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Parameterized Algorithms for the Matrix Completion Problem

Robert Ganian 1 Iyad Kanj 2 Sebastian Ordyniak 3 Stefan Szeider 1

Abstract
We consider two matrix completion problems, in
which we are given a matrix with missing entries
and the task is to complete the matrix in a way
that (1) minimizes the rank, or (2) minimizes the
number of distinct rows. We study the param-
eterized complexity of the two aforementioned
problems with respect to several parameters of in-
terest, including the minimum number of matrix
rows, columns, and rows plus columns needed to
cover all missing entries. We obtain new algorith-
mic results showing that, for the bounded domain
case, both problems are fixed-parameter tractable
with respect to all aforementioned parameters. We
complement these results with a lower-bound re-
sult for the unbounded domain case that rules out
fixed-parameter tractability w.r.t. some of the pa-
rameters under consideration.

1. Introduction
Problem Definition and Motivation. We consider the ma-
trix completion problem, in which we are given a matrix M
(over some field that we also refer to as the domain of the
matrix) with missing entries, and the goal is to complete the
entries of M so that to optimize a certain measure. There is
a wealth of research on this fundamental problem (Candès
& Plan, 2010; Candès & Recht, 2009; Candès & Tao, 2010;
Elhamifar & Vidal, 2013; Hardt et al., 2014; Fazel, 2002;
Keshavan et al., 2010a;b; Recht, 2011; Saunderson et al.,
2016) due to its ubiquitous applications in recommender
systems, machine learning, sensing, computer vision, data
science, and predictive analytics, among others. In these
areas, the matrix completion problem naturally arises after

*Equal contribution 1Algorithms and Complexity Group,
TU Wien, Vienna, Austria 2School of Computing, DePaul
University, Chicago, USA 3Algorithms Group, University of
Sheffield, Sheffield, UK. Correspondence to: Robert Ganian <rga-
nian@gmail.com>, Iyad Kanj <ikanj@cdm.depaul.edu>, Sebas-
tian Ordyniak <sordyniak@gmail.com>, Stefan Szeider <ste-
fan@szeider.net>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

observing a sample from the set of entries of a low-rank
matrix, and attempting to recover the missing entries with
the goal of optimizing a certain measure. In this paper, we
focus our study on matrix completion with respect to two
measures (considered separately): (1) minimizing the rank
of the completed matrix, and (2) minimizing the number of
distinct rows of the completed matrix.

The first problem we consider—matrix completion
w.r.t. rank minimization—has been extensively studied, and
is often referred to as the low-rank matrix completion prob-
lem (Candès & Plan, 2010; Candès & Recht, 2009; Candès
& Tao, 2010; Hardt et al., 2014; Fazel, 2002; Keshavan
et al., 2010a;b; Recht, 2011; Saunderson et al., 2016). A cel-
ebrated application of this problem lies in the recommender
systems area, where it is known as the Netflix problem (net).
In this user-profiling application, an entry of the input ma-
trix represents the rating of a movie by a user, where some
entries could be missing. The goal is to predict the missing
entries so that the rank of the complete matrix is minimized.

The low-rank matrix completion problem is known to be
NP-hard, even when the matrix is over the field GF(2) (i.e.,
each entry is 0 or 1), and the goal is to complete the ma-
trix into one of rank 3 (Peeters, 1996). A significant body
of work on the low-rank matrix completion problem has
centered around proving that, under some feasibility as-
sumptions, the matrix completion problem can be solved
efficiently with high probability (Candès & Recht, 2009;
Recht, 2011). These feasibility assumptions are: (1) low
rank; (2) incoherence; and (3) randomness (Hardt et al.,
2014). Hardt et al. (2014) argue that feasibility assumption
(3), which states that the subset of determined entries in the
matrix is selected uniformly at random and has a large (sam-
pling) density, is very demanding. In particular, they justify
that in many applications, such as the Netflix problem, it is
not possible to arbitrarily choose which matrix entries are
determined and which are not, as those may be dictated by
outside factors. The low-rank matrix completion problem
also has other applications in the area of wireless sensor
networks. In one such application, the goal is to reconstruct
a low-dimensional geometry describing the locations of the
sensors based on local distances sensed by each sensor; this
problem is referred to as TRIANGULATION FROM INCOM-
PLETE DATA (Candès & Recht, 2009). Due to its inherent
hardness, the low-rank matrix completion problem has also
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been studied with respect to various notions of approxima-
tion (Candès & Recht, 2009; Candès & Tao, 2010; Frieze
et al., 2004; Hardt et al., 2014; Keshavan et al., 2010a;b;
Recht, 2011).

The second problem we consider is the matrix completion
problem w.r.t. minimizing the number of distinct rows. Al-
though this problem has not received as much attention as
low-rank-matrix completion, it certainly warrants studying.
In fact, minimizing the number of distinct rows represents a
special case of the SPARSE SUBSPACE CLUSTERING prob-
lem (Elhamifar & Vidal, 2013), where the goal is to com-
plete a matrix in such a way that its rows can be partitioned
into the minimum number of subspaces. The problem we
consider corresponds to the special case of SPARSE SUB-
SPACE CLUSTERING where the matrix is over GF(2) and
the desired rank of each subspace is 1. Furthermore, one
can see the relevance of this problem to the area of recom-
mender systems; in this context, one seeks to complete the
matrix in such a way that the profile of each user is identical
to a member of a known (possibly small) group of users.

In this paper, we study the two aforementioned problems
through the lens of parameterized complexity (Downey &
Fellows, 2013). In this paradigm, one measures the com-
plexity of problems not only in terms of their input size n but
also by a certain parameter k ∈ N, and seeks—among other
things—fixed-parameter algorithms, i.e., algorithms that run
in time f(k)·nO(1) for some function f . Problems admitting
such algorithms are said to be fixed-parameter tractable (or
contained in the parameterized complexity class FPT). The
motivation is that the parameter of choice—usually describ-
ing some structural properties of the instance—can be small
in some instances of interest, even when the input size is
large. Therefore, by confining the combinatorial explosion
to this parameter, one can obtain efficient algorithms for
problem instances with a small parameter value for NP-hard
problems. Problems that are not (or unlikely to be) fixed-
parameter tractable can still be solvable in polynomial-time
for every fixed parameter value, i.e., they can be solved
in time nf(k) for some function f . Problems of this kind
are contained in the parameterized complexity class XP.
We also consider randomized versions of FPT and XP,
denoted by FPTR and XPR, containing all problems that
can be solved by a randomized algorithm with a run-time
of f(k)nO(1) and O(nf(k)), respectively, with a constant
one-sided error-probability. Finally, problems that remain
NP-hard for some fixed value of the parameter are hard for
the parameterized complexity class paraNP. We refer to
the respective textbooks for a detailed introduction to pa-
rameterized complexity (Downey & Fellows, 2013; Cygan
et al., 2015). Parameterized Complexity is a rapidly growing
field with various applications in many areas of Computer
Science, including Artificial Intelligence (Bäckström et al.,
2015; van Bevern et al., 2016; Bessiere et al., 2008; Endriss

et al., 2015; Ganian & Ordyniak, 2018; Gaspers & Szeider,
2014; Gottlob & Szeider, 2006).

Parameterizations. The parameters that we consider in
this paper are: The number of (matrix) rows that cover all
missing entries (row); the number of columns that cover all
missing entries (col); and the minimum number of rows and
columns which together cover all missing entries (comb).
Although we do discuss and provide results for the un-
bounded domain case, i.e, the case that the domain (field
size) is part of the input, we focus on the case when the ma-
trix is over a bounded domain: This case is the most relevant
from a practical perspective, and most of the related works
focus on this case. It is easy to see that, when stated over any
bounded domain, both problems under consideration are in
FPT when parameterized by the number of missing entries,
since an algorithm can brute-force through all possible solu-
tions. On the other hand, parameterizing by row (resp. col)
is very interesting from a practical perspective, as rows
(resp. columns) with missing entries represent the newly-
added elements (e.g., newly-added users/movies/sensors,
etc.); here, the above brute-force approach naturally fails,
since the number of missing entries is no longer bounded
by the parameter alone. Finally, the parameterization by
comb is interesting because this parameter subsumes (i.e.,
is smaller than) the other two parameters (i.e., row and col).
In particular, any fixed-parameter algorithm w.r.t. this pa-
rameter implies a fixed-parameter algorithm w.r.t. the other
two parameters, but can also be efficient in cases where the
number of rows or columns with missing entries is large.

Results and Techniques. We start in Section 3 by consider-
ing the BOUNDED RANK MATRIX COMPLETION problem
over GF(p) (denoted p-RMC), in which the goal is to com-
plete the missing entries in the input matrix so that the rank
of the completed matrix is at most t, where t ∈ N is given
as input. We present a (randomized) fixed-parameter algo-
rithm for this problem parameterized by comb. This result
is obtained by applying a branch-and-bound algorithm com-
bined with algebra techniques, allowing us to reduce the
problem to a system of quadratic equations in which only
few (bounded by some function of the parameter) equations
contain non-linear terms. We then use a result by Miura
et al. (2014) (improving an earlier result by Courtois et
al. (2002)) in combination with reduction techniques to
show that solving such a system of equations is in FPTR
parameterized by the number of equations containing non-
linear terms. In the case where the domain is unbounded,
we show that RMC is in XP parameterized by either row or
col and in XPR parameterized by comb.

In Section 4, we turn our attention to the BOUNDED
DISTINCT ROW MATRIX COMPLETION problem over
both bounded domain (p-DRMC) and unbounded domain
(DRMC); here, the goal is to complete the input matrix so
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that the number of distinct rows in the completed matrix
is at most t. We start by showing that p-DRMC param-
eterized by comb is fixed-parameter tractable. We obtain
this result as a special case of a more general result show-
ing that both DRMC and p-DRMC are fixed-parameter
tractable parameterized by the treewidth (Robertson & Sey-
mour, 1986; Downey & Fellows, 2013) of the compatibility
graph, i.e., the graph having one vertex for every row and
an edge between two vertices if the associated rows can
be made identical. This result also allows us to show that
DRMC is fixed-parameter tractable parameterized by row.
Surprisingly, DRMC behaves very differently when param-
eterized by col, as we show that, for this parameterization,
the problem becomes paraNP-hard.

row col comb

p-RMC FPT(Th. 3) FPT(Cor. 4) FPTR(Th. 7)

p-DRMC FPT(Th. 12) FPT(Th. 12) FPT(Th. 12)

RMC XP(Cor. 5) XP(Cor. 5) XPR(Cor. 8)

DRMC FPT(Th. 13) paraNP(Th. 14) paraNP(Th. 14)

Table 1. The parameterized complexity results obtained for the
problems p-RMC and p-DRMC and their unbounded domain
variants RMC and DRMC w.r.t. the parameters row, col, comb.

We chart our results in Table 1. Interestingly, in the un-
bounded domain case, both considered problems exhibit
wildly different behaviors: While RMC admits XP algo-
rithms regardless of whether we parameterize by row or
col, using these two parameterizations for DRMC results
in the problem being FPT and paraNP-hard, respectively.
On the other hand, in the (more studied) bounded domain
case, we show that both problems are in FPT (resp. FPTR)
w.r.t. all parameters under consideration. Finally, we prove
that 2-DRMC remains NP-hard even if every column and
row contains (1) a bounded number of missing entries, or (2)
a bounded number of determined entries. This effectively
rules out FPT algorithms w.r.t. the parameters: maximum
number of missing/determined entries per row or column.

2. Preliminaries
For a prime number p, let GF(p) be a field of order p; recall
that each such field can be equivalently represented as the
set of integers modulo p. For positive integers i and j > i,
we write [i] for the set {1, 2, . . . , i}, and i : j for the set
{i, i+ 1, . . . , j}.
For an m × n matrix M (i.e., a matrix with m rows and
n columns), and for i ∈ [m] and j ∈ [n], M[i, j] de-
notes the element in the i-th row and j-th column of M.
Similarly, for a vector d, we write d[i] for the i-th co-
ordinate of d. We write M[∗, j] for the column-vector
(M[1, j],M[2, j], . . . ,M[m, j]), and M[i, ∗] for the row-

vector (M[i, 1],M[i, 2], . . . ,M[i, n]). We will also need
to refer to submatrices obtained by omitting certain rows
or columns from M. We do so by using sets of indices to
specify which rows and columns the matrix contains. For
instance, the matrix M[[i], ∗] is the matrix consisting of the
first i rows and all columns of M, and M[2 : m, 1 : n− 1]
is the matrix obtained by omitting the first row and the last
column from M.

The row-rank (resp. column-rank) of a matrix M is the max-
imum number of linearly-independent rows (resp. columns)
in M. It is well known that the row-rank of a matrix is equal
to its column-rank, and this number is referred to as the rank
of the matrix. We let rk(M) and dr(M) denote the rank and
the number of distinct rows of a matrix M, respectively. If
M is a matrix over GF(p), we call GF(p) the domain of M.

An incomplete matrix over GF(p) is a matrix which may
contain not only elements from GF(p) but also the special
symbol •. An entry is a missing entry if it contains •, and is a
determined entry otherwise. A (possibly incomplete) m×n
matrix M′ is consistent with anm×nmatrix M if and only
if, for each i ∈ [m] and j ∈ [n], either M′[i, j] = M[i, j]
or M′[i, j] = •.

2.1. Problem Formulation

We formally define the problems under consideration below.

BOUNDED RANK MATRIX COMPLETION (p-RMC)

Input: An incomplete matrix M over GF(p) for a
fixed prime number p, and an integer t.

Task: Find a matrix M′ consistent with M such that
rk(M′) ≤ t.

BOUNDED DISTINCT ROW MATRIX COMPLETION (p-DRMC)

Input: An incomplete matrix M over GF(p) for a
fixed prime number p, and an integer t.

Task: Find a matrix M′ consistent with M such that
dr(M′) ≤ t.

Aside from the problem variants where p is a fixed prime
number, we also study the case where matrix entries range
over a domain that is provided as part of the input. In particu-
lar, the problems RMC and DRMC are defined analogously
to p-RMC and p-DRMC, respectively, with the sole distinc-
tion that the prime number p is provided as part of the input.
We note that 2-RMC is NP-hard even for t = 3 (Peeters,
1996), and the same holds for 2-DRMC (see Theorem 15).
Without loss of generality, we assume that the rows of the
input matrix are pairwise distinct.

2.2. Parameterized Complexity

The class FPT consists of all parameterized problems solv-
able in time f(k) · nO(1), where k is the parameter and n is
the input size; we refer to such running time as FPT-time.
The class XP contains all parameterized problems solvable
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in time O(nf(k)). The following relations hold among the
parameterized complexity classes: FPT ⊆W[1] ⊆ XP.

The class paraNP is defined as the class of parameterized
problems that are solvable by a non-deterministic Turing
machine in FPT-time. In the paraNP-hardness proofs, we
will make use of the following characterization of paraNP-
hardness (Flum & Grohe, 2006): Any parameterized prob-
lem that remains NP-hard when the parameter is a con-
stant is paraNP-hard. For problems in NP, it holds that
XP ⊆ paraNP; in particular showing the paraNP-hardness
of a problem rules out the existence of algorithms running in
time O(nf(k)) for the problem. We also consider random-
ized versions of FPT and XP, denoted by FPTR and XPR,
containing all problems that can be solved by a random-
ized algorithm with a run-time of f(k)nO(1) and O(nf(k)),
respectively, with a constant one-sided error-probability.

2.3. Treewidth

Treewidth (Robertson & Seymour, 1986) is one of the most
prominent decompositional parameters for graphs and has
found numerous applications in computer science. A tree-
decomposition T of a graph G = (V,E) is a pair (T, χ),
where T is a tree and χ is a function that assigns each tree
node t a set χ(t) ⊆ V of vertices such that the following
conditions hold:

(TD1) For every edge uv ∈ E(G) there is a tree node t such
that u, v ∈ χ(t).

(TD2) For every vertex v ∈ V (G), the set of tree nodes t with
v ∈ χ(t) forms a non-empty subtree of T .

The sets χ(t) are called bags of the decomposition T and
χ(t) is the bag associated with the tree node t. The width
of a tree-decomposition (T, χ) is the size of a largest bag
minus 1. A tree-decomposition of minimum width is called
optimal. The treewidth of a graph G, denoted by tw(G), is
the width of an optimal tree decomposition of G. For the
presentation of our dynamic programming algorithms, it is
convenient to consider tree decompositions in the following
normal form (Kloks, 1994): A tuple (T, χ) is a nice tree
decomposition of a graphG if (T, χ) is a tree decomposition
of G, the tree T is rooted at node r, and each node of T is
of one of the following four types:

1. a leaf node: a node t having no children and |χ(t)| = 1;

2. a join node: a node t having exactly two children t1, t2,
and χ(t) = χ(t1) = χ(t2);

3. an introduce node: a node t having exactly one child
t′, and χ(t) = χ(t′) ∪ {v} for a node v of G;

4. a forget node: a node t having exactly one child t′, and
χ(t) = χ(t′) \ {v} for a node v of G.

For convenience we will also assume that χ(r) = ∅ for the
root r of T . For t ∈ V (T ) we denote by Tt the subtree of T
rooted at t and we write χ(Tt) for the set

⋃
t′∈V (Tt)

χ(t′).

Proposition 1 ((Kloks, 1994; Bodlaender, 1996; Bodlaen-
der et al., 2016)). It is possible to compute an optimal (nice)
tree-decomposition of an n-vertex graph G with treewidth
k in time kO(k3)n, and to compute a 5-approximate one in
time 2O(k)n. Moreover, the number of nodes in the obtained
tree decompositions is O(kn).

2.4. Problem Parameterizations

One advantage of the parameterized complexity paradigm
is that it allows us to study the complexity of a problem
w.r.t. several parameterizations of interest/relevance. To
provide a concise description of the parameters under con-
sideration, we introduce the following terminology: We say
that a • entry at position [i, j] in an incomplete matrix M is
covered by row i and by column j. In this paper, we study
RMC and DRMC w.r.t. the following parameterizations
(see Figure 1 for illustration):

◦ col: The minimum number of columns in the matrix
M covering all occurrences of • in M.

◦ row: The minimum number of rows in the matrix M
covering all occurrences of • in M.

◦ comb: The minimum value of r + c such that there
exist r rows and c columns in M with the property that
each occurrence of • is covered one of these rows or
columns.




1 1 1 0 • 1
0 0 1 0 • 1
0 • • 0 • •
1 1 0 1 0 1




Figure 1. Illustration of the parameters col, row, and comb in an
incomplete matrix. Here col = 4, row = 3, and comb = 2.

For instance, the aforementiond problem TRIANGULA-
TION FROM INCOMPLETE DATA, where a small number
of distance-sensors are faulty, would result in matrix com-
pletion instances where col and row are both small.

We denote the parameter under consideration in brackets af-
ter the problem name (e.g., DRMC[comb]). As mentioned
in Section 1, both p-RMC and p-DRMC are trivially in
FPT when parameterized by the number of missing entries,
and hence this parameterization is not discussed further.

Given an incomplete matrix M, computing the parameter
values for col and row is trivial. Furthermore, the parameter
values satisfy comb ≤ row and comb ≤ col. We show
that the parameter value for comb can also be computed in
polynomial time.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
2



Parameterized Algorithms for the Matrix Completion Problem

Proposition 2. Given an incomplete matrix M over GF(p),
we can compute the parameter value for comb, along with
sets R and C of total cardinality comb containing the in-
dices of covering rows and columns, respectively, in time
O((n ·m)1.5).

Proof. We begin by constructing an auxiliary bipartite graph
G from M as follows. For each row i containing a •, we
create a vertex vi in G; similarly, for each column j con-
taining a •, we create a vertex wj . For each • that occurs at
position [i, j], we add an edge between vi and wj .

We observe that if R contains row indices and C contains
column indices which together cover all occurrences of •,
then X = {vi | i ∈ R} ∪ {wj | j ∈ C} is a vertex cover of
G. Similarly, for each vertex cover X of G, we can obtain
a set R = {i | vi ∈ X} and a set C = {j | wj ∈ X}
such that R and C cover all occurrences of • in M. Hence
there is a one-to-one correspondence between vertex covers
in G and sets R and C which cover all • symbols in M,
and in particular, the size of a minimum vertex cover in
G is equal to comb. The lemma now follows by König’s
theorem and Hopcroft-Karp’s algorithm, which allow us to
compute a minimum vertex cover in a bipartite graph G in
time O(|E(G)| ·

√
|V (G)|).

3. Rank Minimization
In this section we present our results for BOUNDED RANK
MATRIX COMPLETION under various parameterizations.

3.1. Bounded Domain: Parameterization by row

As our first result, we present an algorithm for solving
p-RMC[row]. This will serve as a gentle introduction
to the techniques used in the more complex result for p-
RMC[comb], and will also be used to give an XP algorithm
for RMC[row].

Theorem 3. p-RMC[row] is in FPT.

Proof. Let R be the (minimum) set of rows that cover all
occurrences of • in the input matrix M. Since the existence
of a solution does not change if we permute the rows of
M, we permute the rows of M so that the rows in R have
indices 1, . . . , k. We now proceed in three steps.

For the first step, we will define the notion of signature:
A signature S is a tuple (I,D), where I ⊆ R and D is a
mapping from R \ I to (I → GF(p)). Intuitively, a sig-
nature S specifies a subset I of R which is expected to be
independent in M [k + 1 : m, ∗] ∪ I (i.e., adding the rows
in I to M [k + 1 : m, ∗] is expected to increase the rank of
M [k + 1 : m, ∗] by |I|); and for each remaining row of R,
S specifies how that row should depend on I . The latter is
carried out using D: For each row in R\ I , D provides a set

of coefficients expressing the dependency of that row on the
rows in I . Formally, we say that a matrix M′ that is com-
patible with the incomplete matrix M matches a signature
(I,D) if and only if, for each row (i.e., vector) d ∈ R \ I ,
there exist coefficients adk+1, . . . , a

d
m ∈ GF(p) such that

d = adk+1M[k+1, ∗]+· · ·+admM[m, ∗]+∑
i∈I D(d)(i)·i.

The first step of the algorithm branches through all possible
signatures S. Clearly, the number of distinct signatures is
upper-bounded by 2k · pk2 .

For the second step, we fix an enumerated signature S. The
algorithm will verify whether S is valid, i.e., whether there
exists a matrix M′ compatible with M that matches S. To
do so, the algorithm will construct a system of |R \ I|
equations over vectors of size n, and then transform this
into a system ΥS of |R \ I| · n equations over GF(p) (one
equation for each vector coordinate). For each d ∈ R \ I ,
ΥS contains the following variables:

◦ one variable for each coefficient adk+1, . . . , a
d
m, and

◦ one variable for each occurrence of • in the rows of R.

For instance, the first equation in ΥS has the following
form: d[1] = adk+1M[k + 1, 1] + · · · + admM[m, 1] +∑
i∈I D(d)(i) · i[1], where adk+1, . . . , a

d
m are variables, and

d[1] as well as each i[1] in the sum could be a variable or a
fixed number. Crucially, ΥS is a system of at most (k · n)
linear equations over GF(p) with at most m+ kn variables,
and can be solved in time O((m+ kn)3) by Gaussian elim-
ination. Constructing the equations takes time O(m · n).

During the second step, the algorithm determines whether
a signature S is valid or not, and in the end, after going
through all signatures, selects an arbitrary valid signature
S = (I,D) with minimum |I|. For the final third step, the
algorithm checks whether |I|+rk(M[k+1 : m, ∗]) ≤ t. We
note that computing rk(M[k + 1 : m, ∗]) can be carried out
in time O(nm1.4) (Ibarra et al., 1982). If the above inequal-
ity does not hold, the algorithm rejects; otherwise it recom-
putes a solution to ΥS and outputs the matrix M′ obtained
from M by replacing each occurrence of • at position [i, j]
by the value of the variable i[j] in the solution to ΥS . The
total running time isO((2k ·pk2) ·((m+kn)3 +nm1.4)) =

O(2kpk
2 · (m+ kn)3).

To argue the correctness of the algorithm, consider a matrix
M′ that the algorithm outputs. Obviously, M′ is consistent
with M. Furthermore, M′ has rank at most t; indeed, the
rank of M[k + 1 : m, ∗] is at most t − |I|, and every row
d ∈ R \ I can be obtained as a linear combination of rows
in M[k+ 1 : m, ∗] (using coefficients adk+1, . . . , a

d
m) and I

(using coefficients D(d)).

Conversely, assume that there exists a matrix M′ that is
consistent with M and that has rank at most t. Choose M′
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to be of minimum rank over all matrices consistent with M.
Consider the signature S obtained (“reverse-engineered”)
from M′ as follows. First, we choose a row-basis B of M′

such that |B∩R| is minimized, and we set I = R∩B. Now,
each row in R \ I can be obtained as a linear combination
of rows in B and, in particular, as a linear combination of
the rows in M′[k + 1 : m, ∗] and I . This can be expressed
as a system of equations Υ′, where, for each row d ∈ R \ I ,
we write d = adk+1M[k + 1, ∗] + · · · + admM′[m, ∗] +∑

i∈I D(d)(i) · i and our variables are: adk+1, . . . , a
d
m and,

∀i ∈ I,D(d)(i). Let us fix an arbitrary solution to Υ′ and
use the values assigned to variablesD(d)(i), ∀d ∈ R\I, i ∈
I , to define D. Observe that S = (I,D) was chosen so that
ΥS is guaranteed to have a solution.

Next, we argue that |I| + rk(M[k + 1 : m, ∗]) = rk(M′).
Indeed, assume for a contradiction that there exists a row
r ∈ R ∩ I which can be obtained as a linear combination of
the rows in I and in M[k+1 : m, ∗]; then, we could replace
r inB by a row r′ from M[k+1 : m, ∗] which would violate
the minimality of |B ∩R|. So, |I|+ rk(M[k+ 1 : m, ∗]) =
rk(M′) which means that our algorithm is guaranteed to
set S as a valid branch, and hence, will either output a
matrix compatible with M which matches S, or a matrix
compatible with M which matches a different signature but
has the same rank as M′.

Since the row-rank of a matrix M is equal to its column-
rank, the transpose of M has the same rank as M. Hence:
Corollary 4. p-RMC[col] is in FPT.

As a consequence of the running time of the algorithm given
in the proof of Theorem 3, we obtain:
Corollary 5. RMC[row] and RMC[col] are in XP.

3.2. Bounded Domain: Parameterization by comb

In this subsection, we present a randomized fixed-parameter
algorithm for p-RMC[comb] with constant one-sided error
probability. Before we proceed to the algorithm, we need
to introduce some basic terminology related to systems of
equations. Let Υ be a system of ` equations EQ1, EQ2,. . . ,
EQ` over GF(p); we assume that the equations are simpli-
fied as much as possible. In particular, we assume that no
equation contains two terms over the same set of variables
such that the degree/exponent of each variable in both terms
is the same. Let EQi be a linear equation in Υ, and let x be
a variable which occurs in EQi (with a non-zero coefficient).
Naturally, EQi can be transformed into an equivalent equa-
tion EQi,x, where x is isolated, and we use Γi,x to denote
the side of EQi,x not containing x, i.e., EQi,x is of the form
x = Γi,x. We say that Υ′ is obtained from Υ by substitution
of x in EQi if Υ′ is the system of equations obtained by:

1. computing EQi,x and in particular Γi,x from EQi;

2. setting Υ′ := Υ \ {EQi}; and

3. replacing x with Γi,x in every equation in Υ′.

Observe that Υ′ has sizeO(n · `), and can also be computed
in timeO(n·`), where n is the number of variables occurring
in Υ. Furthermore, any solution to Υ′ can be transformed
into a solution to Υ in linear time, and similarly any solution
to Υ can be transformed into a solution to Υ′ in linear time
(i.e., Υ′ and Υ are equivalent). Moreover, Υ′ contains at
least one fewer variable and one fewer equation than Υ.

The following proposition is crucial for our proof, and is of
independent interest.

Proposition 6. Let Υ be a system of ` quadratic equations
over GF(p). Then computing a solution for Υ is in FPTR
parameterized by ` and p, and in XPR parameterized only
by `.

Proof. Let n be the number of variables in Υ. We distin-
guish two cases. If n ≥ `(` + 3)/2, then Υ can be solved
in randomized time O(2`n3`(log p)2) (Miura et al., 2014).
Otherwise, n < `(` + 3)/2, and we can solve Υ by a
brute-force algorithm which enumerates (all of the) at most
pn < p`(`+3)/2 assignments of values to the variables in Υ.
The proposition now follows by observing that the given
algorithm runs in timeO(2`n3`(log p)2+p`(`+3)/2`2).

Theorem 7. p-RMC[comb] is in FPTR.

Proof. We begin by using Proposition 2 to compute the sets
R and C containing the indices of the covering rows and
columns, respectively; let |R| = r and |C| = c, and recall
that the parameter value is k = r + c. Since the existence
of a solution for p-RMC does not change if we permute
rows and columns of M, we permute the rows of M so that
the rows in R have indices 1, . . . , r, and subsequently, we
permute the columns of M so that the columns in C have
indices 1, . . . , c.

Before we proceed, let us give a high-level overview of
our strategy. The core idea is to branch over signatures,
which will be defined in a similar way to those in Theo-
rem 3. These signatures will capture information about the
dependencies among the rows in R and columns in C; one
crucial difference is that for columns, we will focus only on
dependencies in the submatrix M[r + 1 : m, ∗] (the reason
will become clear later, when we argue correctness). In
each branch, we arrive at a system of equations that needs
to be solved in order to determine whether the signatures
are valid. Unlike Theorem 3, here the obtained system of
equations will contain non-linear (but quadratic) terms, and
hence solving the system is far from being trivial. Once we
determine which signatures are valid, we choose one that
minimizes the total rank.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
8-
00
2



Parameterized Algorithms for the Matrix Completion Problem

For the first step, let us define the notion of signature
that will be used in this proof. A signature S is a tuple
(IR, DR, IC , DC) where:

1. IR ⊆ R;

2. DR is a mapping from R \ IR to (IR → GF(p));

3. IC ⊆ C; and

4. DC is a mapping from C \ IC to (IC → GF(p)).

We say that a matrix M′ compatible with the incomplete
matrix M matches a signature (IR, DR, IC , DC) if:

◦ for each row d ∈ R \ IR, there exist coefficients
adr+1, . . . , a

d
m ∈ GF(p) such that d = adr+1M

′[r +
1, ∗] + · · ·+ admM′[m, ∗] +

∑
i∈IR DR(d)(i) · i; and

◦ for each column h ∈ C \ Ic, there exist coefficients
bhc+1, . . . , b

h
n ∈ GF(p) such that h[r + 1 : m] =

bhc+1M
′[r + 1 : m, c] + · · · + bhnM

′[r + 1 : m,n] +∑
i∈IC DC(h)(i) · i[r + 1 : m].

The number of distinct signatures is upper-bounded by 2r ·
pr

2 · 2c · pc2 ≤ 2k · pk2 , and the first step of the algorithm
branches over all possible signatures S. For the second
step, fix an enumerated signature S. The algorithm will
verify whether S is valid, i.e., whether there exists a matrix
M′, compatible with the incomplete M, that matches S.
To do so, the algorithm will construct a system of |R \ IR|
equations over vectors of size n and of |C \ IC | equations
over vectors of size m − r, and then transform this into a
system ΥS of |R \ IR| · n+ |C \ IC | · (m− r) equations
over GF(p) (one equation for each vector coordinate). For
each d ∈ R \ IR, ΥS contains the following variables:

◦ one variable for each adr+1, . . . , a
d
m, and

◦ one variable for each occurrence of •.

For instance, the first equation in ΥS for some d ∈ R \ IR
has the following form: d[1] = adr+1M[r + 1, 1] + · · · +
admM[m, 1] +

∑
i∈IR DR(d)(i) · i[1], where adr+1, . . . , a

d
m

are variables, DR(d)(i) is a number, and all other occur-
rences are either variables or numbers. Crucially, for all
j > c, the equations for d[j] defined above contain only
linear terms; however, for j ∈ [c] these equations may also
contain non-linear terms (in particular, adr+1, . . . , a

d
m are

variables and M[r + 1, j], . . . ,M[m, j] can contain • sym-
bols, which correspond to variables in the equations). For
z ∈ [m] and y ∈ [n], if an element M[z, y] contains •,
then we will denote the corresponding variable used in the
equations as xz,y .

Next, for each h ∈ C \ IC , ΥS contains the following
variables:

◦ one variable for each bhc+1, . . . , b
h
n, and

◦ one variable for each occurrence of •.

For instance, the second equation in ΥS for some h ∈ C\IC
has the following form: h[r + 2] = bhc+1M[r + 2, c +
1] + · · · + bhnM[r + 2, n] +

∑
i∈IC DC(d)(i) · i[r + 2],

where bhc+1, . . . , b
h
n are variables, DC(d)(i) is a number,

and all other occurrences are either variables or numbers.
Observe that all of these equations for h are linear, since the
submatrix M[r + 1 : m, c+ 1 : n] contains no • symbols.

This completes the definition of our system of equations
ΥS . Recall that the only equations in ΥS that may con-
tain non-linear terms are those for d[j] when j ≤ c, and
in particular ΥS contains at most k2 equations with non-
linear terms (k equations for at most k vectors d in R \ IR).
We will now use substitutions to simplify ΥS by remov-
ing all linear equations; specifically, at each step we se-
lect an arbitrary linear equation EQi containing a variable
x, apply substitution of x in EQi to construct a new sys-
tem of equations with one fewer equation, and simplify
all equations in the new system. If at any point we reach
a system of equations which contains an invalid equation
(e.g., 2=5), then ΥS does not have a solution, and we dis-
card the corresponding branch. Otherwise, after at most
|R \ IR| · n+ |C \ IC | · (m− r) ∈ O(kn+ km) substitu-
tions we obtain a system of at most k2 quadratic equations
ΨS such that any solution to ΨS can be transformed into
a solution to ΥS in time at most O(kn + km). We can
now apply Proposition 6 to solve ΨS and mark S as a valid
signature if ΨS has a solution.

After all signatures have been processed, in the third—and
final—step we select a valid signature S = (I,D) that has
the minimum value of |IR|+ |IC |. The algorithm will then
check whether |IR|+ |IC |+ rk(M[r+ 1 : m, c : 1 +n]) ≤
t. If this not the case, the algorithm rejects the instance.
Otherwise, the algorithm recomputes a solution to ΥS , and
outputs the matrix M′ obtained from M by replacing each
occurrence of • at position [i, j] in M′ by xi,j .

We now proceed to proving the correctness of the algorithm.
We do so by proving the following two claims:

Claim 1. If there exists a signature S = (IR, DR, IC , DC)
for M such that |IR|+|IC |+rk(M[r+1 : m, c : 1+n]) ≤ t,
then there exists a matrix M′ compatible with M such that
rk(M′) ≤ |IR| + |IC | + rk(M[r + 1 : m, c : 1 + n]). In
particular, if S is marked as valid by the algorithm, then the
algorithm outputs a matrix M′ satisfying the above.

Proof of Claim. Since S is valid, the system of equations
ΥS has a solution; fix one such solution. Consider the matrix
M′ obtained from M by replacing each occurrence of • at
position [i, j] by the value of xi,j from the selected solution
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Parameterized Algorithms for the Matrix Completion Problem

to ΥS . Then the solution to ΥS guarantees that each row in
R \ IR can be obtained as a linear combination of rows in
M′ \ (R \ IR), and hence deleting all rows in R \ IR will
result in a matrix M′1 such that rk(M′) = rk(M′1).

Next, consider the matrix M′[r+1 : m, ∗] which is obtained
by removing all rows in IR from M′1; clearly, this operation
decreases the rank by at most |IR|, and hence rk(M′[r + 1 :
m, ∗]) ≤ rk(M′1) ≤ rk(M′[r + 1 : m, ∗]) + |IR|.
Third, consider the matrix M′2 obtained from M′[r + 1 :
m, ∗] by removing all columns inC\IC . The solution to ΥS

guarantees that each removed column can be obtained as a
linear combination of columns in M′[r+1 : m, ∗]\(C\IC),
and hence, rk(M′[r + 1 : m, ∗) = rk(M′2). Finally, we
consider the matrix M′[r + 1 : m, c+ 1 : n] = M[r + 1 :
m, c + 1 : n] which is obtained by removing all columns
in IC from M′2. Clearly, removing |IC | columns decreases
the rank by at most |IC |, and hence rk(M[r+ 1 : m, c+ 1 :
n]) ≤ rk(M′2) ≤ rk(M[r + 1 : m, c + 1 : n]) + |IC |.
Putting the above inequalities together, we get rk(M′) ≤
rk(M′[r + 1 : m, ∗]) + |IR| ≤ rk(M[r + 1 : m, c + 1 :
n]) + |IC |+ |IR|. �

Claim 2. If there exists a matrix M′ compatible with M
such that rk(M′) ≤ t, then there exists a valid signature
S = (IR, DR, IC , DC) such that |IR|+ |IC |+ rk(M[r+1 :
m, c : 1 + n]) ≤ t.

Proof of Claim. Consider the following iterative procedure
that creates a set IR from the hypothetical matrix M′.
Check, for each row r ∈ R, whether R can be obtained
as a linear combination of all other rows in M′, which can
be done by solving a system of linear equations; if this is
the case, remove r from M′ and restart from any row in
R that remains in M′. In the end, we obtain a submatrix
M′R of M′ which only contains those rows in R that can-
not be obtained as a linear combination of all other rows
in M′R; let IR be the set of rows in R that remain in M′R.
Furthermore, since each row r′ ∈ R \ IR can be obtained
as a linear combination of rows in M′R, for each such r′ we
compute a set of coefficients τr′ that can be used to obtain
r′ and store those coefficients corresponding to IR in DR.
For instance, if row r′ ∈ R \ IR can be obtained by an
additive term containing 1 times row u ∈ IR, then we set
DR(r′) = (u 7→ 1).

At this point, we have identified IR and DR. Next, we turn
our attention to the submatrix M′[r + 1 : m, ∗], where we
proceed similarly but for columns. In particular, for each
column c ∈ C restricted to M′[r + 1 : m, ∗], we check
whether c can be obtained as a linear combination of all
other columns in M′[r + 1 : m, ∗], and if the answer is
positive then we remove c from M′[r+ 1 : m, ∗] and restart
from any column in C that remains in M′[r + 1 : m, ∗].
This results in a new submatrix M′C of M′[r + 1 : m, ∗],

and those columns of C that remain in M′C are stored in IC .
Then, for each column in c′ ∈ C \ IC , we compute a set of
coefficients τc′ that can be used to obtain that column and
store the values of the coefficients that correspond to IC in
DC , analogously as we did for the rows.

At this point, we have obtained a signature S. The validity
of S follows from its construction. Indeed, to solve ΥS ,
we can set each variable xi,j representing the value of a •
symbol at M[i, j] to M′[i, j], and all other variables will
capture the coefficients that were stored in τr′ and τc′ for a
row r′ or a column c′, respectively.

Finally, we argue that |IR| + |IC | + rk(M[r + 1 : m, c :
1 + n]) ≤ t. Since M′R was obtained from M′ only by
deleting linearly dependent rows, rk(M′) = rk(M′R). Fur-
thermore, since M′[r + 1 : m, ∗] can be obtained by delet-
ing |IR| rows from M′R, and all of these deleted rows are
linearly independent of all other rows in M′R, we obtain
rk(M′[r + 1 : m, ∗]) = rk(M′R) − |IR|. By repeating
the above arguments, we see that rk(M′[r + 1 : m, ∗]) =
rk(M′C) and rk(M′[r+1 : m, c+1 : n]) = rk(M′C)−|IC |.
Recall that M′[r+1 : m, c+1 : n] = M[r+1 : m, c+1 : n].
Putting the above together, we obtain rk(M′[r+1 : m, c+1 :
n]) + |IC | = rk(M′[r + 1 : m, ∗]), and rk(M′[r + 1 :
m, c+ 1 : n]) + |IC |+ |IR| = rk(M′) ≤ t. �

Finally, the total running time of the algorithm is obtained
by combining the branching factor of branching over all
signatures (O(2k · pk2)) with the run-time of Proposition 6
for k2 many quadratic equations (O(3k

2

n3(log p)2 + pk
4

)).
We obtain a running time of O(3k

2 · pk4 · n3).

As a consequence of the running time of the algorithm given
in the proof of Theorem 7, we obtain:

Corollary 8. RMC[comb] is in XPR.

4. BOUNDED DISTINCT ROW MATRIX
COMPLETION

Let (p,M, t) be an instance of DRMC. We say that two
rows of M are compatible if whenever the two rows differ
at some entry then one of the rows has a • at that entry. The
compatibility graph of M, denoted by G(M), is the undi-
rected graph whose vertices correspond to the row indices
of M and in which there is an edge between two vertices
if and only if their two corresponding rows are compatible.
See Figure 2 for an illustration.

We start by showing that DRMC (and therefore p-DRMC)
can be reduced to the CLIQUE COVER problem, which is
defined as follows.
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1 • 0 • • 1
1 0 0 1 • •
1 0 • 1 0 1
1 0 1 1 0 •
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Figure 2. Illustration of a matrix and its compatibility graph. The
vertex label indicates the corresponding row number.

CLIQUE COVER (CC)

Input: An undirected graph G and an integer k.
Task: Find a partition of V (G) into at most k

cliques, or output that no such partition
exists.

Lemma 9. An instance I = (p,M, t) of DRMC has a
solution if and only if the instance I ′ = (G(M), t) of
CC does. Moreover, a solution for I ′ can obtained in
polynomial-time from a solution for I and vice versa.

Proof. Let M′ be a solution for I and let P be the partition
of the indices of the rows of M′ such that two row-indices r
and r′ belong to the same set in P if and only if M′[r, ∗] =
M′[r′, ∗]. Then P is also a solution for I ′, since G[P ] is a
clique for every P ∈ P .

Conversely, let P be a solution for I ′. We claim that there
is a solution M′ for I such that M′[r, ∗] = M′[r′, ∗] if and
only if r and r′ are contained in the same set of P . Towards
showing this, consider a set P ∈ P and a column index c of
M, and let E(M[P, c]) be the set of all values occurring in
M[P, c]. Then |E(M[P, c])\{•}| ≤ 1, that is, all entries of
M[P, c] that are not • are equal; otherwise, G[P ] would not
be a clique. Consequently, by replacing every • occurring
in M[P, c] with the unique value in E(M[P, c]) \ {•} if
E(M[P, c])\{•} 6= ∅, and with an arbitrary value otherwise,
and by doing so for every column index c and every P ∈ P ,
we obtain the desired solution M′ for I.

Theorem 10. CC is in FPT when parameterized by the
treewidth of the input graph.

Proof. Let I = (G, k) be an instance of CC. We will
show the Theorem using a standard dynamic program-
ming algorithm on a tree-decomposition of G. Because of
Proposition 1 we can assume that we are given a nice tree-
decomposition (T, χ) of G of width ω. For every node t ∈
V (T ) we will compute the set R(t) of records containing
all pairs (P, c), where P is a partition of χ(t) into cliques,
i.e., for every P ∈ P the graph G[P ] is a clique, and c is the
minimum integer such that G[χ(Tt)] has a partition P ′ into
c cliques with P = {P ′ ∩ χ(t) | P ′ ∈ P ′ } \ {∅}. Note
that I has a solution if and only if R(r) contains a record
(∅, c) with c ≤ k, where r is the root of (T, χ). It hence

suffices to show how to compute the set of records for the
four different types of nodes of a nice tree-decomposition.

Let l be a leaf node of T with χ(l) = {v}. Then R(l) :=
{({{v}}, 1)}. Note the R(l) can be computed in constant
time.

Let t be an introduce node of T with child t′ and χ(t) =
χ(t′) ∪ {v}. Then R(t) can be obtained from R(t′) as
follows. For every (P ′, c′) ∈ R(t′) and every P ′ ∈ P ′ such
thatG[P ′∪{v}] is a clique, we add the record ((P ′\{P ′})∪
{P ′ ∪ {v}}, c′) to R(t). Moreover, for every (P ′, c′) ∈
R(t′), we add the record (P ′∪{{v}}, c′+1) toR(t). Note
thatR(t) can be computed in time O(|R(t′)|ω2).

Let t be a forget node of T with child t′ and χ(t) ∪ {v} =
χ(t′). Then R(t) consists of all records (P, c) such that c
is the minimum integer such that there is a record (P ′, c) ∈
R(t′) and a set P ′ ∈ P ′ with v ∈ P ′ and (P ′ \ P ′) ∪ (P ′ \
{v}) = P; if no such record exists (P, c) is not in R(t).
Note thatR(t) can be computed in time O(|R(t′)|ω2).

Let t be a join node with children t1 and t2. Then R(t)
contains all records (P, c) such that there are integers c1
and c2 with c1 + c2 − |P| = c and (P, c1) ∈ R(t1) and
(P, c2) ∈ R(t2). Note that R(t) can be computed in time
O((|R(t1)| + |R(t2)|)ω) (assuming that the records are
kept in an ordered manner).

The total run-time of the algorithm is then the number of
nodes of T , i.e., O(ω|V (G)|), times the maximum time
required at any of the four types of nodes, i.e.,O(|R(t)|ω2),
which because |R(t)| ≤ ω! is at most O(ω!ω3|V (G)|).

Note that the above theorem also implies that the well-
known COLORING problem is FPT parameterized by the
treewidth of the complement of the input graph. The theo-
rem below follows immediately from Lemmas 9 and 10.

Theorem 11. DRMC and p-DRMC are in FPT when
parameterized by the treewidth of the compatibility graph.

4.1. p-DRMC

Theorem 12. p-DRMC[comb] is in FPT.

Proof. Let (M, t) be an instance of p-DRMC, and let k
be the parameter comb. By Proposition 2, we can compute
a set R• of rows and a set C• of columns, where |R• ∪
C•| ≤ k, and such that every occurrence of • in M is
either contained in a row or column in R• ∪ C•. Let R
and C be the set of rows and columns of M, respectively.
Let P be the unique partition of R \ R• such that two
rows r and r′ belong to the same set in P if and only if
they are identical on all columns in C \ C•. Then |P | ≤
(p+ 1)k, for every P ∈ P , since two rows in P can differ
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on at most |C•| ≤ k entries, each having (p+ 1) values to
be chosen from. Moreover, any two rows in R \ R• that
are not contained in the same set in P are not compatible,
which implies that they appear in different components of
G(M)\R• and hence the set of vertices in every component
of G(M) \R• is a subset of P , for some P ∈ P . It is now
straightforward to show that tw(G(M)) ≤ k+(p+1)k, and
hence, tw(G(M)) is bounded by a function of the parameter
k. Towards showing this consider the tree-decomposition
(T, χ) for G(M), where T is a path containing one node
tP with χ(tP ) = R• ∪ P for every P ∈ P . Then (T, χ) is
tree-decomposition of width k + (p + 1)k − 1 for G(M).
The theorem now follows from Theorem 11.

4.2. DRMC

The proof of the following theorem is very similar to the
proof of Theorem 12, i.e., we mainly use the observation
that the parameter row is also a bound on the treewidth of
the compatibility graph and then apply Theorem 11.

Theorem 13. DRMC[row] is in FPT.

Proof. Let (p,M, t) be an instance of DRMC, let k be the
parameter row and let R? be a set of rows with |R?| ≤ k
covering all occurrences of • in M. Then G(M) \ R?

is an independent set since any two distinct rows without
• are not compatible. It is now straightforward to show
that tw(G(M)) ≤ k and hence bounded by a function
of our parameter k. Towards showing this the following
tree-decomposition (T, χ) for G(M), where T is a path
containing one node tr with χ(tr) = R? ∪ {r} for every
r ∈ R \R?. Then (T, χ) is tree-decomposition of width k
forG(M). The theorem now follows from Theorem 11.

For our remaining hardness proofs we will make use of the
following problem.

PARTITIONING INTO TRIANGLES (PIT)

Input: A graph G.
Task: Is there a partition P of V (G) into tri-

angles, i.e., G[P ] is a triangle for every
P ∈ P?

We will often use the following easy observation.

Observation 1. A graph G that does not contain a clique
with four vertices has a partition into triangles if and only
if it has a partition into at most |V (G)|/3 cliques.

Theorem 14. DRMC[col] is paraNP-hard.

Proof. We will reduce from the following variant of 3-SAT,
which is NP-complete (Berman et al., 2003).

3-SATISFIABILITY-2 (3-SAT-2)

Input: A propositional formula φ in conjunctive
normal form such that (1) every clause of
φ has exactly three distinct literals and (2)
every literal occurs in exactly two clauses.

Task: Is φ satisfiable?

To make our reduction easier to follow, we will divide the
reduction into two steps. Given an instance (formula) φ of
3-SAT-2, we will first construct an equivalent instance G of
PIT with the additional property that G does not contain a
clique on four vertices. We note that similar reductions from
variants of the satisfiability problem to PIT are known (and
hence our first step does not show anything new for PIT);
however, our reduction is specifically designed to simplify
the second step, in which we will construct an instance
(M, |V (G)|/3) of DRMC such that G(M) is isomorphic
to G and M has only seven columns. By Observation 1 and
Lemma 9, this proves the theorem since (M, |V (G)|/3) has
a solution if and only if φ does.

Let φ be an instance of 3-SAT-2 with variables x1, . . . , xn
and clauses C1, . . . , Cm. We first construct the instance
G of PIT such that G does not contain a clique of size
four. For every variable xi of φ, let G(xi) be the graph
with vertices x1i , x2i , x̄1i , x̄2i , xi and edges forming a triangle
on the vertices x1i , x

2
i , and xi as well as a triangle on the

vertices x̄1i , x̄
2
i , and xi. Moreover, for every clause Cj

with literals lj,1, lj,2, and lj,3, let G(Cj) be the graph with
vertices l1j,1, l2j,1, l1j,2, l3j,2, l1j,3, l2j,3, h1j , and h2j and edges
between l1j,r and l2j,r for every r ∈ {1, 2, 3} as well as edges
forming a complete bipartite graph between {h1j , h2j} and all
other vertices of G(Cj). Let f : [m]× [3]→ {xoi , x̄oi | 1 ≤
i ≤ n ∧ 1 ≤ o ≤ 2 } be any bijective function such that for
every j and r with 1 ≤ j ≤ m and 1 ≤ r ≤ 3, it holds that:
If f(j, r) = xoi (for some i and o), then xi is the r-th literal
of Cj ; and if f(j, r) = x̄oi , then x̄i is the r-th literal of Cj .
Figures 3 and 4 illustrate the gadgets G(xi) and G(Cj).

The graph G is obtained from the disjoint union of the
graphs G(x1), . . . , G(xn), G(C1), . . . , G(Cm) after apply-
ing the following modifications:

◦ For every j and r with 1 ≤ j ≤ m and 1 ≤ r ≤ 3
add edges forming a triangle on the vertices l1j,r, l

2
j,r,

f(j, r).

◦ for every i with 1 ≤ i ≤ 2n − m, add the vertices
g1i , g

2
i and an edge between g1i and g2i . Finally we add

edges forming a complete bipartite graph between all
vertices in { goi | 1 ≤ i ≤ 2n−m ∧ 1 ≤ o ≤ 2 } and
all vertices in {hoi | 1 ≤ i ≤ n ∧ 1 ≤ o ≤ 2 }.

This completes the construction of G. The following claim
concludes the first step of our reduction.
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xi(i, •, 0, 0, 0, 0, 0)

x2i (i, 1, •, 0, •, 0, 0)

x1i (i, 1, •, •, 0, 0, 0)

x̄2i (i, 0, •, 0, •, 0, 0)

x̄1i (i, 0, •, •, 0, 0, 0)

Figure 3. An illustration of the gadget G(xi) introduced in the
reduction of Theorem 14. The label of each vertex v indicates the
row vector R(v).

h1j (•, •, j, 1, 1, 1, •)
h2j (•, •, j, 1, 1, 2, •)

l1j,2(5, 1, j, •, 1, •, 0)

l2j,2(5, 1, j, •, 1, •, 0)

l2j,1(4, 1, j, 1, •, •, 0)

l1j,1(4, 1, j, 1, •, •, 0)

l1j,3(6, 0, j, 1, •, •, 0)

l2j,3(6, 0, j, 1, •, •, 0)

Figure 4. An illustration of the gadget G(Cj) introduced in the
reduction of Theorem 14. The label of each vertex v indicates the
row vector R(v); here we assume that f(j, 1) = x1

4, f(j, 2) = x2
5,

and f(j, 3) = x̄1
6.

Claim 3. φ is satisfiable if and only if G has a partition
into triangles. Moreover, G does not contain a clique of size
four.

Proof. We first show that G does not contain a clique of
size four by showing that the neighborhood of any vertex in
G does not contain a triangle.

◦ If v = xi for some i with 1 ≤ i ≤ n, then NG(v) =
{x1i , x2i , x̄1i , x̄2i } and does not contain a triangle.

◦ If v = xoi for some i and o with 1 ≤ i ≤ n and 1 ≤
o ≤ 2, then NG(v) = {xi, xo−1 mod 2+1

i , l1j,r, l
2
j,r},

where f−1(xoi ) = (j, r), and does not contain a trian-
gle.

◦ The case for v = x̄oi for i and o as above is analogous.

◦ If v = loj,r for some j, r, and o with 1 ≤ j ≤ m,
1 ≤ r ≤ 3, and 1 ≤ o ≤ 2, then NG(v) =
{lo−1 mod 2+1
j,r , f(j, r), h1j , h

2
j} and does not contain

a triangle.

◦ If v = hoj for some j and o with 1 ≤ j ≤ m and
1 ≤ o ≤ 2, then NG(v) = { loj,r | 1 ≤ r ≤ 3 ∧ 1 ≤
o ≤ 2 } ∪ { g1j′ , g2j′ | 1 ≤ j′ ≤ 2n−m } and does not
contain a triangle.

◦ If v = goj for some j and o with 1 ≤ j ≤ 2n − m
and 1 ≤ o ≤ 2, then NG(v) = {go−1 mod 2+1

j } ∪

{ho′j′ | 1 ≤ j′ ≤ m ∧ 1 ≤ o′ ≤ 2 } and does not
contain a triangle.

We now show that φ is satisfiable if and only if G has a par-
tition into triangles. Towards showing the forward direction
let τ be a satisfying assignment for φ. Then a partition P of
G into triangles contains the following triangles:

(1) for every i with 1 ≤ i ≤ n the triangle xi, x1i , x
2
i if

τ(xi) = 0 and the triangle xi, x̄1i , x̄2i , otherwise,

(2) for every j with 1 ≤ j ≤ m and every r with 1 ≤ r ≤
3 such that the r-th literal of Cj is satisfied by τ , the
triangle l1j,r, l

2
j,r, f(j, r),

(3) for every j with 1 ≤ j ≤ m and every r with 1 ≤ r ≤
3 such that the r-th literal of Cj is not satisfied by τ ,
the triangle l1j,r, l

2
j,r, h

o
j , where o ∈ {1, 2} and the r-th

literal of Cj is the o-th literal in Cj that is not satisfied
by τ ; note that this is always possible because Cj has
at most two literals that are not satisfied by τ ,

(4) Let A be the subset of {hoi | 1 ≤ i ≤ n ∧ 1 ≤ o ≤ 2 }
containing all hoi that are not yet part of a triangle,
i.e., that are not part of a triangle added in (3). Then
|A| = 2n − m and it is hence possible to add the
following triangles, i.e., for every v ∈ A a triangle
containing v and the two vertices g1p and g2p for some p
with 1 ≤ p ≤ 2n−m.

Towards showing the reverse direction let P be a partition
of V (G) into |V (G)|/3 triangles. Then P satisfies:

(A1) For every i with 1 ≤ i ≤ n, P either contains the
triangle {xi, x1i , x2i } or the triangle {xi, x̄1i , x̄2i }.

(A2) For every j with 1 ≤ j ≤ m, P there is an r
with 1 ≤ r ≤ 3 such that P contains the triangle
{l1j,r, l2j,r, f(j, r)}.

(A1) follows because these are the only two triangles in G
containing xi for every i with 1 ≤ i ≤ n. Moreover, (A2)
follows because for every j and r with 1 ≤ j ≤ m and
1 ≤ r ≤ 3 there are only three triangles containing one
of the vertices l1j,r and l2j,r, i.e., the triangles {l1j,r, l2j,r, h1j},
{l1j,r, l2j,r, h2j}, and {l1j,r, l2j,r, f(j, r)}. (A2) now follows
because P can contain at most two triangles containing one
of h1i and h2i . But then the assignment τ setting τ(xi) = 1
for every i with 1 ≤ i ≤ n if and only if P contains
the triangle {xi, x̄1i , x̄2i } is a satisfying assignment for φ,
because of (A2).

We will now proceed to the second (and final) step of our
reduction, i.e., we will construct an instance (M, |V (G)|/3)
of DRMC such that: G(M) is isomorphic to G and M
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Parameterized Algorithms for the Matrix Completion Problem

has only seven columns. Because of Observation 1 and
Lemma 9, this shows that DRMC is NP-hard already for
only 7 columns and concludes the proof of the theorem.

M will contain one row R(u) for every u ∈ V (G), which
is defined as follows.

◦ if u = xi for some i with 1 ≤ i ≤ n, we set R(u) =
(i, •, 0, 0, 0, 0, 0),

◦ if u = xoi for some i and o with 1 ≤ i ≤ n and
1 ≤ o ≤ 2, we set either:

– R(u) = (i, 1, •, •, 0, 0, 0), if o = 1 or
– R(u) = (i, 1, •, 0, •, 0, 0), otherwise

◦ if u = x̄oi for some i and o with 1 ≤ i ≤ n and
1 ≤ o ≤ 2, we set either:

– R(u) = (i, 0, •, •, 0, 0, 0), if o = 1 or
– R(u) = (i, 0, •, 0, •, 0, 0), otherwise

◦ if u = loj,r for some j, r, and o with 1 ≤ j ≤ n,
1 ≤ r ≤ 3, and 1 ≤ o ≤ 2, then either:

– if xi is the r-th literal of Cj (for some i with
1 ≤ i ≤ n), then either:
∗ if f(j, r) = x1i , we set R(u) =

(i, 1, j, 1, •, •, 0),
∗ otherwise, i.e., if f(j, r) = x2i , we setR(u) =

(i, 1, j, •, 1, •, 0),
– if x̄i is the r-th literal of Cj (for some i with

1 ≤ i ≤ n), then either:
∗ if f(j, r) = x̄1i , we set R(u) =

(i, 0, j, 1, •, •, 0),
∗ otherwise, i.e., if f(j, r) = x̄2i , we setR(u) =

(i, 0, j, •, 1, •, 0),

◦ if u = hoj for some j and o with 1 ≤ j ≤ m and
1 ≤ o ≤ 2, we set R(u) = (•, •, j, 1, 1, o, •),

◦ if u = goj for some j and o with 1 ≤ j ≤ 2n−m and
1 ≤ o ≤ 2, we set R(u) = (•, •, •, •, •, •, j),

Figures 3 and 4 illustrate the row vectors assigned to the
vertices in the gadgetsG(xi) andG(Cj). It remains to show
that G(M) is indeed isomorphic to G. Let u ∈ V (G), we
distinguish the following cases:

◦ if u = xi for some i with 1 ≤ i ≤ n,
we need to show that NG(M)(u) = NG(u) =
{x1i , x2i , x̄1i , x̄2i }. Since R(xi) = (i, •, 0, 0, 0, 0, 0) is
compatible with R(x1i ) = (i, 1, •, •, 0, 0, 0), R(x2i ) =
(i, 1, •, 0, •, 0, 0), R(x̄1i ) = (i, 0, •, •, 0, 0, 0), and
R(x̄2i ) = (i, 0, •, 0, •, 0, 0), we already have that
NG(u) ⊆ NG(M)(u). Moreover, R(xi) =
(i, •, 0, 0, 0, 0, 0) is not compatible with:

– R(xi′), R(xoi′), or R(x̄oi′) for any i′ and o with
1 ≤ i′ ≤ n, i′ 6= i, and 1 ≤ o ≤ 2 because the
first column of these rows is equal to i′ and i′ 6= i.

– R(loj,r) for any j, r, and o with 1 ≤ j ≤ m, 1 ≤
r ≤ 3, and 1 ≤ o ≤ 2 because the third column
of R(loj,r) is equal to j, and hence not equal to the
corresponding column of R(u), which is 0.

– R(hoj) for any j and o with 1 ≤ j ≤ m and
1 ≤ o ≤ 2, because the third column of R(hoj) is
equal to j and j 6= 0.

– R(goj ) for any j and o with 1 ≤ j ≤ 2n−m and
1 ≤ o ≤ 2, because the seventh column of R(goj )
is equal to j and j 6= 0.

This shows that NG(M)(u) ⊆ NG(u) and hence
NG(M)(u) = NG(u), as required.

◦ if u = x1i for some i with 1 ≤ i ≤ n,
we need to show that NG(M)(u) = NG(u) =
{xi, x2i , l1j,r, l2j,r}, where j and r are such that
f−1(x1i ) = (j, r). Since R(x1i ) = (i, 1, •, •, 0, 0, 0)
is compatible with R(xi) = (i, •, 0, 0, 0, 0, 0),
R(x2i ) = (i, 1, •, 0, •, 0, 0), R(l1j,r) = R(l2j,r) =
(i, 1, j, 1, •, •, 0), we already have that NG(u) ⊆
NG(M)(u). Moreover, R(x1i ) = (i, 1, •, •, 0, 0, 0) is
not compatible with:

– R(xi′), R(xoi′), or R(x̄oi′) for any i′ and o with
1 ≤ i′ ≤ n, i′ 6= i, and 1 ≤ o ≤ 2 because the
first column of these rows is equal to i′ and i′ 6= i.

– R(x̄oi ) for any o with 1 ≤ o ≤ 2 because the
second column of R(x̄oi ) is equal to 0 and 0 6= 1.

– R(loj′,r′) for any j′, r′, and o with 1 ≤ j′ ≤ m,
1 ≤ r′ ≤ 3, 1 ≤ o ≤ 2, and (j′, r′) 6= (j, r)
because either:
∗ the r′ literal of Cj is not xi, in which case

either the first or second column of R(u) and
R(loj′,r′) differ or

∗ the r′ literal of Cj is xi, in which case
f(j′, r′) = x2i and the fifth column of
R(loj′,r′) is equal to 1, and hence not equal
to the fifth column of R(u), which is 0.

– R(hoj) for any j and o with 1 ≤ j ≤ m and
1 ≤ o ≤ 2, because the fifth column of R(hoj) is
equal to 1.

– R(goj ) for any j and o with 1 ≤ j ≤ 2n−m and
1 ≤ o ≤ 2, because the seventh column of R(goj )
is equal to j and j 6= 0.

This shows that NG(M)(u) ⊆ NG(u) and hence
NG(M)(u) = NG(u), as required.

◦ the cases for u ∈ {x2i , x̄1i , x̄2i } are analogous to the
previous case,
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◦ if u = l1j,r for some j and r with 1 ≤ j ≤
m and 1 ≤ r ≤ 3, we have to show that
NG(M)(u) = NG(u) = {l2j,r, f(j, r), h1j , h

2
j}. As-

sume w.l.o.g. that f(j, r) = x1i for some i with
1 ≤ i ≤ n. Then since R(l1j,r) = (i, 1, j, 1, •, •, 0)

is compatible with R(l2j,r) = R(u), R(x1i ) =

(i, 1, •, •, 0, 0, 0), R(h1j ) = (•, •, j, 1, 1, 1, •), and
R(h2j ) = (•, •, j, 1, 1, 2, •), we already have that
NG(u) ⊆ NG(M)(u). Moreover, R(l1j,r) =
(i, 1, j, 1, •, •, 0) is not compatible with:

– R(xi) = (i, •, 0, 0, 0, 0, 0) and R(x2i ) =
(i, 1, •, 0, •, 0, 0) because of the fourth column,

– R(x̄oi ) for any o with 1 ≤ o ≤ 2 because of the
second column,

– R(xi′), R(xoi′), or R(x̄oi′) for any i′ and o with
1 ≤ i′ ≤ n, i′ 6= i, and 1 ≤ o ≤ 2 because the
first column of these rows is equal to i′ and i′ 6= i.

– R(loj′,r′) for any j′, r′, and o with 1 ≤ j′ ≤ m,
1 ≤ r′ ≤ 3, (j′, r′) 6= (j, r), and 1 ≤ o ≤ 2
because either:
∗ j′ 6= j and they hence differ in the third col-

umn, or
∗ j′ = j but r′ 6= r in which case they differ in

the first or second column because the clause
Cj cannot contain the same literal (xi) twice.

– R(hoj′) for any j′ and o with 1 ≤ j′ ≤ m, j′ 6= j,
and 1 ≤ o ≤ 2, because the third column of
R(hoj′) is equal to j′ and j′ 6= j.

– R(goj′) for any j′ and o with 1 ≤ j′ ≤ 2n −m
and 1 ≤ o ≤ 2, because the seventh column of
R(goj′) is equal to j′ and j′ 6= 0.

◦ if u = hoj for some j and o with 1 ≤ j ≤ m and
1 ≤ o ≤ 2, we have to show that NG(M)(u) =
NG(u) = {l1j,r, l2j,r | 1 ≤ r ≤ 3{∪ | g1j′ , g2j′ | 1 ≤
j′ ≤ 2n−m }. Then since R(hoj) = (•, •, j, 1, 1, o, •)
is compatible with R(lo

′
j,r) for any r and o′ with 1 ≤

r ≤ 3 and 1 ≤ o′ ≤ 2 – this is because the third col-
umn of R(loj,r) is always equal to j, the fourth and fifth
columns are always either • or 1, and the sixth column
is always equal to • – and R(hoj) is also clearly com-
patible with R(g1j′) = R(g2j′) = (•, •, •, •, •, •, j′)
(for every j′ with 1 ≤ j′ ≤ 2m − n), we already
have that NG(u) ⊆ NG(M)(u). Moreover, R(hoj) =
(•, •, j, 1, 1, o, •) is not compatible with:

– R(xi), R(xo
′
i ), and R(x̄o

′
i ) for any i and o′ with

1 ≤ i ≤ n and 1 ≤ o′ ≤ 2 because either the
fourth or the fifth column of all these rows is equal
to 0 and 0 6= 1.

– R(lo
′
j′,r′) for any j′, r′, and o′ with 1 ≤ j′ ≤ m,

j′ 6= j, 1 ≤ r′ ≤ 3 and 1 ≤ o′ ≤ 2 because the
third column of all these rows is j′ and j′ 6= j,

– R(ho−1 mod 2+1
j ) because of the sixth column,

– R(ho
′
j′ ) for any j′ and o′ with 1 ≤ j′ ≤ m and

1 ≤ o′ ≤ 2 because the third column of all these
vectors is j′ and j′ 6= j,

◦ if u = goj for some j and o with 1 ≤ j ≤ 2n − m
and 1 ≤ o ≤ 2, we have to show that NG(M)(u) =

NG(u) = {go−1 mod 2+1
j } ∪ {h1j′ , h2j′ | 1 ≤ j′ ≤

m }. We have already shown in the previous case that
goj is adjacent to all vertices in {h1j′ , h2j′ | 1 ≤ j′ ≤
m }. Moreover, since R(goj ) = R(go−1 mod 2+1

j ) =
(•, •, •, •, •, •, j) we obtain that NG(u) ⊆ NG(M)(u).
Moreover, R(goj ) = (•, •, •, •, •, •, j) is not compati-
ble with any other row because the seventh column of
any other row is not equal to j.

We conclude this section with a hardness result showing that
2-DRMC remains NP-hard when the number of missing or
known entries in each column/row is bounded.

Theorem 15. The restriction of 2-DRMC to instances in
which each row and each column contains exactly three
missing entries is NP-hard. The same holds for the restric-
tion of 2-DRMC to instances in which each row and each
column contains at most 4 determined entries.

Proof. Consider the problem of (properly) coloring a graph
on n vertices, having minimum degree n− 4 and no inde-
pendent set of size 4, by n/3 colors, where n is divisible by
3; denote this problem as (n/3)-COLORINGδ=n−4.

We first show that this problem is NP-hard via a reduction
from the PARTITION INTO TRIANGLES problem on K4-
free cubic graphs. The NP-hardness of the aforementioned
problems follows from the NP-hardness of the PARTITION
INTO TRIANGLES problem on planar cubic graphs (Cerioli
et al., 2008), since a K4 in a cubic graph must be isolated,
and hence can be removed from the start.

Next, observe that PARTITION INTO TRIANGLES on K4-
free cubic graphs is polynomial-time reducible to (n/3)-
COLORINGδ=n−4, via the simple reduction that comple-
ments the edges of the graph. Given a K4-free cubic graph
G, the (edge) complement of G, G, has minimum degree
n− 4, and contains no independent set of size more than 3.
This can be seen as follows. Clearly, if G can be partitioned
into triangles then G has an (n/3)-coloring. Conversely, if
G has an (n/3)-coloring, then since G has no independent
set of size more than 3, each of the n/3 color classes in G
contains exactly 3 vertices. Therefore, G can be partitioned
into triangles.

Finally, we reduce from (n/3)-COLORINGδ=n−4 to p-
DRMC by mimicking a standard reduction from 3-coloring
to rank minimization (Peeters, 1996). Given an instance G
of (n/3)-COLORINGδ=n−4, we construct an n× n matrix
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M whose rows and columns correspond to the vertices in
G, as follows. The diagonal entries of M are all ones. For
any entry at row i and column j, where i 6= j, M[i, j] = 0
if ij ∈ E(G), and is • otherwise. Finally, we set r = n/3.
Observe that since each vertex in G has n−4 neighbors, the
number of missing entries in any row of M is 3. Since M
is symmetric, the number of missing entries in any column
of M is 3 as well.

If G is a yes-instance of (n/3)-COLORINGδ=n−4, then G
can be partitioned into n/3 independent sets, each of size
exactly 3. We claim that the missing entries in M can be
filled so that the total number of identical rows is at most
n/3. To shows this, it suffices to show that the three rows
corresponding to the vertices in any of the n/3 independent
sets in G can be filled so that to produce identical rows. To
do so, consider such an independent set {u, v, w} in G, and
for convenience, denote their corresponding rows in M by
u, v, w, respectively. Since u, v, w is an independent set,
the two entries M[v, u] and M[w, u] are •. Similarly, we
have M[u, v] = M[w, v] =• and M[u,w] = M[v, w] = •.
(That is, the only entry containing “1” in any of the three
rows has corresponding entries in the other two rows that
are •.) Therefore, if we replace all these six missing entries
with 1, and all other missing entries with 0, we make the
three rows u, v, w identical.

To prove the converse, suppose that the missing entries in
M can be completed so to obtain at most n/3 identical
rows. Note that, for any two adjacent vertices u, v, their
rows cannot be completed into identical rows since u has
0 at column v, whereas v has 1. Therefore, all rows that
are completed into the same identical row correspond to an
independent set in G. Since G has no independent set of
size more than 3, and since the number of identical rows
in the completed matrix is at most n/3, it follows that the
number of rows that have been completed into the same
row is exactly 3, and those correspond to an independent
set of size 3 in G. Therefore, G is a yes-instance of (n/3)-
COLORINGδ=n−4.

The second statement in the theorem follows via a reduction
from 3-COLORING on graphs of maximum degree at most
4, which is known to be NP-hard (Garey et al., 1976), using
similar arguments.

5. Conclusion
We studied the parameterized complexity of two fundamen-
tal matrix completion problems under several parameteri-
zations. For the bounded domain case, we painted a posi-
tive picture by showing that the two problems are in FPT
(resp. FPTR) w.r.t. all considered parameters. For the un-
bounded domain case, we characterized the parameterized
complexity of DRMC by showing that it is in FPT parame-

terized by row, and paraNP-hard parameterized by col (and
hence by comb). For RMC, we could show its membership
in XP (resp. XPR) w.r.t. all considered parameters. Three
immediate open questions ensue:

◦ Is it possible to obtain a deterministic algorithm for
p-RMC and RMC parameterized by comb?

◦ Can we improve our XP (resp. XPR) results for RMC
to FPT (resp. FPTR) or show that the problems are
W[1]-hard?

◦ Does a hardness result, similar to the one given in
Theorem 15 for p-DRMC, hold for p-RMC?
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