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Abstract

Weighted Counting for Constraint Satisfaction with Default Values (#CSPD) is a powerful special case of the sum-of-products
problem that admits succinct encodings of #CSP, #SAT, and inference in probabilistic graphical models.

We investigate #CSPD under the fundamental parameter of incidence treewidth (i.e., the treewidth of the incidence graph
of the constraint hypergraph). We show that if the incidence treewidth is bounded, then #CSPD can be solved in polynomial
time. More specifically, we show that the problem is fixed-parameter tractable for the combined parameter incidence treewidth,
domain size, and support size (the maximum number of non-default tuples in a constraint), generalizing a known result on the
fixed-parameter tractability of #CSPD under the combined parameter primal treewidth and domain size. We further prove that the
problem is not fixed-parameter tractable if any of the three components is dropped from the parameterization.

Index Terms

constraint satisfaction problem, sum-of-products, treewidth, parameterized complexity

I. INTRODUCTION

Weighted Counting for Constraint Satisfaction with Default Values (#CSPD) [4] extends the standard CSP formalism by
adding (i) a rational weight to each tuple in a constraint relation, as well as (ii) a default weight for each constraint indicating
the weight of assignments not represented by a tuple in the relation. The weight of an assignment is the product over the
weights of all constraints under that assignment, and the value of a #CSPD instance is the sum of these weights taken over all
total assignments. #CSPD is a powerful special case of the sum-of-products problem [1, 11]: problems such as #CSP, #SAT,
and inference in probabilistic graphical models (PGMs) can be succinctly encoded in #CSPD.

For example, an instance of #SAT can be represented by introducing, for each clause, a constraint with default weight 1
containing a single tuple with weight 0. Conditional probability tables of a Bayesian Network [26] can be directly encoded as
constraints with tuple weights corresponding to conditional probabilities. Additionally, default values can be used to succinctly
represent uniform probability distributions.

Canonical algorithms for the sum-of-products problem run in polynomial time for instances of bounded primal treewidth (the
treewidth of the graph whose vertices are variables, and where two variables are adjacent if and only if they appear together in
the scope of a constraint) [1, 11, 20]. A runtime bound of this kind also holds for a variable elimination procedure tailored to
#CSPD [5]. However, an instance of primal treewidth k may only contain relations of arity up to k + 1, so one can afford to
expand any succinctly represented relation to a table of size nO(k). We therefore need a more fine-grained measure than primal
treewidth to capture advantages afforded by the use of default values.

Our main contribution is an algorithm, laid out in detail in Section III, that solves #CSPD in polynomial time for instances
of bounded incidence treewidth (the treewidth of the bipartite graph on variables and clauses where a variable and a clause
are adjacent if and only if the variable appears in the scope of the constraint).1 This result is significant since the incidence
treewidth is more general than primal treewidth: an instance of primal treewidth k has incidence treewidth at most k + 1, but
there are instances of bounded incidence treewidth but arbitrarily large primal treewidth (see, e.g., [29]).

In the context of CSP and inference in PGMs, efforts toward obtaining even finer-grained measures have lead to the
development of generalized hypertree decompositions (GHDs) [17] and GHD-based inference algorithms [20]. Recently, it was
shown that the sum-of-products problem can be solved in polynomial time if a measure of GHDs known as the fractional
hypertree width is bounded [21]. This bound requires that factors/constraints are given in a format where each non-zero tuple is
represented explicitly, and it is unlikely that a similar bound can be obtained for #CSPD because #SAT (and thus #CSPD) is
#P-hard already for instances with acyclic constraint hypergraphs [28].

Our algorithm is elementary and combinatorial. It is based on dynamic programming along a tree decomposition, with the key
ingredient being a notion of projection, which allows us to store the effect of partial assignments locally in dynamic programming
tables (cf. [25, 30]). The running time of our algorithm for #CSPD is polynomial, where the order of the polynomial depends on
the incidence treewidth. In Section IV we identify additional restrictions under which the algorithm runs in uniform polynomial

1Inference in PGMs is known to be tractable for instances whose incidence graph is a tree [2, Ch.5]. CSP without counting or weights, where constraints
can either be represented by allowed or forbidden tuples has also be addressed by Cohen et al. [9] and by Chen and Grohe [7]; the latter work also obtains
tractability results for such variants of CSP when the incidence treewidth is bounded.
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time, i.e., where the degree of the polynomial does not depend on the incidence treewidth. Problems that can be solved by such
an algorithm are called fixed-parameter tractable [6, 10, 13, 19]. More specifically, we show that #CSPD is fixed-parameter
tractable for the combined parameter consisting of the incidence treewidth, the domain size, and the maximum number of
tuples present in a constraint. We also show that none of these three components of the parameter can be dropped without
losing fixed-parameter tractability.

II. PRELIMINARIES

A. Weighted Constraint Satisfaction with Default Values

Let V be a set of variables and D a finite set of values (the domain). A weighted constraint C of arity ρ over D with default
value η is a tuple C = (S, F, f, η) where
• the scope S = (x1, . . . , xρ) is a sequence2 of variables from V ,
• η ∈ Q is the default value,
• F ⊆ Dρ is called the support and
• f : F → Q is a mapping which assigns rational weights to the support.

Here, Q denotes the set of rational numbers.3 We define |C| = |S|+ |F |+ 1 and var(C) = S. Since all the weighted constraints
we consider will have a default value, we will use weighted constraint for brevity instead of weighted constraint with default
value; on the other hand, a constraint is defined analogously as a weighted constraint, but without the components f and η.

An assignment α : X → D is a mapping defined on a set X ⊆ V of variables; if X = V then α is a total assignment.
An assignment α′ then extends α if ∀x ∈ X : α(x) = α′(x). A weighted constraint C = (S, F, f, η) naturally induces a
total function on assignments of its scope S = (x1, . . . , xρ): for each assignment α : X → D where X ⊇ S, we define the
value C(α) of C under α as C(α) = f(α(x1), . . . , α(xρ)) if (α(x1), . . . , α(xρ)) ∈ F and C(α) = η otherwise.

An instance I of #CSPD is a tuple (V,D, C) where V = var(I) is the set of variables of I, D is its domain, and C is a set of
weighted constraints over D. We define |I| as the sum of |V|, |D|, and |C| for each C ∈ C. The task in #CSPD is to compute
the total weight of all assignments of V , i.e., to compute the value

sol(I) =
∑

α:V→D

∏

C∈C
C(α).

We observe that every instance of the classical #CSP problem can be straightforwardly translated into an instance of #CSPD:
for each constraint in the #CSP instance we create a weighted constraint, add the tuples of the constraint into F , have f map
these to the value 1 and set the default value to 0. Similarly, every instance of #SAT can also be represented as an instance of
#CSPD: for each clause we create a corresponding weighted constraint, set F to be the only tuple that does not satisfy that
clause, let f map this tuple to 0 and set η = 1. Naturally, #CSPD also generalizes the weighted counting variants for #CSP
and #SAT, but is also significantly more powerful than each of these formalisms on their own; indeed, it for instance allows us
to perform weighted counting for the MIXED CSP problem [9].

We use standard graph terminology, see for instance the handbook by Diestel [12]. The primal graph of a #CSPD instance I
is the graph whose vertices correspond to the variables of I and where two variables a, b are adjacent iff there exists a weighted
constraint in I whose scope contains both a and b. The incidence graph of I is the bipartite graph whose vertices correspond to
the variables and weighted constraints of I, and where vertices corresponding to a variable x and a weighted constraint C are
adjacent iff x ∈ var(C).

B. Treewidth

Let G be a graph. A tree decomposition of G is a pair (T, χ) where T is a tree and χ : T → 2V (G) is a mapping from tree
nodes to subsets of V (G) such that:
• ∀e = uv ∈ E(G),∃t ∈ V (T ) : {u, v} ⊆ χ(t), and
• ∀v ∈ V (G), T [{t | v ∈ χ(t)}] is a non-empty connected subtree of T .

We call the vertices of T nodes and the sets in χ(t) bags of the tree decomposition (T, χ). The width of (T, χ) is equal to
max{|χ(t)| − 1 | t ∈ V (T )} and the treewidth of G (denoted tw(G)) is the minimum width over all tree decompositions of G.
A tree decomposition (T, χ) is called nice if T is rooted and the following conditions hold:
• Every node of the tree T has at most two children;
• if a node t has two children t1 and t2, then t is called a join node and χ(t) = χ(t1) = χ(t2);
• if a node t has one child t1, then either |χ(t)| = |χ(t1)|+ 1 and χ(t1) ⊂ χ(t) (in this case we call t an insert node) or
χ(t) = |χ(t1)| − 1 and χ(t) ⊂ χ(t1) (in this case we call t a forget node);

2We note that even though S is a sequence, we slightly abuse notation by sometimes treating it as a set; as an example, we may write X ⊆ S.
3The original definition of #CSPD only considers nonnegative rational weights and default values [4]. This restriction is not required for the purposes of the

present work.
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• the root r of T satisfies χ(r) = ∅.
It is possible to transform a tree decomposition (T, χ) into a nice tree decomposition (T ′, χ′) of the same width in time

O(|V | + |E|) [22]. Furthermore, it is possible to efficiently construct near-optimal tree decompositions for graphs of low
treewidth:

Fact 1 ([3]). There exists an algorithm which, given an n-vertex graph G and an integer k, in time 2O(k) · n either outputs a
tree-decomposition of G of width at most 5k + 4 and O(n) nodes, or determines that tw(G) > k.

The primal treewidth (tw) of a #CSPD instance I is the treewidth of its primal graph, and similarly, the incidence treewidth
(tw∗) of I is the treewidth of its incidence graph.

III. SOLVING #CSPD USING INCIDENCE TREEWIDTH

Here we show that #CSPD can be solved in polynomial time when restricted to instances of bounded incidence treewidth.
We remark that, in parameterized complexity terminology, the algorithm is an XP algorithm. However, before we proceed to
the algorithm itself, we will need to introduce the notion of projection, which is instrumental in defining the records used by
our dynamic programming algorithm.

A. Projections

Let C = (S, F ) be an unweighted constraint where S = (x1, . . . , xl) and let τ : X → D be an assignment. The projection
of C with respect to assignment τ is the constraint C|τ = (S, F ′), where F ′ is the set of tuples of F compatible with τ ,
formally

F ′ = { (s1, . . . , sl) ∈ F : τ(xi) = si for all xi ∈ X ∩ S }.
The algorithm presented in Section III-B lumps assignments together based on their projections, the idea being that two
assignments τ, σ behave the same with respect to a constraint C if their projections C|τ and C|σ are identical. The projection C|τ
of a weighted constraint C = (S, F, η, f) with respect to an assignment τ is simply the projection of its associated unweighted
constraint (S, F ) with respect to τ .

We write C[X] to denote the set of projections of C with respect to assignments of X . The following observation notes
that C[X] is not too large; this contrasts with the fact that the number of assignments of X may be exponential in the size
of X .

Observation 1. Let C = (S, F ) be a constraint and let X be a set of variables. The following bounds hold:
1) |C[X]| ≤ |F |+ 1.
2)

⋃
(S,F ′)∈C[X] F

′ = F .
Moreover, the union in 2) is disjoint.

We illustrate an example of a projection. Consider a clause (x∨ y ∨ z̄) of a CNF formula. One possible way to represent this
clause in the #CSPD format is C = ({x, y, z}, {0, 1}3 \ {(0, 0, 1)}, F 7→ {1, 0}). If α is an assignment on {x} with α(x) = 0,
then we have C|α = ({x, y, z}, {0} × ({0, 1}2 \ {(0, 1)})). In the case when α(x) = 1, then Cα = ({x, y, z}, {1} × {0, 1}2).

The projection of a constraint with respect to the union of two assignments can be computed from the projections of this
constraint with respect to the individual assignments. We define the intersection of two unweighted constraints C1 = (S, F1) and
C2 = (S, F2) with the same scope (which in the following will be projections of the same constraint) as C1∩C2 = (S, F1∩F2).

Observation 2. If C is a constraint and τ : X → D, σ : Y → D are assignments such that τ(x) = σ(x) for each
variable x ∈ X ∩ Y , then

1) (C|τ )|σ = (C|σ)|τ = C|τ∪σ , and
2) C|τ ∩ C|σ = C|τ∪σ .

The value C(τ) of a constraint under a complete assignment τ can be obtained from the projection C|τ in the following way.
Let C = (S, F, η, f) be a weighted constraint and B = (S, F ′) a projection of C under an assignment of X ⊇ S; note that F ′

is either empty or contains a single tuple s. We define val(C,B) as val(C,B) = η in the former case and val(C,B) = f(s)
in the latter case.

Observation 3. For every assignment τ : X → D and constraint C with scope S ⊆ X we have val(C,C|τ ) = C(τ).

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

7



B. The Algorithm

For the purposes of this section, let I = (V,D, C) be an arbitrary but fixed instance of #CSPD, and let (T, χ) be a nice tree
decomposition of its incidence graph. Let t ∈ V (T ) be a node of this tree decomposition. We write Xt = χ(t) ∩ V for the set
of variables in the bag of t, Yt for the set of variables “forgotten” below t, and Zt = Xt ∪ Yt for their union. Furthermore, we
write Ct = χ(t) ∩ C for the set of constraints in the bag of t and C−t for the set of constraints “forgotten” below t. Our goal is
to compute the weight of assignments τ : Zt → D restricted to C−t , that is, we want to compute the value of the following
expression:

∑

τ :Zt→D

∏

C∈C−t

C(τ). (1)

Since every variable and constraint is eventually forgotten, expression (1) computes sol(I) at the root of T . To perform dynamic
programming, we will split the set DZt into equivalence classes that keep track of the influence of assignments on constraints
in C \ C−t (i.e., constraints that have not yet been forgotten). Let τ : Zt → D be an assignment and let C ∈ C \ C−t . How can τ
affect the constraint C? Let Ct denote the set of constraints in the bag of t. If C /∈ Ct, then var(C) cannot contain variables
forgotten below t since (T,X ) is a tree decomposition, so the effect of τ on C is captured by the restricted assignment τ |Xt

.
On the other hand, if C ∈ Ct then the effect of τ on C can be characterized by a projection of C with respect to Zt. To
simplify the presentation of the following arguments we will assume an ordering on the set of constraints in each bag. Let
Ct = (C1, . . . , Cp) be the constraints associated with node t. Let σ ∈ DXt be an assignment and let ~B = (B1, . . . , Bp) be a
vector where Bi ∈ Ci[Zt]. We define a set At(σ, ~B) of assignments as

At(σ, ~B) = { τ : Zt → D : τ |Xt
= σ and Ci|τ = Bi for i ∈ [p] }.

It is not difficult to see that the sets At(σ, ~B) yield a partition of the assignments in DZt . Note that σ can be viewed an
assignment on Zt restricted to the variable set Xt and ~B is a tuple of projections of constraints in Ct with respect to an
assignment on Zt. Therefore, (σ, ~B) can be seen as a state of the bag Xt ∪ Ct invoked by an assignment of Zt. Intuitively, one
can think of At(σ, ~B) as the set of all assignments of Zt which achieve a particular state (σ, ~B) at node t. For each node t ∈ T
and each pair (σ, ~B), we will compute and store values Qt(σ, ~B) such that

Qt(σ, ~B) =
∑

τ∈At(σ, ~B)

∏

C∈C−t

C(τ).

We will argue that the records Qt(σ, ~B) can be computed from records Qt′(σ′, ~B′) associated with child nodes t′ of t.
For a variable x and an assignment σ whose domain includes x, we let σx denote the restriction of σ to x. For each domain

value d ∈ D, we let σdx : {x} → D denote the assignment such that σdx(x) = d. For a vector ~B = (B1, . . . , Bl) of constraints
and a constraint B we will write ( ~B,B) = (B1, . . . , Bl, B). To make the notation less cumbersome we will omit the names of
nodes in the subscripts for tree nodes t with a single child node t′. For instance we will write X instead of Xt, A instead of
At, and so forth. Moreover, we will use primes when referring to objects associated with t′ and write X ′ instead of Xt′ , A′

instead of At′ , etc.

Lemma 1. Let t be a variable introduce node with child t′, and let x be the variable introduced by t. Let Ct = (C1, . . . , Cp),
let σ : Xt → D be an assignment, and let ~B = (B1, . . . , Bp) be a vector such that Bi ∈ Ci[Z] for each i ∈ [p]. There exists a
unique assignment σ′ : X ′ → D and a unique vector ~B′ = (B′1, . . . , B

′
p) with B′i ∈ Ci[Z ′] such that σ = σ′ ∪ σx, Bi = B′i|σx

for each i ∈ [p], and

Q(σ, ~B) = Q′(σ′, ~B′).

Proof. Let τ ∈ DXt be an assignment such that Ci|τ = Bi for each i, let τ ′ = τ |X′ , and let B′i = Ci|τ ′ for each i. Further,
let σ′ = σ|X′ . We claim that the mapping f : ρ 7→ ρ|X′ is a bijection between A(σ, ~B) and A′(σ′, ~B′). Let ρ ∈ A(σ, ~B) be
an assignment and let ρ′ = ρ|X′ denote its image under f . Trivially, ρ′ ∈ A′(σ′, ~C), where ~C = (C1|ρ′ , . . . , Cp|ρ′). We now
argue that Ci|ρ′ = B′i for each i ∈ [p]. Observe that (Ci|ρ′)|σx

= Ci|ρ = Bi = Ci|τ = (Ci|τ ′)|σx
= B′i|σx

. If the projections
Bi = Ci|τ ′ and Ci|ρ′ are distinct then by Observation 1 they must be disjoint. But since (Ci|τ ′)|σd

x
= Ci|τ ′ ∩ Ci|σd

x
and

(Ci|ρ′)|σd
x

= Ci|ρ′ ∩ Ci|σd
x

by Observation 2, the projections Ci|ρ and Ci|τ would have to be disjoint as well. We conclude
that Ci|ρ′ = B′i and thus ρ′ ∈ A′(σ′, B′i). This proves that f is into. Since f is clearly injective, it remains to show that the
mapping is surjective as well. Let τ ′ ∈ A′(σ′, ~B′) and let τ = τ ′ ∪ σx. Then τ |X = σ and Ci|τ = (Ci|τ ′)|σx

= B′i|σx
= Bi,

so τ ∈ A(σ, ~B). This proves the claim that f is a bijection. Since (T,X ) is a tree decomposition, the newly introduced
variable x does not occur in any constraint forgotten below t, so the assignments τ and f(τ) always have the same weight. It
follows that Q(σ, ~B) = Q′(σ′, ~B′).
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Lemma 2. Let t be an introduce node with child t′, let Ct′ = (C1, . . . , Cp−1) and Ct = (C1, . . . , Cp−1, C). Let σ : Xt → D be
an assignment, let ~B = (B1, . . . , Bp) be a vector of constraints, and let ~B′ = (B1, . . . , Bp−1). The following statements hold:

1) Q(σ, ~B) is nonzero only if Bp = C|σ .
2) If Bp = C|σ then Q(σ, ~B) = Q′(σ, ~B′).

Proof. We must have Bp = C|σ in order for Q(σ, ~B) to be nonzero since the newly introduced constraint C cannot contain
variables forgotten below t. If Bp = C|σ then trivially A(σ, ~B) = A′(σ, ~B′). Since C−t = C−t′ the lemma follows.

Lemma 3. Let t be a variable forget node with child t′, and let x be the variable forgotten by t. Let σ : X → D be an
assignment and let ~B = (B1, . . . , Bp) be a vector of constraints. Then

Q(σ, ~B) =
∑

d∈D
Q′(σ ∪ σdx, ~B).

Proof. We show that A(σ, ~B) =
⋃
d∈D A

′(σ ∪ σdx, ~B). If τ ∈ A(σ, ~B) then τ ∈ A′(σ ∪ στ(x)x , ~B). Conversely, if τ ∈ A′(σ′, ~B)

then τ ∈ A(σ, ~B), where σ = σ′|X . The lemma now follows, since C−t = C−t′ and the union is disjoint.

Lemma 4. Let t be a forget node with child t′ such that Ct′ = (C1, . . . , Cp−1, C) and Ct = (C1, . . . , Cp−1). Let σ : Xt → D
be an assignment and let ~B = (B1, . . . , Bp−1) be a vector of constraints. Then

Q(σ, ~B) =
∑

B∈C[Z]

val(C,B)Q′(σ, ( ~B,B)).

Proof. We first show that

A(σ, ~B) =
⋃̇

B∈C[Z]

A′(σ, ( ~B,B)). (2)

The inclusion A(σ, ~B) ⊇ ⋃
B∈C[Z] A

′(σ, ( ~B,B)) is trivial. For the other direction, let τ ∈ A(σ, ~B) and let B = C|τ . Clearly,
τ ∈ A′(σ, ( ~B,B)). Moreover, the union is disjoint since the sets A′(σ, ~B′) are pairwise disjoint.

To see that A(σ, ~B) ⊆ ⋃
B∈C[Z] A

′(σ, ( ~B,B)), let B ∈ C[Z] be a projection and let τ ∈ A′(σ, ( ~B,B)). Since C is forgotten
at node t we have

∏

C′∈C−t

C ′(τ) = C(τ)
∏

C′∈C−
t′

C ′(τ). (3)

Moreover, var(C) ⊆ Z since C has been forgotten, so val(C,B) is defined and val(C,B) = C(τ) by Observation 3. Putting
everything together, we get

Q(σ, ~B) =
∑

τ∈A(σ, ~B)

∏

C′∈C−t

C ′(τ)

=
∑

τ∈A(σ, ~B)

C(τ)
∏

C∈C−
t′

C ′(τ) by (3)

=
∑

B∈C[Z]

∑

τ∈A′(σ,( ~B,B))

C(τ)
∏

C∈C−
t′

C ′(τ) by (2)

=
∑

B∈C[Z]

∑

τ∈A′(σ,( ~B,B))

val(C,B)
∏

C∈C−
t′

C ′(τ) by Observation 3

=
∑

B∈C[Z]

val(C,B)
∑

τ∈A′(σ,( ~B,B))

∏

C∈C−
t′

C ′(τ)

=
∑

B∈C[Z]

val(C,B)Q′(σ, ( ~B,B)).

To simplify the statement and proof of the following lemma, we introduce some additional notation. Given two vectors
~B1 = (B1, . . . , Bp) and ~B2 = (B′1, . . . , B

′
p) of constraints such that Bi and B′i have the same scope for each i ∈ [p], we write

~B1 ∩ ~B2 = (B1 ∩B′1, . . . , Bp ∩B′p) for the vector obtained by computing the componentwise intersections.
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In line with the presentation of the above lemmas, in the following we will suppress nodes in the subscripts of objects and
for instance write Zi instead of Zti and Ai instead of Ati , for i ∈ {1, 2}.
Lemma 5. Let t be a join node with children t1 and t2, let σ : Xt → D be an assignment, and let ~B = (B1, . . . , Bp) be a
vector of constraints. We have

Q(σ, ~B) =
∑

~B1∩ ~B2= ~B

Q1(σ, ~B1)Q2(σ, ~B2).

Proof. We first show that

A(σ, ~B) = { τ ∈ DZ : τ |Z1
∈ A1(σ, ~B1), τ |Z2

∈ A2(σ, ~B2), ~B = ~B1 ∩ ~B2 }. (4)

Let τ1 ∈ A1(σ, ~B1) and τ2 ∈ A2(σ, ~B2) such that ~B1 ∩ ~B2 = ~B. Since Y1 ∩ Y2 = ∅, the combined assignment τ = τ1 ∪ τ2 is
well defined. We have Ci|τ = Ci|τ1∪τ2 = Ci|τ1 ∩Ci|τ2 by Observation 2 and thus Ci|τ = Bi for each i ∈ [p], so τ ∈ A(σ, ~B).
Conversely, let τ ∈ A(σ, ~B) and let τ1 = τ |Z1

and let τ2 = τ |Z2
. Let ~B1 = (C1|τ1 , . . . , Cp|τ1) and ~B2 = (C1|τ2 , . . . , Cp|τ2).

We have τ1 ∈ A1(σ, ~B1) and τ2 ∈ A2(σ, ~B2) by construction and ~B = ~B1 ∩ ~B2 by Observation 2.
Each constraint C ∈ C−t forgotten below t is either forgotten below t1 or below t2. If C ∈ C−t1 then var(C) ∩ Y2 = ∅ by the

connectivity properties of a tree decomposition. Conversely, if C ∈ C−t2 then var(C) ∩ Y1 = ∅. Therefore for each τ ∈ A(σ, ~B)
we get

∏

C∈C−t

C(τ) =
∏

C∈C−t1

C(τ)
∏

C∈C−t2

C(τ) =
∏

C∈C−t1

C(τ |Z1)
∏

C∈C−t2

C(τ |Z2), (5)

and thus
∑

τ∈A(σ, ~B)

∏

C∈C−t

C(τ)

=
∑

τ1∈A1(σ, ~B1),

τ2∈A2(σ, ~B2),
~B1∩ ~B2= ~B

∏

C∈C−t

C(τ1 ∪ τ2) by (4)

=
∑

τ1∈A1(σ, ~B1),

τ2∈A2(σ, ~B2),
~B1∩ ~B2= ~B

∏

C∈C−t1

C(τ1)
∏

C∈C−t2

C(τ2) by (5)

=
∑

~B1∩ ~B2= ~B

∑

τ1∈A1(σ, ~B1)

∑

τ2∈A2(σ, ~B2)

∏

C∈C−t1

C(τ1)
∏

C∈C−t2

C(τ2)

=
∑

~B1∩ ~B2= ~B




∑

τ1∈A1(σ, ~B1)

∏

C∈C−t1

C(τ1)







∑

τ2∈A2(σ, ~B2)

∏

C∈C−t2

C(τ2)




=
∑

~B1∩ ~B2= ~B

Q1(σ, ~B1)Q2(σ, ~B2).

The next lemma trivially follows from the fact that Q(σ, ~B) = 1 if A(σ, ~B) 6= ∅ and C− = ∅, and Q(σ, ~B) = 0 if
A(σ, ~B) = ∅.
Lemma 6. Let t be a leaf node such that Ct = (C1, . . . , Cp). Let σ : Xt → D be an assignment and let ~B = (B1, . . . , Bp) be
a vector of constraints. Then Q(σ, ~B) = 1 if Bi = Ci|σ for all i ∈ [p] and Q(σ, ~B) = 0 otherwise.

Let I = (V,D, C) be an instance of #CSPD and let (T, χ) be a tree decomposition of I’s incidence graph. The following
algorithm computes values Rt(σ, ~B)—which can be shown to be equivalent to the values Qt(σ, ~B)—for each tree node t:

1) For each leaf node t with Ct = (C1, . . . , Cp), enumerate the assignments σ ∈ DXt , compute the projections Ci|σ for each
i ∈ [p], and initialize records Rt(σ, ~B) = 1, where ~B = (C1|σ, . . . , Cp|σ). Mark t DONE.

2) Do the following until the root r ∈ T is marked DONE. If t ∈ T is an unmarked node all of whose children t′ are
marked DONE, compute the records Rt based on the node type of t:
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a) If t introduces a variable x, go through all nonzero records Rt′(σ′, ~B′). For each assignment σdx = {x 7→ d}, compute
the assignment σ = σ′ ∪ σdx, as well as the vector ~B = (B′1|σd

x
, . . . , B′p|σd

x
), and set Rt(σ, ~B) = Rt′(σ

′, ~B′). Mark t
DONE.

b) If t is a node introducing the constraint C such that Ct′ = (C1, . . . , Cp) and Ct = (C1, . . . , Cp, C), enumerate the
nonzero records Rt′(σ′, ~B′) and then set Rt(σ′, ~B) = Rt′(σ

′, ~B′), where ~B = (B1, . . . , Bp, C|σ′). Mark t DONE.
c) If t is a variable forget node, go through all nonzero records Rt′(σ′, ~B′) and add Rt′(σ′, ~B′) to the entry Rt(σ′|Xt

, ~B′).
If the entry does not exist, create it and initialize with 0. Mark t DONE.

d) If t is a forget node such that Ct′ = (C1, . . . , Cp−1, C) and Ct = (C1, . . . , Cp−1), go through all nonzero records Rt′(σ′, ~B′)
for ~B′ = (B1, . . . , Bp−1, B) and for each one add the product val(C,B)Rt′(σ

′, ~B′) to the entry Rt(σ
′, ~B), where

~B = (B1, . . . , Bp−1). Again, create and initialize records with 0 whenever necessary. Mark t DONE.
e) For a join node t, go through all pairs of nonzero records Rt1(σ, ~B1) and Rt2(σ, ~B2) of its children t1 and t2, and

add the product Rt1(σ, ~B1)Rt2(σ, ~B2) to the record Rt(σ, ~B1 ∩ ~B2). Create and initialize records with 0 if necessary.
Mark t DONE.

3) Once the root is marked DONE, there are two possibilities. If the record Rr(ε, ()) exists, output its value; otherwise,
output 0. Here, ε : ∅ → D denotes the empty assignment and () the empty tuple;

Let sup be the largest size of a support over all constraints in C, let dom denote |D|, and let k be the width of the tree
decomposition (T, χ).

Lemma 7. The above algorithm outputs sol(I).

Proof. We prove that Rt(σ, ~B) = Qt(σ, ~B) whenever the entry Rt(σ, ~B) exists, and Qt(σ, ~B) = 0 otherwise. For leaf nodes t
this is immediate from Lemma 6. Assume the statement of the lemma holds for the children of a node t.
(a) Let t be a node that introduces variable x. The entry Rt(σ, ~B) exists if, and only if, there is a record Rt′(σ

′, ~B′)
with σ = σ′ ∪ σdx and Bi = B′i|σd

x
for each i. If the entry Rt(σ, ~B) exists then Rt(σ, ~B) = Rt′(σ

′, ~B′) and by
assumption, Rt′(σ′, ~B′) = Qt′(σ

′, ~B′), so Rt(σ, ~B) = Qt(σ, ~B) by Lemma 1. If the entry does not exist then there is no
entry Rt′(σ′, ~B′), so Qt′(σ, ~B′) = 0 by assumption and Qt(σ, ~B) = 0 by Lemma 1.

(b) Suppose t be a constraint introduce node such that Ct = (C1, . . . , Cp−1, C) and Ct′ = (C1, . . . , Cp−1). An entry Rt(σ, ~B)

exists if, and only if, there is a record Rt′(σ, ~B
′) and Bp = C|σ. If the entry exists then Rt(σ, ~B) = Rt′(σ, ~B

′). By
assumption, Rt′(σ, ~B′) = Qt′(σ, ~B

′) and by Lemma 2 Qt(σ, ~B) = Qt′(σ, ~B
′), so Rt(σ, ~B) = Qt(σ, ~B) as required. If

the record does not exist then there is no record Rt′(σ, ~B′) or Bp 6= C|σ . If the former is the case then Qt′(σ, ~B′) = 0 by
assumption and thus Qt(σ, ~B) = 0 by Lemma 2. If the latter is the case then Qt(σ, ~B) = 0 by Lemma 2.

(c) Let t be a variable forget node and let x be the variable that is forgotten. A record Rt(σ, ~B) exists if, and only if, there
is a nonzero record Rt′(σ ∪ σdx, ~B) for some d ∈ D, and Rt(σ, ~B) corresponds to the sum of these entries in this case.
By assumption, Rt′(σ ∪ σdx, ~B) = Qt′(σ ∪ σdx, ~B) if the record Rt′(σ ∪ σdx, ~B) exists, and Qt′(σ ∪ σdx, ~B) = 0 otherwise.
Therefore Rt(σ, ~B) = Qt(σ, ~B) by Lemma 3. If there is no record Rt(σ, ~B) then there is no record Rt′(σ ∪ σdx, ~B) and
thus Qt′(σ ∪ σdx, ~B) = 0 for each d ∈ D by assumption. Thus Qt(σ, ~B) = 0 by Lemma 3.

(d) Let t be a forget node such that Ct = (C1, . . . , Cp−1) and Ct′ = (C1, . . . , Cp−1, C). There is a record Rt(σ, ~B) if, and
only if, there is a nonzero record Rt′(σ, ( ~B,B)), and in that case

Rt(σ, ~B) =
∑

Rt′ (σ,( ~B,B)) 6=0

val(C,B)Rt′(σ, ~B,B)).

By assumption we have Rt′(σ, ( ~B,B)) = Qt′(σ, ( ~B,B)) for each such record and Qt′(σ, ( ~B,B)) = 0 otherwise, so
Rt(σ, ~B) = Qt(σ, ~B) by Lemma 4. If there is no record Rt(σ, ~B) then there is no nonzero record Rt′(σ, ( ~B,B)) and
therefore Qt′(σ, ( ~B,B)) = 0 for all B by assumption. Thus Qt(σ, ~B) = 0 by Lemma 4.

(e) Let t be a join node with children t1 and t2. The entry Rt(σ, ~B) exists if, and only if, there is a pair of nonzero records
Rt1(σ, ~B1) and Rt2(σ, ~B2) such that ~B1 ∩ ~B2 = ~B. If such a pair exists we have

Rt(σ, ~B) =
∑

Rt1
(σ, ~B1)6=0,

Rt2
(σ, ~B2)6=0,

~B1∩ ~B2= ~B

Rt1(σ, ~B1)Rt2(σ, ~B2).

By assumption, each term satisfies Rti(σ, ~Bi) = Qti(σ,
~Bi) for i ∈ {1, 2}. Moreover, Rt1(σ, ~B1)Rt2(σ, ~B2) = 0 for

every pair Rt1(σ, ~B1), Rt2(σ, ~B2) with ~B1 ∩ ~B2 = ~B that does not appear as a term in the above sum. The equivalence
Rt(σ, ~B) = Qt(σ, ~B) is immediate from Lemma 5. If there is no record Rt(σ, ~B) there is no pair of nonzero records
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Rt1(σ, ~B1), Rt2(σ, ~B2) with ~B1 ∩ ~B2 = ~B. Thus, by assumption, Qt1(σ, ~B1) = 0 or Qt2(σ, ~B2) = 0 for each pair ~B1, ~B2

such that ~B1 ∩ ~B2 = ~B. It follows from Lemma 5 that Qt(σ, ~B) = 0.
In particular, once the root node r ∈ T is marked DONE we have Rr(ε, ()) = Qr(ε, ()) if the record Rr(ε, ()) exists and
Qr(ε, ()) = 0 otherwise. Since Ar(ε, ()) = DV we have Qr(ε, ()) = sol(I) and the output is correct.

Lemma 8. The runtime of the above algorithm is (dom + sup + 1)O(k)|I|.
Proof. Note that each record at node t is indexed by the pair (σ, ~B), where σ ∈ D|Xt| and ~B ∈ C1[Zt] × · · ·Cp[Zt]. By
Observation 1, |C[Zt]| ≤ sup+1 for any constraint C ∈ Ct and the number of records at node t is bounded by dom|Xt|·(sup+1)|Ct|.
The worst-case running time of records update happens at a join node. At a join node t, for each fixed assignment σ on
Xt we compute the product of Qt1(σ, ~B1) and Qt2(σ, ~B2) and add it to Qt(σ, ~B1 ∩ ~B2). Therefore, the update at t takes
O∗(dom|Xt| · (sup + 1)2|Ct|), where O∗() suppresses the polylogarithmic factor. As the number of tree nodes is O(|I|) by Fact 1,
the running time of the dynamic programming algorithm is O∗(domk · (sup + 1)k)|I|.

One can compute a nice tree-decomposition of the incidence graph of width at most 5tw∗ + 4 in time O(tw∗ · ctw∗ |I|) by
running the algorithm of Fact 1 tw∗ times. In combination with the preceding lemmas, this proves the main result of this section.

Theorem 1. #CSPD can be solved in time
(dom + sup + 1)O(tw∗)|I|.

IV. FIXED-PARAMETER TRACTABILITY OF #CSPD

We use the framework of Parameterized Complexity [10, 13, 14, 16, 19, 24] to provide a fine-grained complexity analysis of
the algorithm presented in Subsection III-B. A parameterized problem P takes a tuple (I, k) as an input instance, where k ∈ N
is called the parameter. We say that a parameterized problem is fixed-parameter tractable (FPT in short) parameterized by k if
it can be solved by an algorithm which runs in time f(k) · |I|O(1) for some computable function f . Algorithms with running
time of this form are called fixed-parameter algorithms. On the other hand, an algorithm which solves P in time |I|f(k) for
some computable function f is called an XP algorithm, and parameterized problems which admit such an algorithm are said to
belong to the class XP. The complexity class XP properly contains the class FPT. A parameterized problem belongs to the
class para-NP if it admits a non-deterministic fixed-parameter algorithm.

In the parameterized complexity perspective, the algorithm of Subsection III-B is an XP algorithm for #CSPD parameterized
by incidence treewidth. For a tuple σ of parameters, let us denote the problem #CSPD parameterized by the combined parameter
σ by #CSPD(σ). The following is immediate from Theorem 1, which states that #CSPD(tw∗) can be solved in time |I|O(tw∗).

Corollary 1. #CSPD(tw∗) admits an XP algorithm.

Consider the combined parameter (tw∗, dom, sup), or simply take the sum of the three as the parameter. It is easy to see that
the same analysis of Theorem 1 establishes that with respect to this combined parameter, #CSPD is fixed-parameter tractable.

Corollary 2. #CSPD(σ) is fixed-parameter tractable for the combined parameter σ = (tw∗, dom, sup).

Corollary 2 generalizes a result of Capelli [5] to the effect that #CSPD(tw, dom) is fixed-parameter tractable.
Before proceeding, we introduce the notion of parameter domination [29]. Let σ = (p1, . . . , pr) and σ′ = (p′1, . . . , p

′
s) be

two combined parameters. We say that σ dominates σ′, and write as σ � σ′, if for each 1 ≤ i ≤ r there exists computable
function f that is monotonically increasing in each argument such that for each instance I we have pi(I) ≤ f(p′1(I), . . . , p′s(I)).
It is not difficult to see that the parameter domination propagates fixed-parameter tractability:

Lemma 9 ([29]). Let σ and σ′ are two combined parameters such that σ � σ′. If #CSPD(σ) is fixed-parameter tractable,
then so is #CSPD(σ′).

Hence, to see that Corollary 2 implies fixed-parameter tractability of #CSPD(tw, dom), we only need to settle the parameter
dominance (tw∗, dom, sup) � (tw, dom). First, it is known that tw∗ ≤ tw + 1 [23]. Second, the maximum arity d of a #CSPD
instance provides a lower bound on the primal treewidth tw since any constraint of arity d yields a clique of size d in the primal
graph. Therefore we have d ≤ tw + 1. Now, we have sup ≤ domd ≤ domtw+1. Therefore, the parameter domination holds as
claimed.

A natural follow-up question to Corollaries 1 and 2 is whether #CSPD is fixed-parameter tractable when we drop some
component(s) out of (tw∗, dom, sup). To answer this question, we introduce some terminology of parameterized complexity.

An fpt-reduction from a parameterized problem P to a parameterized problem Q is a fixed-parameter algorithm that maps an
instance (I, k) of P to an equivalent instance (I′, k′) of Q such that k′ ≤ g(k) for some computable function g. The notion of
fpt-reduction in parameterized complexity plays an analogous role of polynomial-time many-one reduction in classic complexity
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theory. Under fpt-reduction, a canonical hierarchy of complexity classes is well defined, which is called W-hierarchy. Namely,
we have

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆W[P] ⊆ XP.

The standard assumption is FPT 6= W[1] and it is known that FPT = W[1] implies the failure of Exponential Time
Hypothesis [8]. Therefore, if a parameterized problem is W[i]-hard (under an fpt-reduction), it is unlikely that the said problem
admits a fixed-parameter algorithm.

On the other hand, W[P] ⊆ para-NP holds as well. A classic example of para-NP-complete problem is q-COLORING
parameterized by q. One can verify whether a given q-coloring of a graph is proper in (uniform) polynomial time, and thus the
problem is in para-NP. It is known that NP-completeness of q-COLORING implies para-NP-completeness. The class para-NP is
not contained in XP unless P = NP. We refer the reader to other sources [10, 13, 14, 16] for in-depth treatment of parameterized
complexity.

Now, we consider the problem CSPD, the decision version of #CSPD asking whether sol(I) > L where L is a part of the
input. Clearly, #CSPD is at least as hard as CSPD. The problem CSPD is NP-hard even when (dom, sup) are bounded by a
constant (i.e., the problem is para-NP-hard), because 3CNF SATISFIABILITY can be encoded as CSPD with dom = 2 and
sup = 1 so that a given 3-CNF formula is satisfiable if and only if sol(I) > 0 for the corresponding instance I of CSPD. This
implies that CSPD(dom, sup) is para-NP-hard. On the other hand, CSPD(tw∗, dom) generalizes CSP(tw∗, dom) and hence is
known to be W[1]-hard [29]. Note that this implies W[1]-hardness of CSPD(tw∗) by Lemma 9. The remaining case is the
parameterization by (tw∗, sup).

Proposition 1. CSPD(tw∗, sup) is W[1]-hard even when all weighted constraints have arity at most 2 and sup = 1.

Proof. We give a reduction from MULTICOLORED CLIQUE, which is well known to be W[1]-hard [27]. An instance of
MULTICOLORED CLIQUE consists of a graph G whose vertex set is partitioned into k independent sets V1, . . . , Vk of the same
cardinality, and the aim is to decide whether there exists a clique in G of size k; note that such a clique must take a single
vertex from each V1, . . . , Vk.

Given an instance G of MULTICOLORED CLIQUE where each Vi contains n vertices v1i , . . . , v
n
i , we construct an instance

of CSPD as follows. First, we set D = [n] and for each vertex subset Vi, i ∈ [k], we create a variable zi. Next, for each
non-edge vqi , v

p
j , i < j, we create the constraint ((zi, zj), {(q, p)}, {(q, p) 7→ 0}, 1). This completes the construction of our

CSPD instance I = (S,C), and we claim that sol(I) > 0 if and only if G is a YES-instance.
For the forward direction, consider an assignment α such that

∏
C∈C C(α) 6= 0. This means that for each 1 ≤ i < j ≤ n,

none of the constraints whose scope is (zi, zj) is evaluated to 0, and in particular {vα(zi)i , v
α(zj)
j } is not a non-edge in G.

Hence {vα(z1)1 , . . . , v
α(zn)
n } forms a clique of size k in G. For the backward direction, it suffices to reverse the above argument:

given a k-clique {vui
1 , . . . , v

un
n } in G, the assignment α(zi) = ui is easily verified to satisfy

∏
C∈C C(α) = 1. Hence the claim

holds and the proof is complete.

V. CONCLUDING REMARKS

We have (i) presented an algorithm for #CSPD that runs in polynomial time for instances of bounded incidence treewidth,
and (ii) identified additional restrictions that make the problem fixed-parameter tractable, and (iii) shown that none of the
restrictions can be dropped without losing fixed-parameter tractability. Our algorithmic result entails tractability for several
special cases of #CSPD:

1) Fixed-parameter tractability of CSP parameterized by domain size and primal treewidth [18].
2) Fixed-parameter tractability of sum-of-products parameterized by domain size and primal treewidth [11].
3) Fixed-parameter tractability of #CSPD parameterized by domain size and primal treewidth [5].
4) Polynomial-time tractability of sum-of-products for instances whose incidence graph is a tree [2].
5) Fixed-parameter tractability of CSP parameterized by domain size, support size, and incidence treewidth [28].
6) Fixed-parameter tractability of #SAT parameterized by incidence treewidth [15, 28].
Tractability of #CSPD for instances with β-acyclic constraint hypergraphs was shown by means of an intricate variable

elimination algorithm [4]. This procedure naturally gives rise to a width parameter called the cover-width [5]. There are currently
no efficient algorithms for computing this parameter. Whether bounds on the incidence treewidth can be translated into bounds
on the cover-width (thus relating our dynamic programming algorithm to variable elimination) is an intriguing open question.

ACKNOWLEDGMENT

This research was kindly supported by FWF grant P27721.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

7



REFERENCES

[1] F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian inference with backtracking search. J. Artif. Intell. Res., 34:391–442, 2009.
[2] D. Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.
[3] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.

Comput., 45(2):317–378, 2016.
[4] J. Brault-Baron, F. Capelli, and S. Mengel. Understanding model counting for beta-acyclic CNF-formulas. In 32nd International Symposium on

Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 143–156. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015.

[5] F. Capelli. Structural restrictions of CNF-formulas: applications to model counting and knowledge compilation. PhD thesis, Université Paris Diderot,
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