
Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

Technical Report AC-TR-18-010
Revised on September 2019

A SAT Approach for
Finding
Sup-Transition-Minors

Benedikt Klocker, Herbert Fleischner, and
Günther R. Raidl

This is the authors’ copy of a paper that will be published in the proceedings of the
13th LION Learning and Intelligent OptimizatioN Conference.

www.ac.tuwien.ac.at/tr

A SAT Approach for Finding Sup-Transition-Minors?

Benedikt Klocker, Herbert Fleischner, Günther R. Raidl

Institute of Logic and Computation, TU Wien,
Favoritenstraße 9-11/192-01, 1040 Vienna, Austria

{klocker,fleischner,raidl}@ac.tuwien.ac.at

Abstract. The cycle double cover conjecture is a famous longstanding unsolved
conjecture in graph theory. It is related and can be reduced to the compatible
circuit decomposition problem. Recently Fleischner et al. (2018) provided a suf-
ficient condition for a compatible circuit decomposition, which is called SUD-
K5-minor freeness. In a previous work we developed an abstract mathematical
model for finding SUD-K5-minors and based on the model a MIP-formulation. In
this work we propose a respective SAT-model and compare it with the MIP model
in computational tests. Non-trivial symmetry breaking constraints are proposed,
which improve the solving times of both models considerably. Compared to the
MIP model the SAT approach performs significantly better. We use the faster al-
gorithm to further test graphs of graph theoretic interest and were able to get new
insights. Among other results we found snarks with 30 and 32 vertices that do not
contain a perfect pseudo-matching, that is a spanning subgraph consisting of K2

and K1,3 components, whose contraction leads to a SUD-K5-minor free graph.

Keywords: Transition Minor, Cycle Double Cover, Compatible Circuit Decomposi-
tion, SAT

1 Introduction

The famous cycle double cover (CDC) conjecture states that every bridgeless graph has
a cycle double cover, which is a collection of cycles such that every edge of the graph is
part of exactly two cycles. It was originally posed by Szekeres [13] and Seymour [11]
over 40 years ago and is still unsolved. As Jaeger shows in [5], the CDC conjecture
can be reduced to the consideration of a special class of graphs called snarks by con-
sidering a minimum counter example. There are multiple similar definitions of snarks,
we will use the one from Jaeger [5]: A snark is a simple cyclically 4-edge-connected
cubic graph with chromatic index four. A cyclically 4-edge-connected graph is a graph
that has no 4-edge cut after whose removal at least two components contain a cycle. Al-
though snarks are simple, we consider in general undirected multigraphs without loops
in this work.

A problem related to the CDC conjecture is the compatible circuit decomposition
(CCD) problem. It is formulated on a transitioned graph (G, T), which is a graph G

? This work is supported by the Austrian Science Fund (FWF) under grant P27615 and the
Vienna Graduate School on Computational Optimization, grant W1260.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

⇒ ⇒

Fig. 1: Example contraction of parts of a PPM. The edges of the PPM getting contracted are
drawn dashed. The transitions in the resulting graph are represented by a vee (∨) between the
two edges of the transition.

together with a set of transitions T . A transition consists of a vertex and two incident
edges. We write T (v) for the set of all transitions at vertex v. A transition system has
to satisfy that the transitions in T (v) are edge-disjoint. A compatible circuit decompo-
sition of a transitioned graph is a collection of circuits such that each edge of the graph
is part of exactly one circuit and each circuit does not contain any pair of edges of a
transition. The CCD problem asks if a given transitioned graph contains a compatible
circuit decomposition. To see the connection between the CDC conjecture and the CCD
problem we consider a cubic graph C, for example a snark. A perfect pseudo-matching
(PPM) of C is a subgraph spanning C whose connected components are either two ver-
tices connected by an edge, i.e. the K2, or one vertex together with its three incident
edges and its three neighbors, i.e. the K1,3 which we also call claw. Given a PPM of
C we can define now a transitioned graph (G, T) by contracting all edges of the PPM.
We define a transition in T for each pair of adjacent edges in G that remain after the
contraction, see Figure 1 for an illustration.

Note that the contracted graph may contain loops, but we can ignore them since
they are not relevant in the context of circuit decompositions. If we contract a PPM of a
snark there are no loops since a snark is simple and has no triangles. As described in [8]
if the constructed transitioned graph (G, T) contains a CCD one can construct a CDC
in the original graph C. Already in 1980 Fleischner [3] proved that every transitioned
graph (G, T) where G is 2-connected and planar contains a CCD. This result was then
improved in 2000 by Fan and Zhang [2] who showed that if G is 2-connected and K5-
minor free it must contain a CCD. Those two sufficient conditions for the existence of
a CCD are only based on the structure of G and do not consider the transition system
T . Recently Fleischner et al. [4] generalized the minor term to transitioned graphs and
proved that if (G, T) is 2-connected and SUD-K5-minor free it must contain a CCD.
For the definition of a SUD-K5-minor we refer to [4] or [8].

Because of the complex nature of the definition of a SUD-K5-minor it is highly
non-trivial to check if a graph contains a SUD-K5-minor. In a previous work [8] we
generalized the problem of SUD-K5-minor containment by allowing to replace the
K5 by any 4-regular graph H . Formally, given a transitioned graph (G, T) and a 4-
regular completely transitioned graph (H, T) the decision problem Existence of Sup-
Transition-Minors (ESTM) asks if (G, T) has a sup-(H,S)-transition minor. A sup- A
graph is completely transitioned if it has a transition system such that for each vertex
every incident edge is part of a transition at this vertex. A transitioned graph (G, T)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

has a sup-(H,S) if it has a H-minor where every vertex w of H corresponds to a sub-
graph Cw of G that has a cut vertex vw. The cut vertex must split Cw in at least two
components such that there is a transition at vw whose edges are part of one of those
components C1

w and all other edges incident to vw are part of other components. Fur-
thermore, the transition at vw must correspond to a transition of H at w such that the
two edges of the transition in H are connected to the component C1

w. For a formal
definition of a sup-(H,S)-transition minor we refer to [8].

The mathematical model developed in [8] for deciding the ESTM allowed to de-
rive a MIP model, which could be solved for small graphs such that we could derive
interesting graph theoretic results from it. In this work we present a more powerful SAT
formulation for the mathematical model developed in [8], which allows addressing sig-
nificantly larger graphs. To further improve the solving times of the MIP as well as
the SAT model we propose a non-trivial symmetry breaking based on graph automor-
phisms of the two input graphs (G, T) and (H,S). The idea of breaking symmetries
using automorphism groups has been studied in a general context, see e.g. [1], and in
problem-specific contexts, see e.g. [7]. We extend the definition of automorphisms to
transitioned graphs and propose problem specific symmetry breaking constraints based
on a vertex mapping between the two input graphs (G, T) and (H,S).

Using the new SAT model, which outperforms the MIP model significantly, together
with the symmetry breaking constraints we were able to check for all snarks with up
to 32 vertices if they contain a PPM whose contraction is SUD-K5-minor free. Within
those tests we were able to find snarks that do not contain such a PPMs. This result
answers the previously open question that the notion of SUD-K5-minor freeness in the
context of contractions of PPMs in snarks is not enough to prove the CDC conjecture.

In the following section we will present a SAT model for finding a sup-(H,S)-
transition minor. Then we will discuss symmetry breaking constraints, which can be
used in the MIP and in the SAT model, in Section 3. Section 4 gives computational
results for the new SAT model in comparison to the MIP model. Also we show the
impact of the symmetry breaking. Finally, we will conclude and propose some future
work in Section 5.

1.1 Terminology and Notation

As already mentioned, when referring to a graph we mean here an undirected multi-
graph without loops if not other specified. We denote a graph by G = (V,E, r) with
a vertex set V , an edge set E and a function r that maps an edge e ∈ E to the set of
its two end vertices {v1, v2}. If r(e) = {v1, v2} we also write e = v1v2. Note that
e = v1v2 and e′ = v1v2 does not imply e = e′ since we can have parallel edges. For
a vertex v ∈ V we write E(v) = {e ∈ E | v ∈ r(e)} for the set of all incident vertices
and N(v) = {v′ ∈ V | ∃e ∈ E : e = vv′} for the set of all neighbors.

For a partial function α : A 9 B and a subset X ⊆ A we write α[X] =
{b ∈ B : ∃a ∈ X : b = α(a)} for the image of X under α. Furthermore, if Y ⊆ B we
write α−1[Y] = {a ∈ A : α(a) ∈ Y } for the preimage of Y under α. We also abbrevi-
ate the notation in case of only one element by α[a] = α[{a}] and α−1[b] = α−1[{b}]
for a ∈ A and b ∈ B.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

2 The SAT model

In this section we present a SAT model for checking if a given transitioned graph (G, T)
contains a sup-(H,S)-transition minor for a given completely transitioned 4-regular
graph (H,S). For the formal definition of a sup-(H,S)-transition minor see [8].

In the following we first repeat the mathematical model developed in [8] on which
the SAT model will be based. The model will use simple trees C with vertices in G
for which we will use the following notation: Ei

w := {e ∈ E(G) | r(e) ∈ E(C)} . The
model is defined as finding

1. a partial surjective function ϕ : V (G) 9 V (H),
2. a partial injective and surjective function κ : E(G) 9 E(H),
3. a partial injective function θ : E(G) 9 V (H),
4. ∀w ∈ V (H) a pair (Tw, Sw) of transitions with Tw ∈ T and Sw ∈ S(w), and
5. ∀w ∈ V (H) two simple trees C1

w and C2
w with V (Ci

w) ⊆ V (G) for i = 1, 2,

such that

E(Ciw) ⊆ rG[E(G)] ∀w ∈ V (H), ∀i ∈ {1, 2} (1)

κ(e) = f ⇒ ϕ[rG(e)] = rH(f) ∀e ∈ E(G), ∀f ∈ E(H) (2)

V (C1
w) ∪ V (C2

w) = ϕ−1[w] ∀w ∈ V (H) (3)

{π1(Tw)} = V (C1
w) ∩ V (C2

w) ∀w ∈ V (H) (4)

π2(Tw) ⊆ κ−1[π2(Sw)] ∪ θ−1[w] ∪ E1
w ∀w ∈ V (H) (5)

(
κ−1[π2(Sw)] ∩ E(π1(Tw))

)
∪ θ−1[w] ⊆ π2(Tw) ∀w ∈ V (H) (6)

e ∈ dom(κ) ∧ κ(e) ∈ π2(Sw)⇒ rG(e) ∩ V (C1
w) 6= ∅ ∀w ∈ V (H), ∀e ∈ E(G) (7)

e ∈ dom(κ) ∧ κ(e) ∈ E(w) \ π2(Sw)

⇒ rG(e) ∩ V (C2
w) 6= ∅

∀w ∈ V (H), ∀e ∈ E(G) (8)

v ∈ V (C1
w) \ {π1(Tw)} ∧ degC1

w
(v) = 1∧

v /∈
⋃
rG[θ

−1[w]]⇒ E(v) ∩ κ−1[π2(Sw)] 6= ∅
∀w ∈ V (H),∀v ∈ V (G) (9)

EC1
w
(π1(Tw)) ⊆ rG[π2(Tw)] ∀w ∈ V (H) (10)

θ(e) = w ⇒ rG(e) ⊆ V (C1
w) ∀e ∈ E(G), ∀w ∈ V (H) (11)

θ(e) = w ⇒ rG(e) /∈ E(C1
w) ∀e ∈ E(G), ∀w ∈ V (H) (12)

holds.
In [8] we proved that the feasibility of this model is equivalent to the existence of

a sup-(H,S)-transition minor in (G, T). Most constraints of this model can more or
less directly be translated into SAT clauses. One critical aspect is how to model the tree
Ci

w for w ∈ V (H) and i ∈ {1, 2}. Constraints (3) and (4) ensure that the subgraph Cw

formed by C1
w and C2

w together is a tree and all trees Cw are disjoint for w ∈ V (H).
Combining all trees Cw for w ∈ V (H) we obtain a forest and for each of the trees Cw

we define a unique root π1(Tw) by (4). When modeling the forest in a directed fashion,
we then only have to take care to avoid any cycles. There are different techniques in
literature to model acyclicity in SAT models. Some of those techniques are summarized
in [6]. We will use the approach based on a transitive closure for ensuring acyclicity in
our model. Our SAT model uses the following variables:

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

– xwv for v ∈ V (G), w ∈ V (H) represents ϕ(v) = w,
– yfe for e ∈ E(G), f ∈ E(H) represents κ(e) = f ,
– zwe for e ∈ E(G), w ∈ V (H) represents θ(e) = w,
– awT for w ∈ V (H), T ∈ T represents T = Tw,
– bwS for w ∈ V (H), S ∈ S(w) represents S = Sw,
– oi,wv for v ∈ V (G), w ∈ V (H), i ∈ {1, 2} represents v ∈ V (Ci

w),
– pi,wa for a ∈ A(G), w ∈ V (H), i ∈ {1, 2} represents a ∈ E(Ci

w),
– tv1,v2 for v1, v2 ∈ V (G) is the transitive closure relation of all pi,wa variables.

The trees Ci
w are modeled as a directed rooted out-trees and the variables pi,wa decide

which directed arcs are part of the tree. Set A(G) is the set of all directed arcs of edges
in G when eliminating parallel edges. So for every pair of adjacent vertices in G there
are two arcs in opposite direction inA(G). We writeAin(v) for the ingoing arcs at v and
Aout(v) for the outgoing arcs at v. In the following we list all constraints of our SAT
model. For simplicity, we will present the constraints in form of propositional logic
formulas. To transform them into clauses we use De Morgan’s law and the distributive
property. One alternative would be to use Tseitin transformations [14], although for the
constraints we will present the number of resulting clauses using the naive transforma-
tion is still small and therefore this is not needed. In the following we will use for a
given v ∈ V (G), w ∈ V (H), and i ∈ {1, 2}

oneIn(v, i, w) :=
(∨

a∈Ain(v)

pi,wa

)
∧

∧

a1,a2∈Ain(v)
a16=a2

(
¬pi,wa1

∨ ¬pi,wa2

)
.

The basic structures as defined in the mathematical model are expressed by

¬(xw1
v ∧ xw2

v) ∀v ∈ V (G),∀w1, w2 ∈ V (H), w1 6= w2 (13)
∨

v∈V (G)

xwv ∀w ∈ V (H) (14)

¬(yf1e ∧ yf2e) ∀e ∈ E(G),∀f1, f2 ∈ E(H), f1 6= f2 (15)

¬(yfe1 ∧ y
f
e2) ∀e1, e2 ∈ E(G), e1 6= e2, ∀f ∈ E(H) (16)

∨

e∈E(G)

yfe ∀f ∈ E(H) (17)

¬(zw1
e ∧ zw2

e) ∀e ∈ E(G),∀w1, w2 ∈ V (H), w1 6= w2 (18)

¬(zwe1 ∧ z
w
e2) ∀e1, e2 ∈ E(G), e1 6= e2,∀w ∈ V (H) (19)

¬(awT1
∧ awTw

) ∀w ∈ V (H),∀T1, T2 ∈ T , T1 6= T2 (20)
∨

T∈T
awT ∀w ∈ V (H) (21)

¬(aw1
T ∧ aw2

T) ∀w1, w2 ∈ V (H), w1 6= w2∀T ∈ T (22)

¬(bwS1
∧ bwS2

) ∀w ∈ V (H), ∀S1, S2 ∈ S(w), S1 6= S2 (23)
∨

S∈S(w)

bwS ∀w ∈ V (H) (24)

oi,wv →
∨

T∈T (v)

awT ∨ oneIn(v, i, w) ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (25)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

∨

T∈T (v)

awT → oi,wv ∧
∧

a∈Ain(v)

¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (26)

¬oi,wv →
∧

a∈Ain(v)∪Aout(v)

¬pi,wa ∀v ∈ V (G), w ∈ V (H), i ∈ {1, 2} (27)

¬(tv1,v2 ∧ tv2,v1) ∀a = (v1, v2) ∈ A(G) (28)

tv1,v2 ∧ tv2,v3 → tv1,v3 ∀a = (v1, v2) ∈ A(G), v3 ∈ V (G) (29)
∨

w∈V (H),i∈{1,2}
pi,wa → tv1,v2 ∀a = (v1, v2) ∈ A(G). (30)

Constraints (13), (15), (18), (20), and (23) ensure that ϕ, κ, θ, w 7→ Tw, and w 7→ Sw

are partial functions with the special restriction that Sw ∈ S(w). Furthermore, con-
straints (14) and (17) enforce that ϕ and κ are surjective. On the other hand, constraints
(16), (19), and (22) ensure that κ, θ, and w 7→ Tw are injective. Note that the mathemat-
ical model does not state directly thatw 7→ Tw should be injective, but it does indirectly
by constraints (3) and (4). Additionally, constraints (21) and (24) guarantee that there
exists a Tw and a Sw for each w ∈ V (H).

Constraints (25)-(27) characterize three types of vertices in G. The root vertices
of the trees Ci

w, which are defined by the vertices of the transitions Tw by (4), do not
have any ingoing arcs in Ci

w. Other vertices in Ci
w that are not roots have exactly one

ingoing arc in Ci
w and vertices that are not in Ci

w have no ingoing or outgoing arc in
Ci

w. Last but not least, constraints (28)-(30) ensure that the trees Ci
w have no cycles by

using the transitive closure variables tv1,v2 similarly as it is described in [6]. Instead of
having just one variable, which represents if a directed edge is part of the forest, we use
in our case the disjunction

∨
w∈V (H),i∈{1,2,} p

i,w
a for an arc a. With this we ensured

all structural properties formulated in the mathematical model. What is left is to model
constraints (1)-(12) which is achieved by

yfe → (xw1
v1 ∧ x

w2
v2) ∨ (xw1

v2 ∧ x
w2
v1)

∀e = v1, v2 ∈ E(G),

∀f = w1w2 ∈ E(H)
(31)

o1,wv ∨ o2,wv ↔ xwv ∀v ∈ V (G), ∀w ∈ V (H) (32)
∨

T∈T (v)

awT ↔ o1,wv ∧ o2,wv ∀v ∈ V (G), ∀w ∈ V (H) (33)

∨

T∈T
e∈π2(T)

awT →
∨

S∈S(w)

(
bwS ∧

∨

f∈π2(S)

yfe

)

∨zwe ∨ p1,w(v1,v2)
∨ p2,w(v1,v2)

∀e = v1v2 ∈ E(G),

∀w ∈ V (H)
(34)

awT ∧ bwS → ¬
∨

f∈π2(S)

yfe
∀w ∈ V (H),∀S ∈ S(w),

∀T ∈ T , ∀e ∈ E(π1(T)) \ π2(T)
(35)

awT → ¬zwe
∀w ∈ V (H),

∀T ∈ T , ∀e ∈ E(π1(T)) \ π2(T)
(36)

bwS ∧
∨

f∈π2(S)

yfe → o1,wv1 ∨ o
1,w
v2

∀w ∈ V (H), ∀S ∈ S(w),
∀e = v1v2 ∈ E(G)

(37)

(
bwS ∧

∨

f∈E(w)\π2(S)

yfe

)
→ o2,wv1 ∨ o

2,w
v2

∀w ∈ V (H), ∀S ∈ S(w),
∀e = v1v2 ∈ E(G)

(38)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

bwS ∧ o1,wv ∧
∧

v′∈N(v)

¬p1,w(v,v′) ∧
∧

e∈E(v)

¬zwe

→
(∨

e∈E(v),f∈π2(S)

yfe ∨ o2,wv
) ∀w ∈ V (H), ∀S ∈ S(w),

∀v ∈ V (G)
(39)

awT → ¬p1,w(π1(T),v) ∧ ¬p
1,w
(v,π1(T))

∀w ∈ V (H), ∀T ∈ T ,
∀v ∈ N(π1(T)) \

⋃
rG[π2(T)]

(40)

zwe → (o1,wv1 ∧ o
1,w
v2) ∀w ∈ V (H), ∀e = v1v2 ∈ E(G) (41)

zwe → (¬p1,w(v1,v2)
∧ ¬p1,w(v2,v1)

) ∀w ∈ V (H),∀e = v1v2 ∈ E(G). (42)

Constraints (1) are already satisfied implicitly and constraints (2)-(5) are realized by
constraints (31)-(34) respectively. Furthermore, constraints (6) are guaranteed by (35)
and (36). All the other constraints (7)-(12) are modeled via (37)-(42) respectively.

By using our SAT model we can develop an algorithm that checks for a given snark
if it contains a PPM whose contraction leads to a planar, a K5-minor free, a SUD-K5-
minor free, or a CCD-containing graph. The algorithm enumerates all PPMs iteratively
by ordering the vertices of the snark and always trying to add all possible edges or
claws to the pseudo-matching that contain the smallest not yet visited vertex of the
snark. Then it checks for each generated PPM if its contraction leads to a planar graph.
If it does not find such a matching it checks for K5-minor free contractions, if this also
is not the case it checks for SUD-K5-minor free contractions and otherwise it checks
for CCD-containing contractions. Using this algorithm one can specify for each snark
the type of the strongest matching found for this snark.

3 Symmetry Breaking

The input graphsG andH , especiallyH , often have symmetries. In this case our model
leads to symmetric solutions. To avoid such symmetries we analyze the structure of the
symmetries in G and H and incorporate symmetry breaking constraints into our model
such that those symmetries are eliminated.

To formalize the concept of symmetries in transitioned graphs we extend the defi-
nition of automorphisms on graphs, i.e. a graph isomorphism from a graph to itself, to
transitioned graphs. Before we can do that we need to define the terms for multigraphs
since they are traditionally only defined for simple graphs.

Definition 1. Let G and H be two multigraphs. A function f : V (G) → V (H) is a
graph homomorphism from G to H if and only if there exists a function g : E(G) →
E(H) such that

f [r(e)] = r(g(e)) ∀e ∈ E(G).

If a homomorphism f : V (G) → V (H) is bijective and the inverse function is also a
homomorphism it is called a isomorphism. A isomorphism f : V (G) → V (G) from a
graph to itself is called an automorphism of G.

Note that we did not define the edge mappings g as part of the homomorphism but
just ensured their existence. If we would consider them as part of the homomorphism

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

this would result in another definition that allows more different homomorphisms just
based on different edge mappings. We focus here on symmetries between the vertices to
formulate symmetry breaking constraints within the context of the vertex mapping ϕ of
the model. If we would want to also eliminate edge symmetries this would lead to more
complex symmetry breaking constraints and would only help in cases where there are
a lot of parallel edges. For simple graphs this definition coincides with the traditional
definition of a homomorphism and therefore this is really an extension to multigraphs.

Now we can extend this definition further to transitioned graphs.

Definition 2. Let (G, T) and (H,S) be two transitioned graphs. A function f : V (G)→
V (H) is a homomorphism from (G, T) to (H,S) if and only if f is a graph homomor-
phism from G to H with a function g : E(G) → E(H) as described in Definition 1
such that

(f(v), {g(e1), g(e2)}) ∈ S ∀T = (v, {e1, e2}) ∈ T
If a homomorphism f : V (G) → V (H) is bijective and the inverse function is also a
homomorphism it is called an isomorphism. An isomorphism f : V (G) → V (G) from
a transitioned graph to itself is called an automorphism of (G, T).

It is easy to verify that the set of all automorphisms of a transitioned graph form a
group in the same way as they do for simple graphs. We denote this group by Aut(G, T).
Given input graphs (G, T) and (H,S) we can use automorphisms to transform feasible
solutions into other feasible solutions. More formally for any feasible solution and any
pair of automorphisms f ∈ Aut(G, T) and g ∈ Aut(H,S) of which at least one of
both is not the identity we can construct another feasible solution by replacing all ver-
tices in G according to f and all vertices in H according to g. Since f and g preserve
all edges and all transitions this is sufficient to get a new feasible solution.

Next we propose an approach how to eliminate some of those symmetries. Let S
be a feasible solution with vertex mapping ϕ : V (G) 9 V (H). We assume that V (G)
and V (H) are totally ordered sets. We can define for any pair of automorphisms f ∈
Aut(G, T) and g ∈ Aut(H,S) a sequence αf,g := (xf,gw)w∈V (H) by

αf,g
w := min f [ϕ−1[g(w)]]

which is well-defined since ϕ is surjective. The sequence αf,g contains the smallest
vertex of each preimage of ϕ after applying the automorphisms f and g to the solution.
The idea is to enforce that α := αidV (G),idV (H) is lexicographically minimal compared
to all αf,g for all pairs of automorphisms f ∈ Aut(G, T) and g ∈ Aut(H,S), i.e.

α ≤lex α
f,g ∀f ∈ Aut(G, T),∀g ∈ Aut(H,S). (43)

Note that there may be multiple different feasible solutions with the same sequence
α and therefore this only eliminates some symmetries. Such different solutions with
the same α may differ in the mapped edges or transitions, or differ in vertices in G
that are not mapped by ϕ or are not the smallest vertices of the preimages of ϕ. But
if H is simple this restriction eliminates all symmetries occurring only in H , i.e. if we
only apply an automorphism in Aut(H,S) \

{
idV (H)

}
to a feasible solution satisfying

(43) the resulting solution will not satisfy (43). This can be seen by the fact that ϕ

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

is surjective and since H is simple every automorphism really changes at least some
vertices, which results in a changed α sequence. To formalize (43) in such a way that
it can be modeled in a MIP or a SAT formulation we have to expand the definition of a
lexicographical ordering. Condition (43) is equivalent to

∀w ∈ V (H),∀f ∈ Aut(G, T),∀g ∈ Aut(H,S) :
αw ≤ αf,g

w ∨ ∃w′ < w : αw′ < αf,g
w′

⇔(∀v < αw : f(v) /∈ ϕ−1[g(w)]) ∨ (∃w′ < w : ∀v ≤ αw : f(v) /∈ ϕ−1[g(w′)]).
This constraint is still quite complicated and results in a lot of constraints in SAT or

MIP models. To avoid bloating the models we consider only the variant for the smallest
vertex w0 := min(V (H)) of H . Then the condition gets much easier and can further
be simplified using orbits.

Definition 3. Let f be an automorphism on a transitioned graph (G, T). The set

orb(v) := {v′ ∈ V | ∃f ∈ Aut(G, T) : f(v) = v′}
is called the orbit of v ∈ V . Orbits are the equivalence classes of the equivalence
relation corresponding to Aut(G, T) in which two vertices are equivalent if there exists
an automorphism mapping one vertex to the other.

Using the definition of orbits we can simplify our condition for the special case w0

f(v) /∈ ϕ−1[g(w0)] ∀v < αw0 ,∀f ∈ Aut(G, T),∀g ∈ Aut(H,S)
⇔v′ /∈ ϕ−1[w′] ∀v < αw0

,∀v′ ∈ orb(v),∀w′ ∈ orb(w0)

⇔ϕ(v′) = w′ → αw0
≤ v ∀v ∈ V (G),∀v′ ∈ orb(v),∀w′ ∈ orb(w0)

⇔ϕ(v′) = w′ → ∃v′′ ≤ v : ϕ(v′′) = w0 ∀v′ ∈ V (G),∀v ∈ orb(v′),∀w′ ∈ orb(w0)

⇔ϕ(v) = w → ∃v′ ≤ min orb(v) : ϕ(v′) = w0 ∀v ∈ V (G),∀w ∈ orb(w0). (44)

Another specialization of (43) is if we only consider automorphisms on H , i.e.
fix f = idV (G). In this case we simply have αg

w := α
idV (G),g
w = minϕ−1[g(w)] =

αg(w), i.e. the α values are simple permutations of each other based on g. Therefore the
symmetry breaking condition holds if and only if

(αw)w∈V (H) ≤lex (αg(w))w∈V (H) ∀g ∈ Aut(H,S). (45)

Note that (αw)w∈V (H) ≤lex (αg(w))w∈V (H) if and only if for the first vertex w for
which αw 6= αg(w), αw < αg(w) holds. Since all values in αw are different we know
that αw = αg(w) if and only if w = g(w). Therefore, if w is the first value where they
are different this implies that g fixes all w′ < w, i.e. g(w′) = w′ for all w′ < w.

Definition 4. Let S ⊆ V (G), then the stabilizer of Aut(H,S) with respect to S is
defined by AutS(H,S) := {g ∈ Aut(H,S) | ∀s ∈ S : g(s) = s} . For each set S ⊆
V (G) the AutS(H,S) is a subgroup of Aut(H,S). Furthermore, we can again define
stabilizer orbits according to the automorphisms in the stabilizer. The orbit of v in the
stabilizer AutS(H,S) is defined by

orbS(v) := {v′ ∈ V | ∃f ∈ AutS(G, T) : f(v) = v′} .

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

With this definition we can reformulate (45) in the following way:

αw < αg(w) ∀w ∈ V (H),∀g ∈ Aut{w′∈V (H):w′<w}(H,S) : g(w) 6= w

⇔αw < αw′′ ∀w ∈ V (H),∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .

The condition αw < αw′′ can be expressed such that the statement is equivalent to

ϕ(v) = w′′ → ∃v′ < v : ϕ(v′) = w
∀v ∈ V (G),∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w} .
(46)

To model constraints (44) and (46) we use the inequalities

xwv ≤
∑

v′≤min orb(v)

xw0

v′ ∀v ∈ V (G),∀w ∈ orb(w0) (47)

xw
′′

v ≤
∑

v′<v

xwv′
∀v ∈ V (G),∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}
(48)

for the MIP model and the constraints

xwv →
∨

v′≤min orb(v)

xw0

v′ ∀v ∈ V (G),∀w ∈ orb(w0) (49)

xw
′′

v →
∨

v′<v

xwv′
∀v ∈ V (G),∀w ∈ V (H),

∀w′′ ∈ orb{w′∈V (H):w′<w}(w) \ {w}
(50)

for the SAT model.

3.1 Finding all Automorphisms and Stabilizers

To add constraints (47)-(48) or (49)-(50) to our model we need to compute the auto-
morphism group Aut(G, T), its orbits, the automorphism group Aut(H,S), its orbits,
and the orbits orb{w′∈V (H):w′<w}(w) of the stabilizers for each w ∈ V (H).

The problem of computing a set of generators of the automorphism group of a sim-
ple graph is well studied. It is closely related to the famous graph isomorphism prob-
lem. Since no polynomial time algorithm is known for the graph isomorphism problem,
which can be reduced to computing generators of the automorphism group of the graph,
all proposed algorithms in literature require exponential time in general. Nevertheless,
if we restrict the problem to graphs with bounded degree, like it is the case for the input
graph H , which is always 4-regular, there are polynomial time algorithms, see [9].

For the input graph G we do not have an upper bound on the degree. Nevertheless,
there are algorithms for finding the automorphism group of general graphs, which work
well in practice also for graphs with up to multiple thousand vertices, depending on the
graph structure: see for example McKay and Piperno [10].

The algorithm of McKay and Piperno and also other algorithms in the literature
working similarly get as an input a simple undirected graph G = (V,E) with a vertex
coloring c : V → {1, . . .m} and return among other things a base B of Autc(G) and a
strong generating set for Autc(G) relative to B.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

(G, T)
⇒

Aux(G, T)

Fig. 2: Construction example of the auxiliary graph for a part of a transitioned graph (G, T). The
newly added artificial vertices have color 2, which is drawn white and the original vertices have
color 1, which is drawn black.

Definition 5. Let G be a graph and c a vertex coloring of G. The subgroup

Autc(G) := {f ∈ Aut(G) | c(f(v)) = c(v) ∀v ∈ V (G)}
is called the color-preserving automorphism group of G with respect to c.

A base B for Autc(G) is a sequence B = (v1, . . . vk) of vertices of G such that the
stabilizer Autc{v1,...,vk}(G) is trivial, i.e. only contains the identity. A strong generating
set(SGS) for Autc(G) relative toB is a set S of generating functions such that S gener-
ates Autc(G) and S ∩Autc{v1,...,vk}(G) generates Autc{v1,...,vk}(G) for all 1 ≤ j < k.

Given a generator set of a group it is easy to compute the orbits of this group.
Therefore, if we have a basisB = (v1, . . . , vk) and a strong generating set relative toB
we are able to compute the orbits orbv1,...,vj of the stabilizers. Since we did not fix yet
an ordering of the vertices in our input graphs G and H we can always use the partial
ordering given by a basis B and extend it by putting all other vertices not occurring in
the partial ordering in an arbitrary order after the vertices in B.

Since we need to compute automorphism groups of transitioned multigraphs, we
need to transform our graphs in such a way that we can apply McKay’s algorithm to
it. Let (G, T) be a transitioned graph. We construct an auxiliary graph Aux(G, T)
by inserting in each edge e = v1v2 of G two vertices wv1

e and wv2
e . This gives us

immediately a simple graph. Furthermore, for each transition t = (v, e1, e2) ∈ T we
add an edge between the vertices wv

e1 and wv
e2 . We also define a coloring c on the

auxiliary graph by coloring all original vertices with the color 1 and all artificially added
vertices with the color 2. See Figure 2 for an example on how to construct the auxiliary
graph for a part of a given transitioned graph (G, T).
Theorem 1.

Aut(G, T) =
{
f |V (G) | f ∈ Autc(Aux(G, T))

}

Proof. By adding the two artificial vertices with a second color between each edge we
can associate with each automorphism in the auxiliary graph a vertex mapping and an
edge mapping in the original graph. The edge mapping is defined by mapping an edge e1
to an edge e2 if the two artificial vertices on e1 get mapped to the two artificial vertices
on e2 in the auxiliary graph. The edge mapping satisfies (1). Furthermore, since there
are edges between two added vertices wv

e1 and wv
e2 if and only if there is a transaction

(v, {e1, e2}) in the original graph we also get that the edge mapping satisfies (2). On
the other hand, given a vertex mapping and an edge mapping satisfying (1) and (2), we
can use those to formulate an edge-preserving vertex mapping on the auxiliary graph.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

Corollary 1. If G is a set of generators of Autc(Aux(G, T)) then the set G′ :={
f |V (G) | f ∈ G

}
is a generator of Aut(G, T).

Theorem 1 shows us that we can use the auxiliary graph Aux(G, T) to get the
automorphism group of a transitioned graph (G, T) by using an algorithm to compute
Autc(Aux(G, T)) and Corollary 1 shows us that we can use generators of
Autc(Aux(G, T)) to get the generators of Aux(G, T).

What remains is how to compute a basis and a strong generating set of Aut(G, T).
Since the basis for Autc(Aux(G, T)) may contain artificial vertices that are not in
V (G) we cannot use it forG. But since we already have a generating set for Aut(G, T)
we can use any algorithm that computes, given a generating set of the group, a basis
together with a strong generating set, such as the Schreier-Sims algorithm [12].

4 Computational Results

To test our SAT model and compare it with the MIP model proposed in [8] we im-
plemented both in C++ using Glucose 4.1 to solve the SAT model and Gurobi 8.1 to
solve the MIP model. We also tested the impact of the symmetry breaking constraints
for both models. To get the automorphism groups as described in Section 3.1 we used
nauty 2.6 [10] and to get a strong generating set we used the implementation of the
Schreier-Sims algorithm contained in the nauty program. All tests were performed on a
single core of an Intel Xeon E5-2640 v4 processor with 2.40GHz and 8GB RAM.

We consider the instance sets S1, S2, and G1 from [8] together with a new instance
set G2 of larger random graphs to also test the limits of the SAT model. Set S1 consists
of four random perfect matching contractions of all snarks with up to 26 vertices plus
1000 snarks with 28 vertices using the UD-K5 as transitioned graph (H,S). The set
S2 consists of all PPM contractions of all snarks with up to 22 vertices. Furthermore,
set G1 consists for each combination of n ∈ {9, . . . , 15} and m ∈ {5, . . . , 7} of ten
instances, where each of those consists of a random 4-regular completely-transitioned
graph G with n vertices and a random 4-regular completely-transitioned graph H with
m vertices. The additional new instance set G2 is constructed the same way as G1 but
with n ∈ {16, . . . , 30} and m ∈ {6, . . . , 10}.

We compare the running times of four algorithms for the given instances, the orig-
inal MIP model, the MIP model with the symmetry breaking constraints (47)-(48),
which will be called MIPsym, the SAT model, and the SAT model with the symmetry
breaking constraints (49)-(50), which will be called SATsym.

Table 1 lists the computational results for instance set S1 for all four algorithms.
The instances are grouped by the number of vertices |V (C)| of the snark C used for
the generation, one column per group. Column |I| contains the numbers of instances,
|Ifeas| the numbers of feasible instances, and |Iinf| the numbers of infeasible instances.
The time columns tfeas[s] and tinf[s] list median running times of all feasible instances
respectively the infeasible instances in seconds rounded to integer. Furthermore, for
the MIP models columns Itl contain the numbers of instances that could not be solved
within the CPU-time limit of 3600 seconds. The best running times of the groups of
feasible instances and infeasible instances are marked bold.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

Table 1: Computation results for instance set S1.

MIP MIPsym SAT SATsym

|V (C)| |I| |Ifeas| |Iinf| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

10 4 4 0 < 1 - 0 < 1 - 0 < 1 - < 1 -
18 8 8 0 3 - 0 4 - 0 < 1 - < 1 -
20 24 24 0 2 - 0 2 - 0 < 1 - < 1 -
22 124 121 3 4 2035 0 5 727 0 < 1 11 < 1 1
24 620 604 16 8 3600 15 6 2955 2 < 1 26 < 1 2
26 5188 5124 64 12 3600 64 9 3600 58 < 1 78 < 1 4
28 4000 3970 30 19 3600 30 14 3600 30 < 1 166 < 1 7

Table 2: Computation results for instance set S2.

MIP MIPsym SAT SATsym

|V (C)| |I| |Ifeas| |Iinf| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] |Itl| tfeas[s] tinf[s] tfeas[s] tinf[s]

18 98 15 83 2 194 0 1 9 0 0.04 0.12 0.04 0.04
20 1116 416 700 3 468 6 2 24 0 0.05 0.28 0.05 0.06
22 10694 4873 5821 4 1173 892 3 74 0 0.06 0.78 0.06 0.08

As we can see the SAT model outperforms the MIP model considerably and the
symmetry breaking constraints improve the running times for the infeasible instances,
especially for the SAT model but also for the MIP model.

To further compare the four models we applied a Wilcoxon signed-rank test for
each pair of them using a p-value of 5%. The algorithm MIPsym is significantly faster
than MIP for the instance groups with |V (C)| ≥ 24, for the infeasible but also for the
feasible instances. The two SAT models are significantly faster than both MIP models
for all instance groups except for |V (C)| = 18 and the infeasible instances of |V (C)| =
22 since those are too few to get a significant result. In fact the SAT models are faster
on almost all instances except a few feasible instances. For the SAT model the variant
without the symmetry breaking constraints is significantly faster on all feasible instance
groups with |V (C)| ≥ 22 although the difference in the values is only within hundredth
of seconds. On the other hand for the infeasible instance groups with |V (C)| ≥ 24 the
model with the symmetry breaking constraints is significantly faster.

Table 2 shows the computational results for instance set S2. The columns are the
same as in Table 1. The results are similar as for instance set S1, but this time MIPsym
can solve all instances within the time limit. Applying the Wilcoxon signed-rank test we
get that MIPsym is significantly faster than MIP except for the infeasible instance group
with |V (C)| = 18. Both SAT models are significantly faster than the MIP models for
all instance groups. This time SAT is not significantly faster than SATsym on the feasible
instance groups, SATsym is even significantly faster than SAT for the feasible instance
group with |V (C)| = 22. For the infeasible instances SATsym is significantly faster.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

Table 3: Computation results for instance set G1.

MIP MIPsym SAT SATsym

|V (G)| |V (H)| |I| |Ifeas| |Iinf| t[s] |Itl| t[s] |Itl| t[s] t[s]

09 5 30 15 15 106 0 91 0 < 1 < 1
09 6 30 4 26 440 1 409 0 1 < 1
09 7 30 0 30 2059 11 2735 14 < 1 < 1
10 5 30 19 11 90 1 87 1 < 1 < 1
10 6 30 4 26 1939 12 1862 10 1 1
10 7 30 0 30 3600 16 3600 16 2 1
11 5 30 25 5 42 1 19 0 < 1 < 1
11 6 30 9 21 2777 14 3600 16 3 2
11 7 30 1 29 3600 22 3600 20 3 3
12 5 30 28 2 50 1 17 0 < 1 < 1
12 6 30 21 9 2204 13 2124 11 3 2
12 7 30 1 29 3600 30 3600 30 8 7
13 5 30 28 2 23 2 26 2 < 1 < 1
13 6 30 20 10 3600 17 2055 13 4 4
13 7 30 7 23 3600 30 3600 27 14 13
14 5 30 30 0 24 0 30 0 < 1 < 1
14 6 30 28 2 562 7 823 8 2 2
14 7 30 8 22 3600 29 3600 27 27 28
15 5 30 30 0 30 0 24 0 < 1 < 1
15 6 30 29 1 670 2 1475 11 3 2
15 7 30 18 12 3600 26 3600 27 27 30

Table 3 shows the computation results for the instance set G1. We group the in-
stances by the number of vertices of the input graphs G and H . We do not distinguish
between feasible and infeasible instance groups in this table, since the running time
characteristics are similar for both types of instances. Columns t[s] show the median
running time for all instances of the instance group. Again both SAT models could
solve all instances within one hour and outperforms the MIP models. This time the
differences between the models with symmetry breaking constraints and without are
smaller, since the probability that a random graph has symmetries is small. Now the
SAT models are on all instances faster than the MIP models. Between the MIP models
there are only few instance groups where there is a significant difference in the running
times in favor of both models. The situation between the two SAT models is similar
although there are slightly more instance groups where SATsym is significantly faster.

All instances in all three instance sets S1, S2, and G1 could be solved within the
time limit of one hour by both SAT models. To also analyze the limits of our SAT
models we also tested instance set G2. Figure 3 shows the median running times of
the SATsym model for different sizes of |G| and |H|. As we can see the running time
heavily depends on the size of H and not so strongly on the size of G. For |H| = 10
and |G| ≥ 20 we run into the time limit of one hour in most of the instances. Similarly,
as for instance set G1 also in G2 the running times for SATsym and SAT are similar.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

16 18 20 22 24 26 28 30
|G|

100

101

102

103

ru
nn

in
g
tim

e
[s
] |H| = 6

|H| = 7
|H| = 8
|H| = 9
|H| = 10

Fig. 3: Median running times of SATsym for instance set G2.

Using SATsym we also implemented the framework described at the end of Sec-
tion 2. We use Boosts implementation of the Boyer-Myrvold planarity test to check for
planar graphs. Furthermore, we use a simple SAT model for checking if a graph contains
a K5-minor and another SAT model for checking if it has a CCD. Since the bottleneck
of this framework are the solving times for checking SUD-K5-minor freeness, the run-
ning time improvements by the SAT model were crucial to check for all snarks with
up to 32 vertices if they contain a planar contraction, a K5-minor free contraction, a
SUD-K5-minor free contraction, or a CCD-containing contraction of a PPM. From the
1 918 812 tested snarks we found 25 248 snarks that do not contain a planar contraction
of a PPM, 19 130 snarks that do not contain a K5-minor free contraction of a PPM, and
1 095 snarks that do not contain a SUD-K5-minor free contraction of a PPM.

Up until now it was not known if there exist snarks that do not have a PPM whose
contraction leads to planar/K5-minor free/SUD-K5-minor free graphs. With our imple-
mentation we could find many examples of snarks that have those properties. Neverthe-
less, all tested snarks always had a PPM whose contraction leads to a graph which has
a CCD. Therefore, it remains an open question if there exists a snark that does not have
a PPM whose contraction leads to a CCD-containing graph.

5 Conclusion and Future Work

In this work we proposed a SAT model for checking if a given transitioned graph (G, T)
has a Sup-(H,S)-transition minor. The model is based on the mathematical model de-
veloped in a previous work [8]. To improve the performance of the SAT model, but also
of the MIP model we developed symmetry breaking constraints that are based on the
automorphism groups of both input graphs restricted by the additional structure given
through the transition systems. In our computational study we could verify that the SAT
model outperforms the MIP model significantly and the symmetry breaking constraints
could improve the running times especially for proving infeasibility. Using the SAT
model in a framework we were able to find many snarks that do not have PPM whose
contraction leads to SUD-K5-minor free graphs.

In future work it may be interesting to consider a CP model for our problem to be
able to use non-binary variables in the model for representing the mappings between
the two input graphs. Furthermore, the framework for finding snarks that do not contain
a SUD-K5-minor free contraction of a PPM may be improved by adding symmetry
breaking during the enumeration of the PPMs.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

References

1. F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Solving Difficult SAT Instances
in the Presence of Symmetry. In Proceedings of the 39th Annual Design Automation Con-
ference, DAC ’02, pages 731–736, New York, NY, USA, 2002. ACM.

2. G. Fan and C.-Q. Zhang. Circuit Decompositions of Eulerian Graphs. Journal of Combina-
torial Theory, Series B, 78(1):1–23, 2000.

3. H. Fleischner. Eulersche Linien und Kreisüberdeckungen, die vorgegebene Durchgänge in
den Kanten vermeiden. Journal of Combinatorial Theory, Series B, 29(2):145–167, 1980.

4. H. Fleischner, B. Bagheri Gh., C.-Q. Zhang, and Z. Zhang. Cycle covers (III) - Compatible
circuit decomposition and K5-transition minor. Technical report, Algorithms and Complex-
ity Group, TU Wien, 2018.

5. F. Jaeger. A survey of the cycle double cover conjecture. In B.R. Alspach and C. D. God-
sil, editors, Annals of Discrete Mathematics (27): Cycles in Graphs, volume 115 of North-
Holland Mathematics Studies, pages 1–12. North-Holland, 1985.

6. M. Janota, R. Grigore, and V. Manquinho. On the Quest for an Acyclic Graph.
arXiv:1708.01745 [cs], 2017. arXiv: 1708.01745.

7. T. Januschowski and M. E. Pfetsch. Branch-Cut-and-Propagate for the Maximum k-
Colorable Subgraph Problem with Symmetry. In T. Achterberg and J. C. Beck, editors,
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Op-
timization Problems, Lecture Notes in Computer Science, pages 99–116. Springer Berlin
Heidelberg, 2011.

8. B. Klocker, H. Fleischner, and G. Raidl. A Model for Finding Transition-Minors. Technical
report, Algorithms and Complexity Group, TU Wien, 2018.

9. E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982.

10. B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of Symbolic Com-
putation, 60(0):94 – 112, 2014.

11. P. D. Seymour. Sums of circuits. Graph theory and related topics, 1:341–355, 1979.
12. C. C. Sims. Computational methods in the study of permutation groups. In J. Leech, editor,

Computational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970.
13. G. Szekeres. Polyhedral decompositions of cubic graphs. Bulletin of the Australian Mathe-

matical Society, 8(03):367, 1973.
14. G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus. In J. H. Siek-

mann and G. Wrightson, editors, Automation of Reasoning: 2: Classical Papers on Compu-
tational Logic 1967–1970, Symbolic Computation, pages 466–483. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1983.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
01

0

