {j}, t(v)), if s((P (u), t(u)), j) < Tmax,

0̂, else,
(5)

with

t0(v) = s((P (u), t(u)), j) + ppre
j + p0

j , (6)

tr(v) = s((P (u), t(u)), j) + pj , for r = qj , (7)

tr(v) = tr(u), for r ∈ R \ {qj}, (8)

and where 0̂ represents the infeasible state. If a transition results in the infeasible state, the corre-
sponding arc and node are omitted in the MDD.

Using these definitions of states and transitions, we can express the optimal solution value of the
PC-JSOCMSR subproblem represented by a node u by the recursive DP formulation

Z∗(u) = max
(
{Z∗(τ(σ(u), j)) + zj | j ∈ P (u), τ(σ(u), j) 6= 0̂} ∪ {0}

)
(9)

and the overall PC-JSOCMSR solution value is Z∗(r).
In our implementation, each determined state further undergoes a strengthening procedure described

in Horn et al. (2018) and summarized in A. This state strengthening exploits dominance relationships
without omitting any feasible solutions. It typically reduces the number of states that need to be
considered substantially and helps to earlier recognize infeasible transitions.

Concerning the auxiliary upper bound function Zub(u) for the cost-to-go from a node u, we investi-
gated in ? different fast-to-compute alternatives for PC-JSOCMSR. We adopt here the strongest one
which is based on solving a set of linear programming relaxations of knapsack problems; B repeats
details on how this bound is calculated.

5.2. Merging of States

In order to compile a relaxed MDD we further have to define the merging operation. Here, when two
nodes u, v ∈ V are merged into a new single node, the merged state is

(P (u), t(u))⊕ (P (v), t(v)) =
(
P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0

)
. (10)

By this construction, the merged state allows all feasible extensions that both original states did.
Additional extensions and originally infeasible solutions may, however, become feasible due to the
merge, as is usually the case in relaxed DDs. The validity of the merging operation ⊕ is discussed in
C. If possible, the obtained state is further strengthened as described above.

Figure 5 shows an example of an exact MDD and a corresponding relaxed MDD for a small PC-
JSOCMSR instance. The states associated with the nodes are detailed in the tables below each
MDD. Arc labels indicate the scheduled job and its prize. In the exact MDD, the longest path is
highlighted and it has a total length of nine. The corresponding optimal solution is given by the
sequence π∗ = (2, 3, 4) and the respective schedule is depicted on the right side of the figure. A
relaxed MDD is shown in the middle; it has been obtained by merging nodes a and b from the exact
MDD, yielding node d. The longest path of this relaxed MDD has length ten and it represents the
sequence π∗ = (2, 2, 4), where job 2 is scheduled twice. It can here be easily verified that all r–t
paths in the exact MDD, which correspond to all feasible solutions of this PC-JSOCMSR instance,
have corresponding paths in the relaxed MDD, but there exist additional paths representing infeasible
solutions such as (2, 2, 4).

14

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

r

a b

c

t

1|2 2|43|3

4|2
2|4

3|3

4|2

1|2
3|3

4|2

4|2

Exact MDD

u P (u) t(u) Zlp(u)

r {1, 2, 3, 4} (1, 0, 3) 0
a {2, 3, 4} (3, 4, 3) 2
b {1, 3, 4} (3, 4, 3) 4
c {4} (9, 14, 8) 7
t {} (14, 14, 14) 9

r

d

c

t

1|2

2|4

3|3

4|2

1|3

2|4

3|3

4|2
4|2

Relaxed MDD

u P (u) t(u) Zlp(u)

r {1, 2, 3, 4} (1, 0, 3) 0
d {1, 2, 3, 4} (3, 4, 3) 4
c {4} (9, 14, 8) 7
t {} (14, 14, 14) 10

j pj p
pre
j

p0
j

qj zj Wj

1 4 1 2 1 2 {[0, 8]}
2 4 1 2 1 4 {[0, 8]}
3 4 0 3 2 3 {[3, 8]}
4 5 1 3 2 2 {[8, 14]}

time

res.

0 2 4 6 8 10 12 14

1

2 33 4

2

Instance:

Opt. solution π∗: Z(π∗) = 9

Figure 5: Examples of an exact MDD and a relaxed MDD for a PC-JSOCMSR instance with n = 4
jobs and m = 2 secondary resources. In the relaxed MDD, the original nodes a and b have
been merged.

5.3. Labeling Function for Collector Nodes

As a final major component, closely related to merging, we have to define the labeling function L(u)
used for indexing the collector nodes V c. Remember that this function should partition the set of
nodes into subsets such that nodes within a subset are similar enough to be promising to merge; thus,
similar nodes should tend to get the same label.

In case of PC-JSOCMSR, we use for a node u the triple L(u) = (t0(u), r(u), Zub(u)) as label, where
t0(u) is again the time from which on the common resource is available, r(u) refers to the secondary
resource of the job scheduled last in the so far longest path to node u (ties are resolved by using the
resource identified first), and Zub(u) is the upper bound for the cost-to-go.

Note that by this definition, we do not explicitly consider P (u), the set of jobs that might still
be scheduled, nor tr, r ∈ R, the individual availability times of the secondary resources. Instead of
the latter, r(u) is used as a rough substitute. The upper bound Zub(u) is an important additional
indicator that can be seen to somehow summarize important information about the state of node u.
In summary, two nodes are only merged in our A∗-based construction if (a) the common resource 0
is used to the same extent, (b) the last used secondary resource is the same, and (c) the values of the
problem-specific upper bounds coincide.

Note that a merged node will have the same t0 value as the original nodes according to Eq. (10).
Since each job requires the common resource 0 for a positive time, each transition from a node to a
successor node increases the corresponding t0 value. From this follows the important property that the
t0 values strictly increase along any path in our MDD. Consequently, it holds that cycles cannot occur
and that the open list gets empty in a finite number of iterations (since when the t0 values strictly
increase along any path, the set of jobs that might be scheduled will decrease due to the deadline
of the jobs). Hence, the increase of t0 in each state transition helps to guarantee that the algorithm
terminates with a complete relaxed MDD.

In Section 7 we will experimentally investigate also the following simpler labeling functions: L1(u) =
t0(u), L2(u) = (t0(u), r(u)), and L3(u) = (t0(u), Zub(u)).

Besides the argued theoretical convergence, it might be the case that the practical running time of
the algorithm is still too large due to the not strongly limited domain size of the labels: Values t0(u)
as well as Zub(u) may be continuous and in the worst case, exponentially many different values may

15

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

emerge in the course of our algorithm, leading to a potentially exponential number of collector nodes.
In our experiments in Section 7, this situation did not occur. In case that it does, discretizing these
values in the labeling function by appropriate rounding can be a solution.

5.4. Dominated Merging

Algorithm 2 does not merge already expanded nodes since, in general, the operations of re-evaluating
and updating the expanded sub-graphs would be too expensive. However, sometimes it is possible
to merge nodes with already expanded collector nodes without further evaluations and updates. Let
v ∈ Q be a not yet expanded node and u ∈ V be an already expanded node. If σ(v) ⊕ σ(u) = σ(u),
Z lp(v) ≤ Z lp(u), and t0(v) = t0(u) holds, then it is possible to merge v into u without changing the
state of u and without increasing the length of the currently longest path to it. The last two conditions
are important to (a) safely omit the re-expansion of node u and (b) to efficiently identify such possible
merges by additionally indexing all so far encountered nodes u ∈ V by their t0(u) values.

After each node expansion, each new or changed node in Q is considered for this type of merge by
checking the condition in conjunction with all other nodes in V that have the same t0 value. If a pair
of nodes u and v that fulfills this condition is found, we remove v from the open list and merge v
into u by redirecting all incoming arcs from v to u. Since this kind of merge does not introduce any
relaxation loss, we perform this procedure after every node expansion even if |Q| ≤ φ.

5.5. Tie Breaking in the Priority Function

The nodes in the open list Q are sorted according to the value of the priority function f , given in
Eq. (2). It is not uncommon that different nodes have the same f -value, and we therefore use the
following two-stage tie breaking in order to further guide the algorithm in a promising way. First, if
two nodes have the same f -value, we always prefer exact nodes over non-exact nodes. We call a node
exact when it has a longest path from the root node that does not contain any merged node where
the merging induced a relaxation loss. In other words, an exact node is guaranteed to have a feasible
solution that corresponds to this longest path. Such nodes are considered more promising to expand
than non-exact nodes with the same f -value. In case of a remaining tie, we prefer nodes where the
corresponding state has fewer jobs that may still be scheduled, i.e., we prefer nodes u with smaller
|P (u)|.

6. Construction of a Restricted MDD Based on a Relaxed MDD

A restricted MDD represents only a subset of all feasible solutions. It is primarily used to obtain
feasible solutions and corresponding lower bounds. The construction usually follows a layer-by-layer
top-down approach (Bergman et al. 2014a, 2016b). As for relaxed MDDs, the size of a restricted MDD
is typically limited by imposing a maximum width β for each layer. Whenever the allowed width is
exceeded, nodes are selected from the current layer according to a greedy criterion and removed
together with their incoming arcs. Note that this approach for obtaining promising feasible solutions
closely corresponds to the well-known beam search metaheuristic (Ow and Morton 1988).

So far, we are only aware of previous approaches that construct restricted DDs independently of
relaxed DDs. However, an earlier construction of a relaxed DD will, in general, have already collected
substantial information. We propose to exploit this information in a successive construction of a
restricted DD. The goal is to speed up the construction of the restricted DD and/or to obtain a
stronger restricted DD representing better solutions.

Throughout this section, we denote all elements of restricted MDDs with primed symbols, while
corresponding symbols of relaxed MDDs are not primed. Our approach applies the common top-down
compilation principle. Each node u′ ∈ V ′ in the restricted MDD always has a corresponding node
u ∈ V in the relaxed MDD M in the sense that a path from r′ to u′ represents a feasible partial
solution that is also represented in M by a path from r to node u. In other words, the node u′ ∈ V ′

16

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Algorithm 3: Construction of a restricted MDD based on a relaxed MDD

Input: relaxed MDD M = (V,A), maximum width β
Output: restricted MDD M ′ = (V ′, A′)

1 V ′1 ← {r′}; A′ ← ∅;
2 l← 1;
3 while V ′l 6= ∅ do
4 V ′l+1 ← {};
5 foreach node u′ ∈ V ′l do
6 let u ∈ V be the node corresponding to u′ w.r.t. the path from the root;
7 foreach outgoing arc a = (u, v) of node u do

8 if τ(σ(u′), val(a)) = 0̂ then
9 continue with next arc;

10 if |V ′l+1| = β ∧ node v would be removed from V ′l+1 ∪ {v} then
11 continue with next arc;

12 Σ← τ(σ(u′), val(a)); strengthen Σ;
13 if 6 ∃v′ ∈ V ′l+1 | σ(v′) = Σ then
14 add new node v′ to V ′l+1 and set σ(v′) = Σ;

15 add new arc a′ = (u′, v′) to A′;
16 if |V ′l+1| > β then
17 select and remove a node from V ′l+1 with its incoming arcs according to a greedy

criterion;

18 l← l + 1;

19 return M ′ = (V ′, A′) with V ′ = V ′1 ∪ . . . ∪ V ′l−1;

that corresponds to a node u ∈ V is the node that can be reached by the same sequence of scheduled
jobs. For each newly created node in the restricted MDD, we keep track of its corresponding node in
the relaxed MDD.

When expanding node u′, this corresponding node u will allow us to skip certain transitions in
the restricted MDD without evaluating them, i.e., we avoid to introduce the corresponding arcs and
successor nodes. In this way, a vast amount of arcs and nodes for states that cannot lead to an optimal
solution may be omitted.

Algorithm 3 shows this compilation of a restricted MDD M ′ that utilizes the relaxed MDD M .
We starts with the first layer that consists of the root node r′. Then, each successive layer V ′l+1 is
built from the preceding layer V ′l by creating nodes and arcs for feasible transitions from the states
associated with the nodes in V ′l .

Here comes the first novel aspect: For each node u′ in layer V ′l we consider only state transitions
corresponding to outgoing arcs of the respective node u in the relaxed MDD. Other potentially feasible
state transitions do not need to be considered since we know from the relaxed MDD that they cannot
lead to an optimal feasible solution. Note, however, that the relaxed node u might have outgoing
arcs representing transitions that are actually infeasible for node u′ in the restricted MDD. This
may happen since the states of u′ and u do not need to be the same but u′ may dominate u due
to merged nodes on the path from r to u in the relaxed MDD. In Line 8, our algorithm therefore
checks the feasibility of the respective transition (remember that 0̂ represents the infeasible state)
and skips infeasible ones. For PC-JSOCMSR, this feasibility check simply corresponds to testing if
val(a) ∈ P (u).

When we have reached the maximum allowed width at the current layer, we can make an efficient
pre-check if the node v′ that would be created next would be removed later when the set V ′l+1 is
greedily reduced to β nodes. To this end, we evaluate the criterion that is used to decide which nodes

17

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

are removed from the current layer for the corresponding node v in the relaxed MDD in conjunction
with the so far obtained set V ′l+1. If this criterion is chosen in a sensible way, the evaluation for v
will never indicate a removal of node v when v′ would not be removed, since either the associated
states are identical or the state of v′ dominates the state of v. In our algorithm, Line 10 realizes this
pre-check and correspondingly skips the respective transitions.

For the remaining transitions, Line 12 calculates the obtained new state Σ and creates the corre-
sponding node v′ if no node in V ′ exists yet for Σ. Then, a new arc (u′, v′) representing the transition
in the restricted MDD is added to A′. Finally, if V ′l+1 has grown to more than β nodes, a node is
removed according to the used greedy criterion.

A typical way to select the nodes for removal at each layer is to take the nodes with the smallest
lengths of their longest paths from the root node r′, i.e., the nodes with the smallest Z lp(v′), v′ ∈ V ′l+1

(Bergman et al. 2014a, 2016b). As already observed in Maschler and Raidl (2018a) this strategy is
not beneficial for PC-JSOCMSR since it disregards the advances in the time line. Instead, we remove
nodes with the smallest Z lp(v′)/t0(v′) ratios in our implementation for the PC-JSOCMSR. When
applying this removal criterion to the corresponding node v of the relaxed MDD in Line 10, it holds
that Z lp(v)/t0(v) ≥ Z lp(v′)/t0(v′) as Z lp(v) ≥ Z lp(v′) and t0(v) ≤ t0(v′) since state σ(v′) is equal to
or dominates state σ(v). We can even sharpen this estimation by using (Z lp(u′) + z(a))/t0(v) and
thus take advantage of our knowledge of Z lp(u′) and the respective transition cost z(a) to reach node
v.

The benefits of exploiting the relaxed MDD in the compilation of the restricted MDD depends on
how closely the exact states in the restricted MDD are approximated by the corresponding states
in the relaxed MDD as well as the size of the solution space encoded in the relaxed MDD. Various
filtering techniques, as for example described by Cire and van Hoeve (2013) for sequencing problems,
can substantially reduce relaxed MDDs, and consequently, their application to the relaxed MDD before
its exploitation in the construction of the restricted MDD may be advantageous.

7. Computational Results

The A∗-based construction of a relaxed MDD for the PC-JSOCMSR, which we abbreviate in the
following by A∗C, as well as the approach from the last section to further derive a restricted MDD
were implemented in C++ using GNU g++ 5.4.1. All tests were performed on a cluster of machines
with Intel Xeon E5-2640 v4 processors with 2.40 GHz in single-threaded mode with a memory limit
of 16 GB per run.

We use two non-trivial sets of benchmark instances from ? and, applying the same randomized
construction scheme, further extended these to include instances with up to 500 jobs. The first set
is based on characteristics from the particle therapy application scenario and denoted here as set P
(referred to as set B in the former work), whereas the second instance set is based on the avionic
system scheduling scenario and called set A; cf. Section 3.3.

The two instance sets differ substantially in their structure. For the particle therapy ones, the
number of jobs that can approximately be scheduled grows linearly with the instance size, and the
prize for each job is correlated to the time the job needs the common resource. In contrast, for the
avionic instances, the number of jobs that can be scheduled stays in the same order of magnitude
irrespective of the instance size and the prize does not depend on a job’s processing time but instead
on a priority. The number of secondary resources is m ∈ {2, 3} in set P, which corresponds to the
available rooms at a real particle therapy center in Austria, and m ∈ {3, 4} in set A; note that in
general more secondary resources make the problem significantly easier to solve as the common resource
tends to become the sole bottleneck. As we will see in the following results, the structural differences
in the instance sets also impact the obtained relaxed MDDs. In particular, the height of relaxed
MDDs compiled for the particle therapy instances grows with the problem size, whereas the relaxed
MDDs obtained for avionic instances typically have a height of the same magnitude. All instances
are available at https://www.ac.tuwien.ac.at/research/problem-instances and are described in

18

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

L1 L2 L3 L4

760

780

800

820

840

up
pe

r b
ou

nd
 Z

lp
(t

)

Instance set P, m = 2

L1 L2 L3 L4

1250

1300

1350

1400

1450

1500

up
pe

r b
ou

nd
 Z

lp
(t

)

Instance set A, m = 3

L1 L2 L3 L4

101

102

103

co
m

pi
la

tio
n

tim
e

[s
]

L1 L2 L3 L4

101

102

103

co
m

pi
la

tio
n

tim
e

[s
]

L1 L2 L3 L4

104

DD
 si

ze
 (#

no
de

s)

= 1000 = 2000 = 3000 = 5000
L1 L2 L3 L4

104
DD

 si
ze

 (#
no

de
s)

= 10000 = 20000 = 30000 = 50000

Figure 6: Comparison of open list size limits φ and labeling functions Li, i = 1, . . . , 4, for instances of
sets P and A with 250 jobs and m = 2 and m = 3 secondary resources, respectively.

more detail in D.
This section is structured such that first, Section 7.1 presents results from studying the impact of

different values for the open list size limit φ and of different choices for the labeling function L(u)
in the compilation of relaxed MDDs with A∗C. Thereafter, in Section 7.2, we compare the quality of
upper bounds obtained from A∗C to those from other approaches. Section 7.3 finally compares primal
bounds obtained from the derived restricted MDDs to those from other heuristic and exact approaches
for PC-JSOCMSR.

7.1. Impact of Open List Size Limit φ and Different Labeling Functions

We tested A∗C with different open list size limits φ and four different variants of the labeling function
L(u) used for mapping nodes to collector nodes. The considered labeling function variants are L1(u) =
t0(u), L2(u) = (t0(u), r(u)), L3(u) = (t0(u), Zub(u)) and L4(u) = L(u) = (t0(u), r(u), Zub(u)), as
proposed in Section 5.3. Figure 6 illustrates the impact of the different choices for φ and the labeling
function on middle-sized instances with 250 jobs of set P with m = 2 and of set A with m = 3,
respectively.

For each combination of value for φ and labeling function variant, there is a box plot drawn that
summarizes the obtained results over all 30 instances of the corresponding category. The diagrams
at the top show the lengths Z lp(t) of the longest paths from the obtained relaxed MDDs, whereas
the diagrams in the middle show the corresponding CPU-times for compiling the MDDs. More-
over, the diagrams at the bottom state the size of the relaxed MDDs in terms of the number of
nodes. The diagrams to the left in Figure 6 show the results for instance set P using the values
φ ∈ {1000, 2000, 3000, 5000}. As one could expect, we see that with increasing φ, the lengths of the
longest paths of the obtained relaxed MDDs in general get smaller, i.e., the obtained upper bounds

19

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

become stronger, while the MDD sizes and computation times naturally increase. Thus, parameter φ
indeed allows to control the MDD’s size, although not in such a direct linearly related fashion as the
width-limit in a classical top-down construction. This effect can be observed for all labeling functions.
Concerning the different labeling functions, L1(u) = t0(u) yields relaxed MDDs with in general the
smallest sizes, but also the weakest bounds. This is, however, also achieved in the shortest times. The
reason for this is that labeling function L1 does only consider the time from which on the common
resource is available and has therefore the smallest domain among the four considered labeling func-
tions. Hence, when using L1, there are in general far more node merges than with one of the other
more complex labeling functions which provide larger domains and therefore a finer differentiation
of nodes. It can clearly be seen that the additional consideration of r(u) or Zub(u) in the labeling
function in general significantly improves the obtained bounds Z lp(t), and the combination of all these
aspects in L4 provides the best results. This, however, at the cost of larger MDDs and higher running
times. The smallest median longest path length of 783 for instances with two secondary resources
were obtained when limiting the size of the open list to φ = 5000 nodes and using L4. In more detail,
note that parameter φ has more impact when using labeling function L1 and less when using labeling
function L4. This can again be explained by the domain sizes of the labeling functions, but also the
fact that the bounds obtained with L4 are in general already closer to the optimal solution values and
it becomes more and more difficult to find better bounds. When comparing the results of L2 and L3,
we can see that L2 yields mostly slightly better results, but this again at the cost of longer running
times.

The diagrams to the right in Figure 6 shows the results for instance set A using the values φ ∈
{10000, 20000, 30000, 50000}. Note that, since the time horizon in this case never exceeds T = 1000,
larger values of φ were considered than in the experiments for instance set P. This implies that also the
MDDs’ heights are restricted correspondingly, and larger values for φ can be used to utilize roughly
comparable computation times. Again, we can see that parameter φ allows to control the quality of
the obtained relaxed MDDs. Hence, with increasing φ, the lengths of the longest paths of the obtained
relaxed MDDs in general get smaller, while the computation times and MDD sizes increase.

Structurally similar results are obtained for instances of set P with three secondary resources as
well as for instances of set A with four secondary resources, cf. E.

For all further experiments, we went for a compromise between expected quality of the relaxed
MDD and compilation time and fixed the following settings. Instance set P: labeling function L3(u)
and φ = 1000; instance set A: labeling function L4(u) and φ = 20000.

7.2. Upper Bound Comparison

The five types of upper bounds to be compared are the following. The first two are from A∗C, namely
Zub

min, which is obtained when the target node is chosen for expansion, and Z lp(t), which is the longest
path length of the completely constructed relaxed MDD. A third one is obtained by solving a MIP
model with a commercial solver, while the last two come from MDDs built with traditional TDC and
IR algorithms. Remember that Z lp(t) may be larger than Zub

min due to additionally performed merging
operations after having found Zub

min.
The MIP approach to which we compare is the compact order-based formulation from ?, and we

applied Gurobi Optimizer 8.13 in single-threaded mode with a CPU time limit of 900 seconds. The
TDC and IR methods are those from Maschler and Raidl (2018a). The latter is performed with a
CPU time limit of 900 seconds and TDC is executed with two different width limits β which were
chosen in a way so that the average running times are roughly in the same order of magnitude and
usually not smaller than those of A∗C: β ∈ {300, 500} for set P and β ∈ {3000, 5000} for set A.

Figure 7 documents the results of this comparative study for instance sets P and A. The diagrams
at the top show the obtained upper bounds, the middle diagrams the computation times, and the
diagrams at the bottom the sizes of obtained relaxed MDDs in terms of the number of nodes. Each

3http://www.gurobi.com

20

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

50 100 150 200 250 300 350 400 450 500
n

0

2

4

6

8
up

pe
r b

ou
nd

×103 Instance set P, m = 2

A * C: = 1000, Zub
min

A * C: = 1000, Z lp(t)
TDC: = 300
TDC: = 500

IRLP, time limit: 900s
MIP, time limit: 900s

50 100 150 200 250 300 350 400 450 500
n

0.0

0.2

0.4

0.6

0.8

1.0

up
pe

r b
ou

nd

×104 Instance set A, m = 3

A * C: = 20000, Zub
min

A * C: = 20000, Z lp(t)
TDC: = 3000
TDC: = 5000

IRLP, time limit: 900s
MIP, time limit: 900s

50 100 150 200 250 300 350 400 450 500
n

10 1

100

101

102

103

co
m

pu
ta

tio
n

tim
e

[s
]

50 100 150 200 250 300 350 400 450 500
n

10 1

100

101

102

103

co
m

pu
ta

tio
n

tim
e

[s
]

50 100 150 200 250 300 350 400 450 500
n

103

104

105

106

DD
 si

ze
 (#

no
de

s)

50 100 150 200 250 300 350 400 450 500
n

103

104

105

106

DD
 si

ze
 (#

no
de

s)

Figure 7: Instance sets P and A with two and three secondary resources, respectively, average values
of: upper bounds obtained from A∗C, the classical TDC, the IR, and the order-based MIP
approach; respective computation times; and the sizes of the obtained relaxed MDDs.

group of bars on the horizontal axes corresponds to a specific instance class with the stated number
of jobs, and each bar indicates the average value over all 30 instances of the corresponding instance
class and the respective approach.

Concerning the depicted computation times, each first bar shows A∗C’s average time to obtain
Zub

min, i.e., when the construction would stop according the classical A∗ termination criterion, while
the second bar shows the average time required for the construction of the complete relaxed MDD.
Since the MIP approach as well as IR exhausted the time limit of 900 seconds in almost all runs, we
omit corresponding bars. More specifically, the MIP solver could only solve the smallest instances to
proven optimality. The percentages of the instances with n = 50 jobs are 23.3% and 10% of set P
for m = 2 and m = 3, respectively. The IR approach was not able to solve any instance to proven
optimality.

The results for instance set P, shown in Figure 7 on the left side, give a rather clear picture. The
average upper bounds Zub

min obtained by the A∗C algorithm are always the strongest. They are in
particular substantially better than those obtained from the TDC variants and the IR approach.
The difference is more than a factor of four for the largest instances. Even more dramatic are the
differences in the sizes of the respectively obtained MDDs. A∗C’s MDDs are usually more than an
order of magnitude smaller than those compiled with TDC and IR. The A∗C algorithm clearly can
take advantage from avoiding multiple nodes for the same state at different layers, and the merging
strategy we proposed appears to be effective. The bounds obtained from the MIP approach are clearly
better than those of TDC and IR, but also significantly worse than those of A∗C. Differences between
Zub

min and Z lp(t) are in comparison to the bounds from the other approaches not that large, but still
significant.

21

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

For instance set A, Figure 7 shows remarkable differences. The upper bounds obtained from the
MIP approach are far worse than those obtained from A∗C as well as TDC and IR. Differences between
A∗C, TDC, and IR are not that large anymore, but nevertheless, in each case the strongest upper
bounds could be obtained by A∗C. The better relative performance of the classical approaches TDC
and IR on these instances in comparison to set P can be explained by the constant time horizon
and the special prize structure, due to which the height of the MDDs is limited in a stronger way.
Concerning the size of the obtained MDDs, A∗C exhibits again substantial advantages over TDC:
A∗C’s MDDs only have about half the size of TDC’s MDDs, and those of IR are even more than three
times larger than those of A∗C for the smaller instances.

Similar results are obtained for instances of instance set P with three secondary resources as well
as for instances of instance set A with four secondary resources, cf. E.

7.3. Lower Bound Comparison to Other Approaches

Finally, we consider the A∗C approach to construct a relaxed MDD followed by the construction of a
restricted MDD and compare to other heuristic methods to approach larger PC-JSOCMSR instances.
Now, our focus is primarily on the quality of obtained heuristic solutions, i.e., lower bounds, but since
our approach also yields upper bounds from the relaxed MDD, we will also study resulting gaps. We
compare to a conventional TDC of a restricted MDD, a general variable neighborhood search (GVNS)
metaheuristic, the MIP approach, and a basic CP formulation.

After a relaxed MDD has been constructed by A∗C, it is post-processed by filtering in order to
reduce its size and strengthen it before deriving the restricted MDD. This is done as follows.

1. A first lower bound (and heuristic solution) is determined in a quick way by compiling a small
restricted MDD in an independent way (maximum width β = 100 for type P instances and
β = 15000 for type A instances).

2. Using the obtained lower bound, cost-based filtering (see, e.g., Cire and van Hoeve (2013)) is
applied in order to get rid of many arcs and nodes that cannot be part of a path representing a
better solution.

3. For each node u in the relaxed MDD, we have the upper bound for the cost-to-go obtained from
the auxiliary upper bound function Zub(u), but also the length of the longest u-t path provides
an upper bound, which we denote by Z lp↑(u). We keep the better of these bounds and check if
further arcs and nodes may be removed due to it by cost-based filtering. Note that Z lp↑(u) can
be determined for all u ∈ V efficiently by a single bottom-up traversal of the MDD.

4. When removing some ingoing arc of a node, we always re-determine the state of the node, and
if the state changes, the auxiliary upper bound Zub(u). Changes are always propagated to
successor nodes as far as they are affected.

After the relaxed MDD has been filtered, it is used to compile the main restricted MDD. Experiments
showed that on average 51.57% and 88.90% of all arcs can be removed from the relaxed MDD over
all instance sizes for type P and type A instances, respectively. This substantial reduction leads, in
particular for type A instances, to shorter computation times when compiling the main restricted
MDD.

The conventional TDC of a restricted MDD uses the same greedy criterion from Section 6 to
select nodes for removal as our compilation method based on the relaxed MDD. Figure 8 shows for
different maximum widths β a comparison between the conventional TDC and the TDC when utilizing
a previously compiled and filtered relaxed MDD by A∗C. The relaxed MDDs were compiled with
different values of φ and used labeling function L3(u) and L4(u) for instance set P and A, respectively.
Although the choice of φ has an impact on the quality of the obtained relaxed MDD, as shown in
Section 7.1, the plots in Figure 8 indicate that φ does not significant influence the finally obtained
objective values from a subsequently applied TDC for the considered instance classes. Regarding

22

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

5000 10000 15000 20000

664

665

666

667

668

669

ob
je

ct
iv

e

Instance set P, m = 2

5000 10000 15000 20000

713

714

715

716

717

718

ob
je

ct
iv

e

Instance set P, m = 3

5000 10000 15000 20000

1230

1232

1234

1236

1238

1240

ob
je

ct
iv

e

Instance set A, m = 3

5000 10000 15000 20000

1269

1270

1271

1272

1273

1274

ob
je

ct
iv

e

Instance set A, m = 4

5000 10000 15000 20000
101

102

103

co
m

pu
ta

tio
n

tim
es

 [s
]

A * C+filtering+TDC, = 500
A * C+filtering+TDC, = 1000

A * C+filtering+TDC, = 5000
conventional TDC

5000 10000 15000 20000
101

102

103

co
m

pu
ta

tio
n

tim
es

 [s
]

5000 10000 15000 20000
101

102

103

co
m

pu
ta

tio
n

tim
es

 [s
]

A * C+filtering+TDC, = 5000
A * C+filtering+TDC, = 10000

A * C+filtering+TDC, = 50000
conventional TDC

5000 10000 15000 20000
101

102

103

co
m

pu
ta

tio
n

tim
es

 [s
]

Figure 8: Comparison of A∗C+filtering+TDC and conventional TDC for instances of sets P and A
with 250 jobs: average objective values and median computation times in dependence of β.

computation times, we can see that larger values of φ will result in larger computation times. While
the obtained objective values are not substantially different compared to those from the conventional
TDC, the diagrams at the bottom row indicate substantial time savings when a relaxed MDD is used
to compile a restricted MDD. For example for instances with 250 jobs and two secondary resources
of instance set P the conventional TDC needs for β = 20000 1407 seconds to terminate whereas the
A∗C+filtering+TDC approach only needs 170 seconds. This time saving of frequently almost an order
of magnitude is the benefit of using the structural information of a previously compiled and filtered
relaxed MDD.

Moreover, we also tried to create restricted MDDs by a variant of A∗C in which nodes are removed
from the open list instead of merging them in Line 29 of Algorithm 1. This, however, only yielded
restricted MDDs with substantially worse objective values than the conventional TDC. Increasing
parameter φ to allow a larger open list size also did not help much in this case but just led to larger
computation times.

Note that the computational experiments reported in Figure 8 were done on a somewhat different
cluster environment at a later time than all other experiments of this article. After a thorough analysis
we concluded that computation times of our algorithms differed by a factor of 2.2 between the different
environments, and we have scaled the reported times in Figure 8 accordingly to make them directly
comparable.

For the main results in Table 1 we compile restricted MDDs with β = 2000 and β = 12000 for
benchmark sets P and A, respectively. Moreover, the A∗C+filtering+TDC approach compiles re-
stricted MDDs with β = 12000 and β = 45000 for benchmark sets P and A, respectively. These values
have been selected so that the TDC terminates for the largest instances in about 900 CPU-seconds.

The GVNS is the one from Maschler and Raidl (2018a). It applies a job permutation encoding, starts
with a random initial solution, and combines a classic exchange and insertion neighborhood search for
intensification. For diversification (shaking), up to four random insertion moves are performed. The
GVNS terminates when reaching a time limit of 900 seconds.

Moreover, we compare to the objective values of the best feasible solutions provided by the order-
based MIP formulation from ?, solved again by Gurobi using a single thread with a CPU time limit

23

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

A∗C+filtering+TDC TDC GVNS MIP CP

set m n obj σ(obj) %-gap tf [s] tc[s] t[s] obj σ(obj) t[s] obj σ(obj) obj σ(obj) obj σ(obj)

P 2 50 123.3 10.3 2.2 <1 <1 <1 123.3 10.3 <1 123.2 10.4 122.9 10.7 123.3 10.3
P 2 100 259.9 11.7 9.4 <1 5 6 259.2 11.7 5 259.0 11.9 238.5 13.3 200.7 20.0
P 2 150 401.2 18.9 11.5 <1 17 19 398.8 19.3 20 396.6 17.7 328.9 22.3 261.0 23.5
P 2 200 530.0 18.7 12.3 <1 43 50 526.1 19.3 54 527.1 19.0 383.4 29.5 273.6 61.2
P 2 250 667.2 21.1 12.6 1 84 100 661.7 20.0 108 660.8 22.4 475.6 29.7 281.0 52.9
P 2 300 797.4 16.8 13.1 2 145 170 792.0 16.8 193 790.0 17.5 570.8 32.1 308.1 78.5
P 2 350 931.3 25.6 13.7 3 231 282 923.9 25.2 313 923.0 26.7 626.5 53.8 326.7 122.2
P 2 400 1061.6 21.3 13.9 5 338 442 1054.4 21.4 481 1055.1 19.4 661.1 55.0 329.6 110.9
P 2 450 1197.0 28.7 13.5 7 485 679 1187.5 28.6 704 1180.9 27.4 704.7 48.5 348.6 152.4
P 2 500 1339.1 25.4 14.6 8 613 845 1330.3 25.0 949 1324.3 28.0 711.6 199.3 403.4 351.5

P 3 50 140.3 10.4 1.3 <1 <1 <1 140.3 10.4 <1 140.3 10.4 139.3 10.2 140.2 10.5
P 3 100 289.9 14.5 5.1 <1 5 6 288.4 14.6 7 288.5 14.3 268.7 16.0 240.0 16.4
P 3 150 437.4 15.1 7.1 <1 13 15 433.5 14.8 24 437.0 17.1 362.0 21.3 331.3 19.3
P 3 200 581.8 18.3 8.4 <1 27 33 576.9 18.2 59 582.9 16.3 460.8 26.7 367.2 44.4
P 3 250 716.7 13.6 9.5 1 44 63 712.0 14.4 117 721.9 16.5 573.4 22.2 380.6 89.3
P 3 300 850.3 16.0 11.2 2 71 107 846.0 15.3 210 864.0 19.8 675.1 27.6 419.5 109.8
P 3 350 988.0 26.8 11.7 3 107 171 983.3 27.7 341 1008.2 29.3 716.4 61.0 405.7 188.8
P 3 400 1124.6 24.5 12.3 5 152 296 1119.1 23.6 530 1142.5 24.1 757.8 61.9 527.5 161.1
P 3 450 1266.3 19.7 11.9 7 198 433 1257.7 20.9 751 1283.5 26.1 846.6 59.8 524.5 207.3
P 3 500 1397.8 25.3 12.3 10 269 672 1392.1 23.7 1082 1418.0 27.1 900.2 53.6 589.3 238.6

A 3 50 1130.3 39.8 5.0 7 20 57 1127.8 38.4 6 1130.3 39.8 1114.5 41.9 892.0 45.8
A 3 100 1201.1 36.5 5.6 9 81 110 1196.6 36.4 23 1201.4 37.0 1108.2 52.0 712.7 44.1
A 3 150 1215.5 26.3 6.0 11 141 169 1208.9 28.7 58 1215.5 27.0 936.7 58.0 643.4 41.9
A 3 200 1228.9 21.8 6.7 14 219 261 1220.4 25.6 109 1229.4 21.4 842.6 132.5 544.5 149.4
A 3 250 1244.7 28.6 6.6 18 279 331 1238.5 30.8 180 1245.4 28.7 703.2 79.3 575.3 48.0
A 3 300 1243.9 23.4 7.5 22 379 448 1234.4 22.9 265 1243.7 23.5 675.2 80.8 553.8 41.3
A 3 350 1256.2 22.6 7.4 30 440 542 1245.6 24.8 370 1255.5 23.6 683.8 84.4 536.5 50.3
A 3 400 1269.7 19.1 8.0 34 529 646 1262.5 19.1 493 1267.2 19.6 714.1 57.8 525.2 42.8
A 3 450 1268.4 19.2 8.3 41 609 748 1257.5 24.5 647 1268.2 18.3 730.1 79.1 516.6 48.6
A 3 500 1271.7 19.0 8.2 46 676 869 1260.4 22.7 799 1271.2 17.9 680.7 63.8 527.5 24.0

A 4 50 1141.8 35.5 3.4 7 2 45 1138.7 35.0 6 1142.4 36.2 1127.6 40.0 882.5 42.0
A 4 100 1218.8 40.6 4.0 8 57 82 1215.7 41.5 25 1218.9 40.6 1137.3 62.5 708.9 119.8
A 4 150 1253.8 30.6 4.4 10 118 146 1248.5 30.4 60 1253.5 30.9 963.7 77.7 655.6 48.5
A 4 200 1259.5 31.3 4.9 15 180 228 1253.6 32.0 118 1259.6 31.7 881.0 145.7 576.5 129.5
A 4 250 1280.4 27.0 5.9 20 277 339 1273.6 25.7 191 1280.4 28.2 702.8 60.0 541.4 134.8
A 4 300 1293.8 25.1 5.9 27 346 441 1282.6 28.0 287 1292.3 24.9 691.6 64.0 565.0 46.0
A 4 350 1298.9 23.9 5.8 32 394 504 1289.9 24.5 396 1297.2 22.9 684.6 75.4 548.8 38.1
A 4 400 1304.4 42.0 6.0 37 477 617 1298.1 41.2 533 1299.6 42.9 700.5 69.8 541.4 27.9
A 4 450 1308.4 25.2 6.9 45 551 752 1298.9 29.2 672 1304.7 26.7 696.4 65.2 546.5 56.6
A 4 500 1315.6 28.0 6.9 48 644 842 1304.0 25.8 858 1312.5 29.1 715.4 73.1 526.8 33.1

Table 1: Comparison of the subsequent application of A∗C, filtering, and the construction of restricted
MDDs to the conventional top-down construction of restricted MDDs, the GVNS, and MIP
and CP approaches.

of 900 seconds.
Last but not least, we also consider the CP model from Horn et al. (2018). The model was im-

plemented with MiniZinc 2.1.74 and we apply the backbone solver Chuffed with a time limit of 900
seconds. Results with Chuffed consistently dominated those obtained with the alternative backbone
solvers Gecode and G12 LazyFD. Note that we further performed tests with the newer MiniZinc
version 2.3.2, but obtained results were inconsistent and mostly worse than those from version 2.1.7.

The results of all approaches are presented in Table 1. Each row shows the aggregated results
over the 30 benchmark instances with the characteristics given in the first three columns. For all
approaches columns obj and σ(obj) state the mean objective values of obtained heuristic solutions
and corresponding standard deviations. For the MDD-based approaches these values correspond to
the lengths of the longest paths in the restricted MDDs. Moreover, we list for the MDD-based
approaches median total computation times in seconds in the t[s] columns, and for the A∗C based
approach more specifically in column tf [s] median times just for filtering the relaxed MDDs including

4https://www.minizinc.org

24

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

the times for determining the required lower bound and in column tc[s] median times for compiling the
final restricted MDDs. For GVNS, MIP, and CP timing information is omitted as they were always
terminated with the time limit of 900 seconds. The only exceptions are MIP and CP runs for the
smallest instances with 50 jobs, which finished in some cases earlier with proven optimality. In addition,
we list for the A∗C based approach average optimality gaps, where %-gap = 100% · (Zub

min− obj)/Zub
min.

If we disregard the results from the benchmark instances of type P with three secondary resources for
now, Table 1 gives a clear picture. A∗C+filtering+TDC provides in general the best solutions, followed
by the GVNS and the TDC. While the TDC performs, on the P instances with two secondary resources,
in most cases better than the GVNS, the GVNS is superior to the TDC on the other instances. The
weakest solutions have on average been obtained by the MIP and CP approaches, which are only
competitive for type P instances with 50 jobs. Especially, for the medium to large instances, the
A∗C based method typically requires less time than TDC. A∗C+filtering+TDC is superior to the
conventional TDC in two ways. Not only are we able to construct much larger restricted MDDs,
usually yielding better solutions in less time, but since we first also determine the relaxed MDDs, our
approach has the additional bonus of providing upper bounds. Average gaps never exceed 15% and
are in particular for instance set A usually not larger than 8%.

On benchmark instances of set P with three secondary resources, GVNS typically provides the best
solutions when more than 150 jobs are considered. The relative differences between the obtained
objective values from GVNS and our A∗C-based approach are typically about one to two percent.
We believe that in these cases, the GVNS’s local search is particularly effective. Clearly, an option
would be to finally “polish” the solutions of the MDD-based methods by applying a local search.
Another particularity of the results for set P with m = 3 are the required times tc for constructing the
restricted MDDs. Although the same maximum width is used as for the instances with two secondary
resources, these median times are considerably shorter for the case with three secondary resources than
for two. This indicates an even better exploitation of the relaxed MDD and underlines the consistent
performance improvements of A∗C+filtering+TDC over the classical TDC of restricted MDDs.

The optimality gaps increase with the problem size on all instance sets, as one might expect for a
compilation of relaxed and restricted MDDs with fixed parameter values. In comparison to instance
set A, we obtain smaller optimality gaps on type P instances with few jobs but get larger optimality
gaps for the instances with many jobs. This can be explained by the problem size independent time
horizon of set A instances, which implies a certain maximal number of jobs that can be scheduled
independently of the number of available jobs.

Last but not least, for some instances the optimality gap has been closed, i.e., they could be solved to
proven optimality. This was the case for nine of the type P instances with two secondary resources and
50 jobs. For type P instances with three secondary resources we could optimally solve ten instances
that consider 50 jobs. Furthermore, for a single benchmark instance with 50 jobs and four secondary
resources of type A, the lower and upper bound coincided.

8. Conclusions and Future Work

We considered the PC-JSOCMSR problem, a prize-collecting scheduling problem, where a subset of
jobs must be selected from a ground set of jobs and sequenced to form a feasible solution. By a simple
extension, MDDs that are traditionally used for sequencing become suitable to represent the search
space of the PC-JSOCMSR problem, where the solutions are of variable length.

By applying the principles of A∗ search, we proposed a new way of compiling relaxed MDDs for
large instances of the PC-JSOCMSR that are challenging to solve to proven optimality. The suggested
method has the advantage that it does not rely on a layer-to-variable correspondence, and consequently,
multiple nodes for the same states at different layers are efficiently avoided. In contrast, traditional
layer-oriented TDC and IR approaches would, for the PC-JSOCMSR, typically lead to relaxed MDDs
with a substantial amount of redundant isomorphic substructures. Note further that also the merging
of nodes is done across layers.

25

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Moreover, our A∗-based method utilizes an auxiliary heuristic function to estimate the cost-to-
go from each reached node. This function guides the A∗ search, and thus the relaxed MDD may
be constructed in a more meaningful way. As in any A∗ search, the better this heuristic function
estimates the real cost-to-go, the more efficient the approach becomes.

We propose to restrict the number of nodes in the open list instead of restricting the width at each
layer. If merging becomes necessary, a node that appears less promising to be part of a finally longest
path is selected first and a similar partner node is efficiently determined by the proposed collector
node concept. To this end, not yet expanded nodes are labeled in a state-space-relaxation fashion
and maintained in a dictionary for efficient lookup. Choosing a proper labeling is important both
to obtain a strong relaxation but also to prevent cycles in the construction of the relaxed MDD and
to ensure termination of the construction. Our experiments confirmed that substantially smaller and
stronger relaxed MDDs could be obtained in the same or shorter times than with traditional TDC
and IR methods.

While a relaxed MDD yields an upper bound on the optimal solution value for a maximization
problem and encodes much useful information, it does in general not directly yield a promising heuristic
solution and lower bound. For obtaining heuristic solutions, restricted MDDs are suitable. In previous
works, they have been constructed independently of the relaxed MDD. We showed how the construction
of a restricted MDD can be improved by constructing a relaxed MDD first and then exploiting the
encoded knowledge. Again, our experiments for the PC-JSOCMSR confirmed the advantages: The
main benefit is a substantial speedup in the construction of the restricted MDD. We even showed
that the total time for constructing the relaxed MDD, filtering it, and deriving a restricted MDD of a
certain size based on the relaxed MDD can take less time than the classical independent construction
of a restricted MDD of the same size. Thus, one might say that in our combined approach, one gets
the upper bound from the relaxed MDD and thus a quality guarantee in addition to a promising
heuristic solution “for free”.

We compared this overall approach to an order-based MIP model solved by Gurobi, to a GVNS
metaheuristic, and to a basic CP approach solved by MiniZinc. The MIP model only produced rather
weak lower and upper bounds for all instances except the smallest. For most cases, our approach
yielded the best solutions. An exception are the larger instances of the particle therapy benchmark
set with three secondary resources, where the GVNS outperformed the other methods.

Naturally, it is interesting to test the proposed methods in future work also on other problems that
include both the selection and sequencing aspects, like those referred to in Section 1. Although not
a strong limitation, an important property of a suitable problem may be the order-invariance of the
objective function, which is exploited by the proposed approach. Moreover, note that the idea of
exploiting relaxed DDs in the construction of a successive restricted DD is more generally applicable.
For some problems, the proposed way of finding similar partner nodes for merging may also be useful
in the context of a classical layer-wise TDC of relaxed MDDs, where so far a simpler bulk merging is
primarily used.

For some applications of relaxed DDs, an important aspect is incrementability, i.e., that a once ob-
tained complete DD can be further refined, for example, to strengthen the obtained bound. Naturally,
known iterative refinement methods based on node splitting and filtering can also directly be applied
to relaxed DDs obtained from the A∗-based construction. Moreover, the A∗-based construction may
be iteratively applied with increasing open list size limits, yielding stronger and stronger DDs over the
time. Hereby, information contained in one DD can always be exploited to speed up the construction
of a successive DD in a similar way as we derived a larger restricted DD on the basis of a relaxed DD.
An interesting research question is if a completely constructed DD can also be effectively updated
in-place by a following A∗-based refinement pass.

Last but not least, it is of relevance to investigate the proposed A∗-based MDD construction also
from a more theoretical side. Unfortunately, a constant open list size limit φ does in general not nec-
essarily imply that the obtained relaxed MDD has polynomial size, and therefore also the algorithm’s
runtime is not necessarily polynomially bounded. Note, however, that similarly no better performance

26

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

guarantees can be given for classical A∗ search without considering a more specific problem setting
and a concrete heuristic function. In fact, the resulting MDD’s actual size strongly depends on the
interplay of φ, the problem-specific heuristic function for the cost-to-go, the labeling function for the
merging, and how the merging is performed.

One extension to guarantee a termination with a complete relaxed MDD when reaching a certain
time limit or MDD size is to reduce φ to a very small value from this point onward. However, this
naive completion may in general degrade the strength of the obtained MDD substantially. Studying
more advanced methods, possibly by adaptively adjusting φ over the whole run, or developing an
entirely different way of deciding when to merge which nodes, is desirable.

Acknowledgments

This project is partially funded by the Doctoral Program “Vienna Graduate School on Computational
Optimization”, Austrian Science Foundation (FWF) Project No. W1260-N35. The work of Elina
Rönnberg is supported by the Center for Industrial Information Technology (CENIIT), Project-ID
16.05.

A. Strengthening of States

When constructing a MDD, a state can be replaced by a dominating state if it is ensured that
the latter still allows for the same feasible solutions. This dominance relation is defined as follows.
A state (P ′(u), t′(u)) dominates a state (P (u), t(u)), denoted by (P ′(u), t′(u)) � (P (u), t(u)), when
P ′(u) ⊆ P (u), t′r(u) ≥ tr(u) for all r ∈ R0, and (P ′(u), t′(u)) 6= (P (u), t(u)). The feasible extensions
from (P ′(u), t′(u)) towards complete solutions can then only be a subset of those from (P (u), t(u)).

To possibly strengthen a state (P (u), t(u)), let P ′(u) = {j ∈ P (u) | s((P (u), t(u)), j) 6= Tmax}
include only the jobs from P (u) that can actually be scheduled. Then, set the times

t′0(u) = min
j∈P ′(u)

(
s((P (u), t(u)), j) + ppre

j

)
, (11)

t′r(u) =

{
minj∈P ′(u)|qj=r s((P (u), t(u)), j), if {j ∈ P ′(u) | qj = r} 6= ∅,
Tmax, else,

r ∈ R, (12)

such that they correspond to the earliest possible time when the corresponding resource can actually
be used considering the jobs in P ′(u). Here, t′r(u) is set to Tmax if no job that requires resource r
remains in P ′(u). This strengthening also ensures that any state for which no feasible extension exists
anymore is mapped to the unique target state t = (∅, (Tmax, . . . , Tmax)).

B. Calculation of Upper Bound Zub(u)

We adopt the upper bound calculation for the cost-to-go for a node u from Horn et al. (2018). An
upper bound can be calculated by solving the following linear programming (LP) relaxation of a
multi-constrained 0–1 knapsack problem.

Zub
KP(u) = max

∑

j∈P (u)

zjxj (13)

s.t
∑

j∈P (u)

p0
jxj ≤W0(P (u), t(u)) (14)

∑

j∈P (u)∩Jr
pjxj ≤Wr(P (u), t(u)) r ∈ R (15)

0 ≤ xj ≤ 1 j ∈ P (u) (16)

27

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Variables xj indicate if job j is scheduled (=1) or not (=0), j ∈ P (u). The right-hand-sides of the
knapsack constraints are

W0(P, t) =

∣∣∣∣∣∣∣∣∣∣∣∣

⋃

j∈P,
k=1,...,ωj |

W end
jk −p

post
j ≥t0+p0j

[
max

(
t0,W

start
jk + ppre

j

)
,W end

jk − ppost
j

]

∣∣∣∣∣∣∣∣∣∣∣∣

(17)

and

Wr(P, t) =

∣∣∣∣∣∣∣∣∣∣∣∣

⋃

j∈P∩Jr,
k=1,...,ωj |

W end
jk ≥tr+pj

[
max

(
tr,W

start
jk

)
,W end

jk

]

∣∣∣∣∣∣∣∣∣∣∣∣

, (18)

where the union of intervals is defined as
⋃

i=1,...,k[αi, βi] = {γ ∈ R | ∃i : γ ∈ [αi, βi]}, and function
| · | denotes the sum of the lengths of the resulting disjoint continuous intervals of this union. Thus,
W0(P, t) and Wr(P, t) represent the total amount of still available time for resource 0 and resource r,
r ∈ R, respectively, considering the current state and the time windows.

To solve this upper bound calculation problem for each state in the A∗ search turned out to be
computationally too expensive already for small instances (?). Instead, simpler upper bounds are
determined by solving two types of further relaxations. The first one is obtained by relaxing inequal-
ities (15).

Zub
0 (u) = max

∑

j∈P (u)

zjxj (19)

s.t
∑

j∈P (u)

p0
jxj ≤W0(P (u), t(u)) (20)

0 ≤ xj ≤ 1 j ∈ P (u) (21)

The second relaxation is obtained by performing a Lagrangian relaxation of inequality (14), where
λ ≥ 0 is the Lagrangian dual multiplier associated with this inequality.

hub(u, λ) = max
∑

j∈P (u)

zjxj + λ

W0(P (u), t(u))−

∑

j∈P
p0
jxj

 (22)

s.t
∑

j∈P (u)∩Jr
pjxj ≤Wr(P (u), t(u)), r ∈ R (23)

0 ≤ xj ≤ 1 j ∈ P (u) (24)

Both, Zub
0 (u) and hub(u, λ), are computed by solving LP relaxations of simple knapsack problems.

In the latter case, this is possible since the problem separates over the resources and for each resource,
the resulting problem is an LP relaxation of a knapsack problem. An LP relaxation of a knapsack
problem can be efficiently solved by a greedy algorithm that packs items in decreasing prize/time-ratio
order; the first item that does not completely fit is packed partially so that the capacity is exploited
as far as possible, see Kellerer et al. (2004).

It follows from weak duality (see, e.g., Nemhauser and Wolsey (1988), Prop. 6.1) that hub(u, λ)
yields an upper bound on Zub

KP(u) for all λ ≥ 0, but the quality of this upper bound depends on the
choice of λ. We have chosen to consider hub(u, λ) for the values λ = 0 and λ = zj̄/p

0
j̄
, where j̄ is the

last, and typically partially, packed item in an optimal solution to the problem solved to obtain Zub
0 (u).

28

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

The value λ = zj̄/p
0
j̄

is chosen since it is an optimal LP dual solution associated with inequality (20)
and therefore has a chance to be a good estimate of a value for λ that gives a strong upper bound.

By solving the relaxations introduced above, the strongest bound on Zub
KP(u) we can obtain, and

the one that we use in our A∗-based construction of a relaxed MDD, is

Zub(u) = min
{
Zub

0 (u), hub(u, 0), hub(u, zj̄/p
0
j̄)
}
. (25)

C. Validity of the Merging Operation

This section details the validity of the merge operator. In line with the common definition of a
relaxation, Bergman et al. (2016a) defines a relaxed DD as follows.

Definition 1. A weighted DD is relaxed for an optimization problem P if

(i) the DD represents a superset of the feasible solutions to P and

(ii) each path that represents a feasible solution to P has a length that is an upper bound on the
objective value of this solution.

Given an exact DD formulation and a merge operator, this operator is considered valid if (repeatedly)
applying it to the DD will result in a DD that is relaxed with respect to the original problem. In
order to show this, it is sufficient to show that if the merge operator is applied to a DD that complies
with (i) and (ii), so will the resulting DD, and the result will follow by induction. (For the initial step
of the induction, we assume the operator is applied to an exact DD, which trivially complies with (i)
and (ii)).

Proposition 1. Given a relaxed MDD constructed for the PC-JSOCMSR according to Sections 5.1
and 5.2 that complies with (i) and (ii) in Definition 1. When the merge operator defined in Equa-
tion (10) is applied to this MDD, then the resulting MDD will also comply with (i) and (ii).

Proof. A state σ(u) = (P (u), t(u)) carries the following information. The set P (u) ⊆ J of jobs
that can still be feasibly scheduled, and the vector t(u) = (tr(u))r∈R0 of the earliest times from
which each resource r is available for performing a next job. When the merge operator σ(u) ⊕
σ(v) is applied to the two states σ(u) = (P (u), t(u)) and σ(v) = (P (v), t(v)), the resulting state
is
(
P (u) ∪ P (v), (min(tr(u), tr(v)))r∈R0

)
. For the merged state, the set of jobs that can be feasibly

scheduled is a superset of both the original sets of jobs, and no feasible solutions are omitted due to
the merge. As for the earliest times, since the merged state gets the component-wise earliest time
from each of the original states, no feasible solution is lost. Because of this, (i) holds after the merge
operation is applied. Note that after the merge operation, paths from the merged state that were not
feasible with respect to neither σ(u) nor σ(v) might become feasible for σ(u) ⊕ σ(v). Condition (ii)
follows because the longest path from σ(u)⊕σ(v) is selected from a superset of the paths that existed
before the merge and that the cost of the arcs are the same. Moreover, note that the DD stays acyclic
and therefore feasible thanks to the node selection mechanism.

D. Benchmark Instances

For the experiments in this work, we adopted the set on “balanced particle therapy instances”, here
denoted by P, and “avionic instances”, denoted by A, from ? and extended them with larger instances
with up to 500 jobs using the same construction scheme. Note that in the previous work also a third
set of “skewed particle therapy instances has been considered, in which the usage of the secondary
resources is not uniform. However, especially for large instances the differences between the balanced
and skewed instances turned out to be less interesting, and we therefore do not consider the skewed
instances here.

29

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Both instance sets contain 30 instances for each combination of n ∈ {50, 100, . . . , 500} jobs and
m ∈ {2, 3} secondary resources for instance set P and m ∈ {3, 4} secondary resources for instance set
A.

Particle therapy instances (P) For these instances, the following values are sampled for each job
j ∈ J : (a) the secondary resource qj from the discrete uniform distribution U{1,m}, (b) the pre-
processing times ppre

j and the post-processing times ppost
j from U{0, 8}, (c) the times p0

j from U{1, 8},
and (d) the prize zj from U{p0

j , 2p
0
j} (such that this prize correlates to the usage of the common

resource of job j). Time windows are chosen such that, on average, roughly 30 % of the jobs can
be scheduled. For this purpose let the time horizon be T =

⌊
0.3nE(p0)

⌋
, where E(p0) is the ex-

pected value of the distribution for p0
j . In the first step, the number of time windows ωj of job j is

sampled from U{1, 3}, i.e., a job can have up to three time windows. Second, for time window k,
k = 1, . . . , ωj , its start time W start

jk is sampled from U{0, T − pj} and its end time from W end
jk from

W start
jk + max {pj ,U{b0.1T/ωjc , b0.4T/ωjc}}. Overlapping time windows are merged.

Avionic instances (A) For details on the motivation and background see ?. A fixed time horizon of
T = 1000 is considered, and there are 20% communication jobs, 40% partition jobs, and 40% regular
jobs. The time p0

j is for partition jobs and regular jobs sampled from the discrete uniform distribution

U{36, 44} and for communication jobs p0
j = 40. Each partition job is assigned a secondary resource

and each secondary resource has the same probability to be selected. For partition jobs, the total
processing time pj is sampled from U{5p0

j , 8p
0
j} and then, with equal probability, ppre

j or ppost
j is set to

0 and the respective other value is set to pj − p0
j . Since the communication jobs and regular jobs do

not use a secondary resource in the real scenario, an artificial secondary resource is introduced and
assigned to all of these jobs, and pj = p0

j . The prize zj is for five of the partition jobs and ten of the
communication jobs set to the high value 70 to give these jobs a higher priority, while for the remaining
partition jobs and communication jobs the prize is sampled from U{10, 50}. For all regular jobs, the
prize is sampled from U{10, 25}. For partition jobs and regular jobs, the number of time windows and
the length of the time windows are computed as in the particle therapy case, but for the communication
jobs the structure is different. The communication jobs can only be scheduled at certain points in
time when the communication can be performed; these time points are 0, 80, 160, . . . , 880. Each time
window of a communication job corresponds to one such time point and a job’s total set of time
windows corresponds to a number of consecutive such time points. The number of time windows
for a communication job is obtained by sampling a value from the uniform distribution U{1, 3} and
multiplying it by three.

E. Further Results

Figure 9 shows additional results for instances of sets P and A with three and four secondary resources,
respectively. As in Section 7.1 the impact of the open list size limit φ and different labeling functions
are analyzed and conclusions are similar: In general, with increasing φ the lengths of the longest paths
of the obtained relaxed MDDs from A∗C get smaller, while the computation times and the MDD
sizes increase. The smallest relaxed MDDs with the weakest bounds could in general be obtained
from labeling function L1 whereas labeling function L4 typically provides the largest MDDs with the
strongest bounds. Regarding the comparison of upper bounds obtained from different approaches,
Figure 10 shows in addition to the results presented in Section 7.2 corresponding results for instances
of set P and A with three and four secondary resources, respectively. Average values of upper bounds,
computation times, and the sizes of relaxed MDDs, obtained from A∗C, the classical TDC, the IR, and
the order based MIP approach are shown. Again, we observe remarkable differences between results
obtained from instances of set P and A. Nevertheless, in each case the strongest average upper bounds
could be obtained by A∗C thereby creating as well the smallest obtained relaxed MDDs.

30

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

L1 L2 L3 L4

780

800

820

840

up
pe

r b
ou

nd
 Z

lp
(t

)
Instance set P, m = 3

L1 L2 L3 L4

1300

1350

1400

1450

1500

up
pe

r b
ou

nd
 Z

lp
(t

)

Instance set A, m = 4

L1 L2 L3 L4

101

102

103

co
m

pi
la

tio
n

tim
e

[s
]

L1 L2 L3 L4

101

102

103

co
m

pi
la

tio
n

tim
e

[s
]

L1 L2 L3 L4

104

DD
 si

ze
 (#

no
de

s)

= 1000 = 2000 = 3000 = 5000
L1 L2 L3 L4

104
DD

 si
ze

 (#
no

de
s)

= 10000 = 20000 = 30000 = 50000

Figure 9: Comparison of open list size limits φ and labeling functions Li, i = 1, . . . , 4, for instances of
sets P and A with 250 jobs and m = 3 and m = 4 secondary resources, respectively.

50 100 150 200 250 300 350 400 450 500
n

0

2

4

6

8

up
pe

r b
ou

nd

×103 Instance set P, m = 3

A * C: = 1000, Zub
min

A * C: = 1000, Z lp(t)
TDC: = 300
TDC: = 500

IRLP, time limit: 900s
MIP, time limit: 900s

50 100 150 200 250 300 350 400 450 500
n

0.0

0.2

0.4

0.6

0.8

1.0

up
pe

r b
ou

nd

×104 Instance set A, m = 4

A * C: = 20000, Zub
min

A * C: = 20000, Z lp(t)
TDC: = 3000
TDC: = 5000

IRLP, time limit: 900s
MIP, time limit: 900s

50 100 150 200 250 300 350 400 450 500
n

10 1

100

101

102

103

co
m

pu
ta

tio
n

tim
e

[s
]

50 100 150 200 250 300 350 400 450 500
n

10 1

100

101

102

103

co
m

pu
ta

tio
n

tim
e

[s
]

50 100 150 200 250 300 350 400 450 500
n

103

104

105

106

DD
 si

ze
 (#

no
de

s)

50 100 150 200 250 300 350 400 450 500
n

103

104

105

106

DD
 si

ze
 (#

no
de

s)

Figure 10: Instance sets P and A with three and four secondary resources, respectively, average values
of: upper bounds obtained from A∗C, the classical TDC, the IR, and the order-based MIP
approach; respective computation times; and the sizes of obtained relaxed MDDs.

31

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

References

Andersen, H. R., Hadzic, T., Hooker, J. N., Tiedemann, P., 2007. A constraint store based on multivalued
decision diagrams. In: Principles and Practice of Constraint Programming, CP 2007. Vol. 4741 of LNCS.
Springer, pp. 118–132.

Bergman, D., Cire, A. A., 2017. On finding the optimal BDD relaxation. In: Integration of Constraint Pro-
gramming, Artificial Ingelligence and Operations Research, CPAIOR 2017. Vol. 10335 of LNCS. Springer,
pp. 41–50.

Bergman, D., Cire, A. A., van Hoeve, W.-J., Hooker, J. N., 2016a. Decision Diagrams for Optimization. Artificial
Intelligence: Foundations, Theory, and Algorithms. Springer.

Bergman, D., Cire, A. A., van Hoeve, W.-J., Hooker, J. N., 2016b. Discrete optimization with decision diagrams.
INFORMS Journal on Computing 28 (1), 47–66.

Bergman, D., Cire, A. A., van Hoeve, W.-J., Yunes, T., 2014a. BDD-based heuristics for binary optimization.
Journal of Heuristics 20 (2), 211–234.

Bergman, D., Cire, A. A., von Hoeve, W.-J., Hooker, J. N., 2014b. Optimization bounds from binary decision
diagrams. INFORMS Journal on Computing 26 (2), 253–268.

Blikstad, M., Karlsson, E., Lööw, T., Rönnberg, E., 2018. An optimisation approach for pre-runtime scheduling
of tasks and communication in an integrated modular avionic system. Optimization and Engineering 19 (4),
977–1004.

Bryant, R. E., 1986. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Com-
puters C-35 (8), 677–691.

Christofides, N., Mingozzi, A., Toth, P., 1981. State-space relaxation procedures for the computation of bounds
to routing problems. Networks 11, 145–164.

Cire, A. A., van Hoeve, W.-J., 2013. Multivalued decision diagrams for sequencing problems. Operations Re-
search 61 (6), 1411–1428.

Cordone, R., Hosteins, P., Righini, G., 2018. A branch-and-bound algorithm for the prize-collecting single-
machine scheduling problem with deadlines and total tardiness minimization. INFORMS Journal on Com-
puting 30 (1), 168–180.

Davis, J. M., Topaloglu, H., Williamson, D. P., 2015. Assortment optimization over time. Operations Research
Letters 43 (6), 608–611.

Gunawan, A., Lau, H. C., Vansteenwegen, P., 2016. Orienteering problem: A survey of recent variants, solution
approaches and applications. European Journal of Operational Research 255 (2), 315–332.

Hart, P., Nilsson, N., Raphael, B., 1968. A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics 4 (2), 100–107.

Hartmann, S., Briskorn, D., 2010. A survey of variants and extensions of the resource-constrained project
scheduling problem. European Journal of Operational Research 207 (1), 1–14.

Hooker, J. N., 2013. Decision diagrams and dynamic programming. In: Gomes, C., Sellmann, M. (Eds.), Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
CPAIOR 2013. Vol. 7874 of LNCS. Springer, pp. 94–110.

Hooker, J. N., 2017. Job sequencing bounds from decision diagrams. In: Principles and Practice of Constraint
Programming, CP 2017. Vol. 10416 of LNCS. Springer, pp. 565–578.

Horn, M., Raidl, G., Blum, C., 2019. Job sequencing with one common and multiple secondary resources: An
A*/Beam Search based anytime algorithm. Artificial Intelligence 277.

Horn, M., Raidl, G., Rönnberg, E., 2020. A* search for prize-collecting job sequencing with one common and
multiple secondary resources. Annals of Operations Research.

Horn, M., Raidl, G. R., Rönnberg, E., 2018. An A∗ algorithm for solving a prize-collecting sequencing problem
with one common and multiple secondary resources and time windows. In: Proceedings of the 12th Inter-
national Conference of the Practice and Theory of Automated Timetabling, PATAT 2018. pp. 235–256.

Karlsson, E., Rönnberg, E., Stenberg, A., Uppman, H., 2020. A matheuristic approach to large-scale avionic
scheduling. Annals of Operations Research.

Kellerer, H., Pferschy, U., Pisinger, D., 2004. Knapsack Problems. Springer.

Kinable, J., Cire, A. A., van Hoeve, W. J., 2017. Hybrid optimization methods for time-dependent sequencing
problems. European Journal of Operational Research 259 (3), 887–897.

32

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

Kowalczyk, D., Leus, R., 2018. A branch-and-price algorithm for parallel machine scheduling using ZDDs and
generic branching. INFORMS Journal on Computing 30 (4), 768–782.

Lee, C. Y., 1959. Representation of switching circuits by binary-decision programs. Bell System Technical
Journal 38 (4), 985–999.

Lee, J. Y., Kim, Y. D., 2012. Minimizing the number of tardy jobs in a single-machine scheduling problem with
periodic maintenance. Computers and Operations Research 39, 2196–2205.

Maschler, J., Raidl, G. R., 2018a. Multivalued decision diagrams for a prize-collecting sequencing problem. In:
Proceedings of the 12th International Conference of the Practice and Theory of Automated Timetabling,
PATAT 2018. pp. 375–397.

Maschler, J., Raidl, G. R., 2018b. Particle therapy patient scheduling with limited starting time variations of
daily treatments. International Transactions in Operational Research.

Minato, S., 1993. Zero-suppressed BDDs for set manipulation in combinatorial problems. In: 30th ACM/IEEE
Design Automation Conference. IEEE, pp. 272–277.

Minato, S., 2011. πdd: A new decision diagram for efficient problem solving in permutation space. In: Theory
and Applications of Satisfiability Testing, SAT 2011. Vol. 6695 of LNCS. Springer, pp. 90–104.

Moore, J. M., 1968. An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Management Science 15, 102–109.

Nemhauser, G. L., Wolsey, L. A., 1988. Integer and Combinatorial Optimization. Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons.

Ow, P. S., Morton, T. E., 1988. Filtered beam search in scheduling. International Journal of Production Research
26 (1), 35–62.

Ouz, C., Sibel Salman, F., Bilgintürk Yalçin, Z., 2010. Order acceptance and scheduling decisions in make-to-
order systems. International Journal of Production Economics 125 (1), 200–211.

Römer, M., Cire, A. A., Rousseau, L.-M., 2018. A local search framework for compiling relaxed decision di-
agrams. In: Integration of Constraint Programming, Artificial Intelligence, and Operations Research,
CPAIOR 2018. Vol. 10848 of LNCS. Springer, pp. 512–520.

Silva, Y. L. T., Subramanian, A., Pessoa, A. A., 2018. Exact and heuristic algorithms for order acceptance and
scheduling with sequence-dependent setup times. Computers and Operations Research 90, 142–160.

Van der Veen, J. A. A., Wöginger, G. J., Zhang, S., 1998. Sequencing jobs that require common resources on a
single machine: A solvable case of the TSP. Mathematical Programming 82 (1-2), 235–254.

33

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
01
1

