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Abstract

We study the directed network design problem with relays (DNDPR) whose
aim is to construct a minimum cost network that enables the communication of
a given set of origin-destination pairs. Thereby, expensive signal regeneration
devices need to be placed to cover communication distances exceeding a prede-
fined threshold. Applications of the DNDPR arise in telecommunications and
transportation.

We propose two new integer programming formulations for the DNDPR.
The first one is a flow-based formulation with a pseudo-polynomial number
of variables and constraints and the second is a cut-based formulation with
an exponential number of constraints. Fractional distance values are handled
efficiently by augmenting both models with an exponentially-sized set of infea-
sible path constraints. We develop branch-and-cut algorithms and also consider
valid inequalities to strengthen the obtained dual bounds and to speed up con-
vergence. The results of our extensive computational study on diverse sets of
benchmark instances show that our algorithms outperform the previous state-
of-the-art method based on column generation.

Keywords: Integer Programming, Networks, Layered Graphs,
Telecommunications

1. Introduction

The directed network design problem with relays (DNDPR) was introduced
by Li et al. [19] for modeling the design of networks when the maximum dis-
tance a commodity (i.e., signal) can travel is bounded from above by some
threshold. This distance limit can be surpassed by locating special, commodity
regenerating equipment (relays) at intermediate network nodes. Applications of
this problem arise in the design of transportation and telecommunication net-
works [19]. In the latter, signals deteriorate after traveling a certain distance
and thus there is the need to regenerate them before a predefined maximum
distance is exceeded. Thus, comparably expensive regenerating devices (e.g.,
repeaters) need to be installed, see, e.g., Cabral et al. [2], Chen et al. [3], Yıldız
and Karaşan [29], in order to avoid signal loss or falsification of the transmitted
information.
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In the design of optical telecommunication networks, for example, commodi-
ties correspond to node pairs that need to communicate with each other, but the
quality of the optical signal degrades with the distance, so that after a certain
distance the signal has to be amplified, which is done by deploying regenerator
devices at some nodes of the network [4]. Edge costs are directly proportional
to edge lengths (multiplied by some factor that corresponds to cable costs per
unit of distance) whereas relay costs correspond to the installation and pur-
chasing costs of regenerator devices. Such devices are usually very expensive
(see, e.g., [24] for further details). In the design of fiber optic networks, Wave-
length Division Multiplexing (WDM) is used to divide the bandwidth of a single
fiber into different wavelength channels so that there is no interference between
transmissions on different wavelengths. A signal from a source node to its des-
tination is sent using the wavelength routing through a lightpath which is an
end-to-end connection over a dedicated communication channel (circuit) that
traverses one or more links and uses one WDM channel per link. The circuit
guarantees the full bandwidth of the channel and allows for a data rate of 10
or even 40 giga-bits per second (Gbps), see, e.g., [25] for further details. When
deploying regenerators in such a network, the signal is converted from optical
to electric and back to optical, each time a regenerator is used in the routing
path from a source to its destination (such paths are commonly referred to as
translucent lightpaths). When translucent lightpaths are not allowed to contain
cycles (which can be due to the signal interference, or due to the fact that each
lightpath has to be uniquely defined per source-destination pair), one has to
explicitly impose simple paths for the wavelength routing.

The DNDPR is defined on a digraph G = (V,A, c, w, d) with relay costs
c : V → Q≥0, arc costs w : A→ Q≥0, and arc distances d : A→ Q≥0. Moreover,
a distance bound λmax and a set of commodity pairs K are given. For each com-
modity (u, v) ∈ K, nodes u and v are called its source and target, respectively.
The goal of the DNDPR is to place relays on a subset of the nodes V ′ ⊆ V and
to select a subset of arcs A′ ⊆ A such that:

1. The subgraph induced by A′ contains for each (u, v) ∈ K a directed (sim-
ple) path from u to v not exceeding the distance limit between u and the
first relay, any two consecutive relays, and the last relay and v, and

2. the cost induced by installing relays and arcs, defined as
∑

v∈V ′
cv +

∑

a∈A′
wa

is minimized.

A problem instance and its optimal solution are given in Figure 1.
The DNDPR is closely related to the previously introduced and well-studied

network design problem with relays (NDPR) (see, e.g., [2]). The major difference
between the two problems is in the way how routing paths are defined: whereas
only simple paths are allowed in case of the DNDPR, solutions of the NDPR
may contain cycles. This latter property renders NDPR solutions infeasible
when it comes to the design of translucent optical networks. For an example
see Figure 2.

To simplify notation, we will in the following use S = {u | (u, v) ∈ K} to
denote the set of commodity sources and Tu = {v | (u, v) ∈ K} to denote all
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Figure 1: Example instance with two commodities K = {(0, 3), (0, 4)} and λmax = 7. Arc
distances are provided next to the arcs, relay and arc costs are given in parentheses. Relays
and arcs used in the optimal solution are marked bold and blue.

0(5)
1(5)

2(1)

3(5)
2(3)

2(3)

1(1)1(1)

3(3)

3(3)

Instance

0

1

2

3 0

1

2

3

Optimal acyclic solution (cost=11) Optimal cyclic solution (cost=9)

Figure 2: Symmetric instance together with an acyclic and a general solution for λmax = 4
and K = {(0, 3)}. Arc distances are provided next to the arcs, relay and arc costs are given
in parentheses. Relays and arcs used in the optimal solution are marked bold and blue. Note
that in the acyclic solution we place a relay at node 1, while in the cheaper cyclic solution we
place a relay at node 2.
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targets that need to be reached from source u ∈ S. Additionally, δ−(W ) =
{(j, i) | i ∈ W, (j, i) ∈ A} and δ+(W ) = {(i, j) | i ∈ W, (i, j) ∈ A} will be
used to denote the sets of incoming and outgoing arcs for node sets W ⊂ V .
By slightly abusing notation, we write δ−(i) and δ+(i) instead of δ−({i}) or
δ+({i}) for singletons W = {i}.

Related work. The DNDPR has been introduced in Li et al. [19] where a com-
pact node-arc formulation and an arc-path formulation with an exponential
number of variables have been proposed. Two branch-and-price (B&P) algo-
rithms based on the latter formulation have been developed that differ in the
way the pricing subproblem is solved. A metaheuristic based on tabu search
has been recently proposed in Li et al. [20].

Several related studies consider the undirected variant of the problem, i.e.,
the NDPR. The NDPR has been introduced in Cabral et al. [2] where the pro-
posed B&P approach turned out to be quite inefficient (even for small instances)
due to the high complexity of the associated pricing subproblem. Therefore,
Cabral et al. [2] have focused on construction heuristics that were able to tackle
larger problem instances in comparably short time. More efficient B&P ap-
proaches for the NDPR have been given in Leitner et al. [18] and Yıldız et al.
[30]. In addition to these exact approaches, several metaheuristics have been de-
veloped for approximately solving larger problem instances: genetic algorithms
(Kulturel-Konak and Konak [16], Konak [15]), tabu search (Lin et al. [21]), and
variable neighborhood search (Xiao and Konak [28]).

Existing methods for the NDPR cannot by applied in a straightforward way
to the DNDPR, since NDPR solutions may contain cycles (or even traverse a
single edge in both directions for one commodity). Besides, asymmetric arc costs
and arcs existing in a single direction only would require some adaptations.

Node-arc formulation. The node-arc formulation (1) introduced in Li et al. [19]
is used for comparison purposes in our computational study. Therefore, we
briefly summarize it in the following. Its basic idea is to keep track of the
distance from the last relay (or the source of the respective commodity) in
order to forbid subpaths exceeding the distance bound. Four sets of variables
are used. Binary arc and node variables xa, ∀a ∈ A, and yi, ∀i ∈ V , mark
the selected arcs and relays, respectively. For each commodity k = (u, v) ∈ K
and node i ∈ V , continuous variable vki tracks the distance of node i to the
preceding relay or the source u of that commodity (in case the path from u to
i does not contain relays). Finally, multi-commodity flow variables fka , ∀k ∈ K,
∀a ∈ A, are used to enforce connectivity of each commodity pair. Formulation
(NA) reads as follows:

min
∑

i∈V
ciyi +

∑

a∈A
waxa (1a)

s.t.
∑

a∈δ+(i)

fka −
∑

a∈δ−(i)
fka =





1 if k = (i, j)

−1 if k = (j, i)

0 otherwise

∀k ∈ K,∀i ∈ V, (1b)

fkij ≤ xij ∀k ∈ K,∀(i, j) ∈ A, (1c)

vki + dijf
k
ij − λmax(1− fkij + yj) ≤ vkj ∀k ∈ K,∀(i, j) ∈ A, (1d)
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vki + dijf
k
ij ≤ λmax ∀k ∈ K,∀(i, j) ∈ A, (1e)

0 ≤ vki ≤ λmax(1− yi) ∀k ∈ K,∀i ∈ V, (1f)

vuvu = 0 ∀(u, v) ∈ K, (1g)

fkij ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A, (1h)

yi ∈ {0, 1} ∀i ∈ V, (1i)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A. (1j)

Flow conservation constraints (1b) together with linking constraints (1c)
ensure the existence of a directed path from u to v for each commodity pair
(u, v) ∈ K. Constraints (1d) ensure that the value of variable vkj is at least the
distance from the last relay or from the source, respectively, along the path con-
necting commodity k ∈ K. The distance limit is enforced using inequalities (1e)
and (1f). The latter inequalities also link distance and relay variables. Observe
that binary (rather than continuous) flow variables are needed to prevent flow
splittings which would yield incorrect values of distance variables v. The main
disadvantage of this model is its relatively weak linear programming (LP) re-
laxation bound, resulting from the (potentially) large coefficient λmax required
in constraints (1d).

Overview and contributions. Two mixed integer linear programming (MILP)
formulations that are based on considering one layered graph per source are
introduced in Section 2. The first one is a flow-based formulation with a pseudo-
polynomial number of variables and constraints, whereas the second one uses
an exponential number of connectivity constraints. Fractional distance values
are handled efficiently by augmenting both models with an exponentially-sized
set of infeasible path constraints. Subsequently, different families of symmetry
breaking constraints and valid inequalities are introduced. Section 3 describes
components and variants of a branch-and-cut (B&C) algorithm based on the
second formulation, introduces preprocessing routines, and details a heuristic
used to obtain initial solutions. Benchmark instances used in our study are
described in Section 4 where we also verify the effectiveness of our algorithms
by extensive computational experiments. Finally, implications of our study to
the practice of management are highlighted in Section 4.6.

2. Formulations

Properties of feasible solutions. In the DNDPR, the routing of each single com-
modity is done following a simple path, see [19]. Hence, the in-degree of each
node in the routing path is at most one. An optimal solution is a union of all
routing paths over all commodity pairs, and hence, the in-degree of a node in
this solution can be as large as the number of commodities. On the other hand,
if all commodities share a common source node, then it is not difficult to see
that there always exists an optimal solution in which the in-degree of each node
is at most one, i.e., such that the set A′ of selected arcs forms an arborescence.

Theorem 1. If S = {u}, there exists an optimal DNDPR solution which cor-
responds to a Steiner arborescence rooted at u, whose leaves are a subset of the
nodes from Tu.
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Theorem 1 enables the interpretation of an optimal solution as a union of
several Steiner arborescences (one per source). It does not help, however, to
handle the distance constraints and the installation of relays to respect the
threshold λmax. To deal with these issues, we propose to exploit layered graphs
introduced below.

The new formulations presented in this article use extended, so-called lay-
ered graphs. The basic idea of layered graphs is to introduce multiple copies for
each node and arc of an original graph along one or multiple dimensions (e.g.,
time or distance) to implicitly model certain constraints and to obtain stronger
mathematical models. In our case, layered graphs are used to encode the dis-
tances. If all distance values are integral, only feasible paths with respect to the
distance bound λmax are generated. On the contrary, paths (slightly) violating
the distance bound may be contained in our layered graphs in the more general
case of fractional distance values. These paths will be excluded from solutions
via additional inequalities. Picard and Queyranne [26] were among the first to
consider layered graphs and used them for solving the time-dependent traveling
salesman problem. More recent successful applications of layered graphs are,
e.g., given in Godinho et al. [8], Gouveia et al. [11, 12, 13], Gouveia and Ruth-
mair [10], Ljubić and Gollowitzer [22], Ruthmair and Raidl [27]; see Gouveia
et al. [14] for a survey on this topic. Using an approximate layered graph and
handling infeasible paths by cutting planes is similar to the approach used in
Dash et al. [6], however, we use a static relaxed layered graph instead of an
iteratively derived one.

For the DNDPR, we construct layered digraphGL = (VL, AL) whose node set
VL is recursively defined by sets V lL, ∀l ∈ {0, 1, . . . , λmax}. Thereby, VL = V λmax

L

and each subset V lL contains all nodes that can be reached with a total distance
of at most l starting from a node at layer zero, i.e.,

V 0
L = {i0 | i ∈ V }
V lL = {jl | im ∈ V l−1L , (i, j) ∈ δ+(i),m+ bdijc = l} ∪ V l−1L .

Arc set AL connects layered node copies il, jm ∈ VL for which (i, j) ∈ A and
the difference of the layers corresponds to the arc distance rounded down to
the nearest integer, i.e., m − l = bdijc. Furthermore, arcs (il, i0) are included
for each node il ∈ VL not at layer zero, i.e., when l > 0. As the latter arcs
correspond to using a relay, we will call them relay arcs. Formally, arc set
AL = Aa

L∪Ar
L where Ar

L is the set of relay arcs and Aa
L is the set of arcs derived

from the original graph:

Ar
L = {(il, i0) | il ∈ VL, l > 0}

Aa
L = {(il, jm) | il, jm ∈ VL, (i, j) ∈ A, bdijc = m− l}.

Figure 3 shows the layered graph corresponding to the instance given in
Figure 1 as well as the embedding of the optimal solution in the layered graph.
Thereby, relay arcs Ar

L are depicted in dashed lines and the remaining arcs in
solid lines. Bold blue arcs indicate those that are included in the considered
solution.
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Figure 3: Layered graph GL = (VL, AL) for λmax = 7 corresponding to the instance in
Figure 1. The optimal solution is marked bold and blue. Dashed lines indicate relay arcs.

2.1. Multi-commodity Flow Formulation

The layered multi-commodity flow formulation (LMCF) is based on flow vari-
ables fuva ≥ 0, ∀(u, v) ∈ K, ∀a ∈ AL. As in the node-arc formulation, variables
yi ∈ {0, 1}, ∀i ∈ V , indicate whether a relay is placed at some node and variables
xa, ∀a ∈ A, indicate whether an arc is included in a solution. Observe that for
(u, v) ∈ K, flow variables fuv corresponding to arcs leaving any copy of target
node v can be fixed to zero. Similarly, arcs incident to a copy of source node u
on a non-zero layer can be set to zero. Instead of formulating the corresponding
constraints we omit variables with respect to these arcs by using the notation

ÂuvL =
⋃

ul∈VL:l>0

δ+(ul) ∪
⋃

ul∈VL

δ−(ul) ∪
⋃

vl∈VL

δ+(vl)

and deriving a formulation using flow variables fuva for arcs from AL \ ÂuvL only,
given a commodity (u, v) ∈ K. Formulation (LMCF) reads then as follows:

min
∑

i∈V
ciyi +

∑

a∈A
waxa (2a)

s.t.
∑

a∈δ+(u0)

fuva = 1 ∀(u, v) ∈ K, (2b)

∑

a∈δ−(il)
fuva −

∑

a∈δ+(il)

fuva = 0 ∀(u, v) ∈ K,∀il ∈ VL : i /∈ {u, v}, (2c)

∑

vl∈VL

∑

a∈δ−(vl)\Ar
L

fuva = 1 ∀(u, v) ∈ K, (2d)

∑

il∈VL

∑

a∈δ−(il)\Ar
L

fuva ≤ 1 ∀(u, v) ∈ K,∀i ∈ V \ {u, v}, (2e)

∑

a=(il,i0)∈Ar
L

fuva ≤ yi ∀(u, v) ∈ K,∀i ∈ V, (2f)

∑

a=(il,jm)∈Aa
L

fuva ≤ xij ∀(u, v) ∈ K,∀(i, j) ∈ A, (2g)
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∑

a∈σ
fuva ≤ |σ| − 1 ∀(u, v) ∈ K,∀σ ∈ Pinf , (2h)

yi ∈ {0, 1} ∀i ∈ V, (2i)

xa ∈ {0, 1} ∀a ∈ A, (2j)

fuva ∈ {0, 1} ∀(u, v) ∈ K,∀a ∈ AL \ ÂuvL . (2k)

For each commodity, flow balance constraints (2b)–(2d) together with link-
ing constraints (2g) ensure connectivity between the source and exactly one
copy of the target node. Inequalities (2e) ensure that this connection contains
at most one copy of each intermediate node, i.e., that the associated path in the
original graph is simple. Constraints (2f) link the relay arcs to the relay vari-
ables. Recall that all fractional distances are rounded down in the construction
of layered graph GL. As a consequence GL may contain paths whose length
exceeds the distance limit λmax. Such paths are clearly infeasible, as they do
not contain any relay arc. Let Pinf denote this set of infeasible paths that may
occur in the layered graph. To forbid the usage of paths from Pinf , we introduce
infeasible path constraints (2h), cf. Ascheuer et al. [1]. These constraints, which
are only considered if arcs with fractional distance values exist, are separated
dynamically, see Section 3.3 for details.

2.2. Cut Formulation

In contrast to formulation (LMCF), which considers one variable for each
commodity pair and layered graph arc, the layered cut formulation (LCUT) uses
one layered graph variable zua ∈ {0, 1} for each source u ∈ S and layered graph
arc a ∈ AL. By means of an exponential number of connectivity constraints,
each set of variables zu will model an arborescence rooted at u ∈ S that reaches
all targets v ∈ Tu, cf. Gouveia et al. [12] where a similar idea has been used in
the context of a Steiner tree problem with multiple root nodes.

Similar to formulation (LMCF), for u ∈ S, we can eliminate zu variables
associated to arcs incident to a copy of source node u on a non-zero layer. In
other words, for a given u ∈ S, we define

ÂuL =
⋃

ul∈VL:l>0

δ+(ul) ∪
⋃

ul∈VL

δ−(ul)

and work only with zua variables from AL \ ÂuL. Notice that, in contrast to
formulation (LMCF), the arcs leaving target nodes cannot be removed from this
model. The (LCUT) formulation reads as follows:

min
∑

i∈V
ciyi +

∑

a∈A
waxa (3a)

s.t.
∑

a∈δ−(W )

zua ≥ 1 ∀u ∈ S, ∀W ⊆ VL \ {u0},∃v ∈ Tu : {vl ∈ VL} ⊆W, (3b)

∑

il∈VL

∑

a∈δ−(il)\Ar
L

zua = 1 ∀u ∈ S, ∀i ∈ Tu, (3c)

∑

il∈VL

∑

a∈δ−(il)\Ar
L

zua ≤ 1 ∀u ∈ S,∀i ∈ V \ (Tu ∪ {u}), (3d)
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∑

a=(il,i0)∈Ar
L

zua ≤ yi ∀u ∈ S,∀i ∈ V, (3e)

∑

a=(il,jm)∈Aa
L

zua ≤ xij ∀u ∈ S, ∀(i, j) ∈ A, (3f)

∑

a∈σ
zua ≤ |σ| − 1 ∀u ∈ S, ∀σ ∈ Pinf , (3g)

yi ∈ {0, 1} ∀i ∈ V, (3h)

xa ∈ {0, 1} ∀a ∈ A, (3i)

zua ∈ {0, 1} ∀u ∈ S,∀a ∈ AL \ ÂuL. (3j)

Connectivity constraints (3b) state that every subset of nodes containing all
copies of some target node must be connected to the corresponding source. As
there exist exponentially many of these constraints, we will add them on the fly
in a cutting plane approach, see Section 3.3 for details. Constraints (3c) and
(3d) prevent nodes from being visited more than once, i.e., each target node is
visited exactly once and each non-target node is visited at most once. Thus,
together with constraints (3b) they ensure that, for every source u ∈ S, the
subgraph induced by all arcs a ∈ AL such that zua = 1 is an arborescence rooted
at u0 that contains exactly one copy of each node v ∈ Tu. The layered graph
variables are linked to the relay node and arc variables on the original graph
by inequalities (3e) and (3f), respectively. Infeasible path constraints (3g) are
considered in the case of fractional distances to ensure that paths violating the
distance constraint are not used, see Section 3.3 for their separation.

In the upcoming polyhedral comparison, we compare the strength of the two
proposed formulations, concerning the quality of their LP relaxation bounds.
In doing so, we ignore infeasible path constraints (2h) and (3g), as these valid
inequalities are only used for cutting off infeasible integer solutions in case of
fractional distances and not for strengthening the LP relaxation of our models.
Additionally, since the two sets of inequalities are defined in different variable
spaces it is not obvious how they relate to each other in this context.

Theorem 2. Formulations (LMCF) and (LCUT) without infeasible path con-
straints (2h) and (3g), respectively, are equally strong, i.e., the LP relaxation
values of the two models coincide.

Proof. Let (x∗,y∗, f∗) be an optimal LP solution of the (LMCF) model. We
show how to construct a feasible solution (x̃, ỹ, z̃) of the (LCUT) model with the
same objective value. We set x̃ = x∗, ỹ = y∗, and

z̃ua = max
(u,v)∈K

fuva ∀u ∈ S,∀a ∈ AL.

Following this definition, it is not difficult to see that flow-based capacity con-
straints (2f) and (2g) imply constraints (3e) and (3f), respectively. Consider a
node u ∈ S. The flow-balance constraints (2d) are slightly different from the
classical ones, due to the aggregation of the incoming flow at the target node
v ∈ Tu. In this constraint the incoming flow is aggregated over all copies vl ∈ VL
of the target node v ∈ Tu. This can be interpreted as a flow-balance constraint
in a modified layered graph, say GuvL , in which a target node tv is introduced
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for each node v ∈ Tu, and arcs (vl, tv) with infinite capacity are added to this
graph. Hence, in such a modified graph, the flow-balance constraints (2b)–(2d)
guarantee existence of a path from u0 to tv, for each t ∈ Tu. By the max-
flow min-cut theorem, this implies that cut-set inequalities (3b) are satisfied.
Degree-constraints (3c) and (3d) are not satisfied by an arbitrary flow f∗, but
the flow can be rerouted (without changing the capacities given by x∗ and y∗)
so that these constraints are always satisfied.

Consider now an optimal LP solution (x̃, ỹ, z̃) of the (LCUT) model. For
each commodity pair (u, v) ∈ K, we consider the graph GuvL described above,
with arc capacities capa defined as:

capa = z̃ua ,∀a ∈ AL capa =∞,∀a = (vl, tv), vl ∈ VL.
By the max-flow min-cut theorem applied to GuvL , it follows that for each (u, v) ∈
K, one can send one unit of flow from u0 to tv in GuvL using z̃ (and hence ỹ
and x̃) as capacities. Since fuva ≤ z̃ua holds for each a ∈ AL and (u, v) ∈ K,
constraints (2e)–(2g) are implied by (3d)–(3f) which concludes the proof.

We also propose to extend the (LCUT) model by considering flow-balance
constraints (4). For each source u ∈ S, they ensure that an outgoing arc of
layered graph node il, i /∈ Tu∪{u}, has to be used in the arborescence associated
to source u if at least one incoming arc is chosen as well:

∑

a∈δ−(il)
zua ≤

∑

a∈δ+(il)

zua ∀u ∈ S, ∀il ∈ VL : i /∈ Tu ∪ {u}. (4)

While the flow-balance constraints are not necessary to ensure validity of
(LCUT), there exist cases in which they strengthen the associated LP relaxation.
Figure 4 shows one of the rather typical situations in which this happens due
to involved relay arcs. By adding flow-balance inequalities, the LP solution
becomes integral and corresponds to the optimal solution shown in Figure 3.
Observe that the two incoming arcs to node 57 belong to different variable sets
in the corresponding LP solution to (LMCF) for which reason similar constraints
are not strengthening there. Besides strengthening the LP relaxation of (LCUT),
the flow-balance constraints also help to improve convergence by reducing the
number of violated connectivity cuts (3b).

2.3. Symmetry Breaking Constraints

By construction of the layered graph, it can sometimes happen that multiple
feasible embeddings of rooted arborescences, one for each u ∈ S, exist. Each
such embedding results in the same solution in the original graph, and hence,
symmetries may be introduced in our (LMCF) and (LCUT) models. Since these
symmetries may deteriorate the performance of branch-and-bound (B&B) based
approaches, we next introduce two families of symmetry breaking constraints.
One typical situation arises if the routing paths of two different commodities
contain a common node that needs to be used as a relay by only one of them.
Let i ∈ V be a node at which a relay has to be installed and let (u, v) ∈ K
be a commodity that does not need to use i as a relay along its routing path.
Assume that the distance to the previous relay (or the commodity source) of i
along the path connecting u and v is equal to l. Furthermore, let (i, j) be the
outgoing arc of node i on this path. Then, two feasible routing paths in GL

exist:
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Figure 4: Optimal LP solution of (LCUT) on the layered graph for the input in Figure 1
without flow-balance constraints. Only arcs with associated non-zero variables are shown,
labeled with the respective LP values. The violation of flow-balance constraints at node 57 is
marked bold and red.

1. If the relay at i is not used, then layered graph arc (il, jl+dij ) belongs to
the arborescence rooted at u, and is used to connect u0 to some copy of v
in VL;

2. Alternatively, if the relay at i is used, the subpath given by
{(il, i0), (i0, jdij )} is used instead.

To get rid of symmetries implied by such ambiguities, we force that in every
feasible routing path installed relays are used whenever possible.

In case of (LCUT), this is enforced by constraints (5) that forbid the use of
non-relay arcs emanating from some node il, l > 0, if a relay is installed at
node i:

∑

a=(il,jm)∈AL\Ar
L:l>0

zua ≤Mu
i · (1− yi) ∀u ∈ S, ∀i ∈ V, i 6= u. (5)

Thereby, Mu
i is a (tight) upper bound on the out-degree of node i in the

arborescence rooted at u ∈ S which is defined as follows:

Mu
i =

{
min(|Tu|, |δ+(i)|) if i /∈ Tu
min(|Tu| − 1, |δ+(i)|) otherwise.

For (LMCF) we use the stronger variant of the above symmetry breaking
constraints

∑

a=(il,jm)∈AL\Ar
L:l>0

fuva ≤ 1− yi ∀(u, v) ∈ K,∀i ∈ V, i 6= u (6)

that exploit the fact that the binary flow variables are disaggregated per com-
modity. Thus, the outflow of each node is at most one.

3. Algorithmic Framework

This section describes all implementation details that are relevant to ensure
a good performance of our approaches. These include: (1) preprocessing tech-
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niques that aim to reduce the number of variables that have to be considered,
(2) further valid inequalities, (3) the separation routines of all families of in-
equalities that are added dynamically, (4) customized branching priorities, and
(5) a heuristic to obtain initial solutions.

3.1. Preprocessing

Reductions may be possible for nodes i ∈ V whose in-degree or out-degree
is equal to one at some layer. If δ−(il) = {(jp, il)} for a node il ∈ VL, i /∈
S, we can remove a possibly existing outgoing arc (il, jm) and all associated
variables since using it would induce a cycle of length two in the original graph.
Similarly, incoming arcs (jp, il) can be eliminated if δ+(il) = {(il, jm)} in case
i /∈ T . In case a non-source node becomes unreachable (i.e., all incoming arcs are
removed), this node and all its outgoing arcs can be removed as well (cf. simple
path reductions introduced in De Boeck and Fortz [7]). Similarly, a non-target
node without outgoing arcs can be removed together with all its incoming arcs.
Additional reductions can be made if nodes are unreachable from a particular
target, or have no remaining flow or layered arc variables associated to incoming
(outgoing, respectively) arcs for a particular commodity or source node. In
these cases, we eliminate the flow variables associated with that commodity
or the layered arc variables associated with some source, respectively. These
procedures are iteratively applied in several elimination rounds until no further
reductions occur.

3.2. Valid Inequalities

In this section, we describe two further families of valid inequalities for for-
mulation (LCUT). Though both are implied by the layered graph connectivity
constraints (3b) considering them before separating the latter inequalities typi-
cally turns out to be beneficial for the performance of our B&C approaches.

Connectivity constraints on G. Connectivity constraints (7) on the original
graph are analogous to inequalities (3b) on the layered graph:

∑

a∈δ−(W )

xa ≥ 1 ∀W ⊂ V : ∃(u, v) ∈ K, u /∈W, v ∈W. (7)

They ensure that each node set that separates source and target of a com-
modity must have at least one incoming arc. From the max-flow min-cut theo-
rem, one can easily conclude that any solution satisfying constraints (7) contains
a path from u to v for every commodity (u, v) ∈ K. This path may, however,
contain relay-free subpaths whose distance exceeds λmax. Thus, they are not
sufficient to guarantee a feasible solution. A main advantage compared to the
layered graph connectivity constraints (3b) is that they are specified on the arc
design variables of the original graph Thus, each such cut influences all com-
modities. Since the number of connectivity constraints (7) is exponential, we
separate them dynamically; see Section 3.3 for details.
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Two-cycle inequalities. Constraints (8) ensure that an outgoing arc of some
layered graph node can only be used if at least one incoming arc whose source
is different from the outgoing arc’s target is used as well:

∑

a′=(pr,il)∈δ−(il):p 6=j
zua′ ≥ zua ∀u ∈ S, ∀a = (il, jm) ∈ AL : i 6= u. (8)

Two-cycle inequalities (8) are implied by layered graph connectivity con-
straints (3b) and do not strengthen the formulation [9]. Similar to cut con-
straints (7), they are, however, beneficial for reducing the number of dynami-
cally separated cut-set inequalities (3b).

Since the number of flow-balance constraints (4) and two-cycle inequali-
ties (8) is pseudo-polynomial, two implementation variants are considered in
our computations: (1) adding them exhaustively to the initial formulation, and
(2) separating them dynamically. Details of the used separation procedures are
given below in Section 3.3.

3.3. Separation

In this section we describe the separation procedure used in our B&C ap-
proach for formulation (LCUT) that dynamically adds layered connectivity con-
straints (3b), flow balance constraints (4), connectivity constraints on the orig-
inal graph (7), and two-cycle elimination constraints (8). Two variants of the
separation are considered in this paper. In the following, the version to which
we refer as LCUT-d is described in detail, and minor modifications for the other
variant, denoted by LCUT-s, are provided below. The overall separation proce-
dure for LCUT-d is outlined in Algorithm 3.1.

1 separate cut-set inequalities (7) on the original graph
2 separate flow-balance constraints (4)
3 separate two-cycle inequalities (8)
4 if no flow-balance constraints and two-cycle inequalities added then
5 separate cut-set inequalities (3b) on the layered graph

Algorithm 3.1: Separation procedure for LCUT-d.

First, possibly violated cut-set constraints on the original graph are identified
using the maximum flow algorithm by Cherkassy and Goldberg [5] (cf. Step 1 of
Algorithm 3.1). Thereby, so-called nested cuts (see, e.g., Ljubić et al. [23]) are
considered which means that the capacities of all arcs included in just added cuts
are set to one and the flow computation is subsequently repeated to possibly
find further violated inequalities. This procedure is applied for each commodity
pair until no further violated inequalities are found. Before proceeding with the
next commodity pair, all arc capacities are reset (to the original values induced
by the current LP solution). Since this procedure may yield identical cuts for
different commodity pairs, we employ duplicate detection and stop separating
cuts for the current commodity as soon as a duplicate is identified. To keep
track of the already added cuts and check for duplicates we use hash sets. The
order in which the commodities are separated is perturbed in each separation
call, i.e., we consider the commodities in a random order based on a fixed seed
value.
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Once this first separation routine terminates, we add violated flow-balance
(4) and two-cycle inequalities (8) (cf. Steps 2 and 3 of Algorithm 3.1). Separation
of these constraints is performed by inspecting the LP values of relevant variables
for all not yet added inequalities. Complete separation of the two-cycles turned
out to be too inefficient. Therefore, we resort to a slightly simpler approach
that adds those inequalities if the following condition is violated:

∑

a′∈δ−(il)
zua′ ≥ zua ∀u ∈ S,∀a = (il, jm) ∈ AL : i 6= u.

Finally, we separate layered graph connectivity cuts (3b) in case neither
flow-balance nor two-cycle inequalities have been added in the previous step
(cf. Step 5 of Algorithm 3.1). Such a conditional separation is beneficial for
avoiding too many (possibly redundant) constraints in the model. As before,
violated cuts are identified by maximum flow computations using the algorithm
from [5]. To detect a violated inequality of type (3b), for each (u, v) ∈ K, we
construct the layered graph GuvL as described in the proof of Theorem 2, and
calculate the maximum flow between u0 and the target node tv, using zua values
as arc capacities for the arcs from AL and ∞ for the arcs adjacent to tv. If the
obtained flow is less than one, the violated cut is added to the model. Again,
we consider nested cuts, duplicate handling, and fixed-seed randomization for
the order in which the commodity pairs are processed.

In the second implementation variant of our B&C approach, denoted by
LCUT-s, flow-balance constraints and two-cycle inequalities are not separated.
Instead, since there is only a pseudo-polynomial number of them, these cuts
are added a priori to the model. In addition, the layered cut-set inequalities
are separated unconditionally, i.e., the overall separation procedure for LCUT-s
consists of Steps 1 and 5 of Algorithm 3.1 performed sequentially.

To avoid separating too many inequalities, we only add cut-set inequalities
if they are violated by a value of at least 0.5. Flow-balance constraints and
two-cycle inequalities, however, are separated without such a threshold.

Infeasible path cuts. Constraints (2h) and (3g) are only considered if the in-
put instance contains fractional distance values, and separated if the current
candidate solution vector is integral and satisfies all other types of dynami-
cally separated inequalities. In this case, violated constraints corresponding to
(inclusion-wise) minimal infeasible paths starting at source or relay nodes are
identified by breadth-first search.

3.4. Branching

Several properties of feasible solutions are enforced on the layered graph.
The objective function, however, depends solely on the variables corresponding
to the original graph. Moreover, decisions concerning the arcs available in the
original graph directly influence the layered graph variables. Hence, it is reason-
able to focus on the former for branching decisions. Regarding the two types of
variables for the original graph—edge and relay variables—it is natural to pri-
oritize the relay variables since placing a relay is usually much more expensive
than installing a connection along an arc. To stay consistent with the literature
we do not use custom branching priorities for the node-arc formulation.
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3.5. Initial Heuristic

Before starting the B&C algorithm, we compute a feasible solution and hand
it over to the MILP solver as initial primal bound. The heuristic resembles
Prim’s algorithm for spanning trees: it computes optimal paths for one commod-
ity at a time and sets the costs of used arcs and relays to zero before it proceeds
with the next source-target pair. When only a single commodity pair is given
the DNDPR is known as the minimum cost path problem with relays (MCPPR).
This latter problem can be solved exactly using an efficient dynamic program-
ming (DP) algorithm proposed by Laporte and Pascoal [17]. However, different
to the DNDPR, the MCPPR also allows connecting commodities by non-simple
paths. We therefore adjust the DP algorithm from Laporte and Pascoal [17]
by keeping track of already visited nodes in each state, in order to disallow
extensions that form cycles.

To improve the basic algorithm, we consider some extensions. Observe that
the design of the heuristic entails a strong influence of the order in which the
commodities are processed. We attempt to reduce this influence by considering
ten different permutations based on fixed-seed randomization and then keep the
best solution.

Additionally, within the DP algorithm for the MCPPR we not only order
the labels by non-decreasing cost but also break ties by favoring paths that
reach the considered node at smaller distance. Once the best solution among
the ten runs has been identified, we run the DP algorithm once again with the
costs of all used relays and arcs set to zero. In certain cases this helps to avoid
redundancies resulting in a smaller cost. We note that similar heuristic ideas
based on sequential upgrades of a partial solution have been successfully used
in [18, 19].

4. Computational Study

In this section we present computational results for the considered algorithms
and variants. We start by giving details on the computational environment as
well as the used test instances and the motivation for their selection. Finally,
we present the obtained results.

Our algorithms are implemented in C++ using CPLEX 12.7.1 as a general-
purpose MILP solver. All experiments have been performed in single thread
mode with default parameter settings except for the described modifications.
Experiments have been executed on an Intel Xeon E5-2670v2 machine with
2.5 GHz. The computation time limit has been set to 7 200 seconds.

In the following we compare the four solution approaches described in Ta-
ble 1. Note that in both LCUT-s and LCUT-d, cut-set inequalities (3b) and (7)
are separated dynamically. In LCUT-s, flow-balance constraints (4) and two-
cycle inequalities (8) are added initially to the model while in LCUT-d these two
sets are separated dynamically as described in Section 3.3.

4.1. Instances

Benchmark instances used by the authors of [19] are no longer avail-
able (personal communication with X. Li). Due to the lack of other exist-
ing benchmark instances for the DNDPR we constructed new ones based on
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Table 1: Overview of the tested algorithms with their abbreviations. Column “base” denotes
the inequalities of the core model, column “static” provides valid inequalities that are added
to the initial formulation, and column “separation” provides valid inequalities as well as
inequalities of the base formulation that are separated dynamically.

Inequalities

Abbreviation Model Base Static Separation

NA (NA) from [19] (1b)–(1j) - -
LMCF (LMCF) (2b)–(2k) (6) (2h)
LCUT-s (LCUT) (3b)–(3j) (4), (5), (8) (3b), (3g), (7)
LCUT-d (LCUT) (3b)–(3j) (5) (3b), (3g), (4), (7), (8)

existing instances for the NDPR. We consider three sets of benchmark in-
stances: (1) asymmetric instances derived from Cabral et al. [2], (2) sym-
metric instances derived from Konak [15], and (3) a set of newly generated
symmetric instances. In the following we shortly outline the construction
procedures for the original instances which involve undirected graphs, and
then discuss our adjustments to obtain directed graphs. These instances are
available at https://www.ac.tuwien.ac.at/research/problem-instances/

#Directed_Network_Design_Problem_with_Relays.

Cabral instances. Cabral et al. [2] generated instances in which the under-
lying graph is a square grid graph (i.e., each node is connected to its di-
rect vertical and horizontal neighbors). Integral edge costs and distances are
chosen uniformly at random from the interval [10, 30] and the distance limit
λmax is equal to 70. The relay costs are selected uniformly at random from
{λmax, λmax + 1, . . . , 2λmax}. All instances are based on grid graphs with
a rows and b columns (i.e., with |V | = ab nodes and |E| = 2ab − a − b
edges). The small instance set consists of nine such graphs with (a, b) ∈
{(4, 5), (5, 5), (6, 5), (7, 5), (8, 5), (9, 5), (10, 5), (11, 5), (12, 5)}. For the large set
(a, b) is chosen from {10, 20, 30, 40, 50}×{5, 10, 15, 20}. Each set contains 10 in-
stances for each graph and each considered number of commodities |K| ∈ {5, 10}
(by random sampling of the commodities). Observe that the graph with
(a, b) = (10, 5) is contained in both sets but the sampled instances are not
identical. In particular, all commodities of each instance have the same source
node, i.e., |S| = 1. We remark that duplicate commodities exist in some of the
instances from Cabral et al. [2] which can be removed in a preprocessing step.

We obtained directed instances by replacing each edge by two directed arcs.
Distance and cost of the first arc are equivalent to those of the edge. The
values for the second arc are chosen uniformly at random from the interval
[10, 30]. Instances for which the specified number of commodities does not
match the actual number have been corrected by inserting sufficiently many
new commodities while preserving the property that |S| = 1. Note that [19]
uses the same approach to construct their instances although they use new base
graphs instead of those from [2]. Thus, our new instance set is comparable in
size and structure. The basic instance properties (|V |, |A|, |K|, and λmax) are
shown in Tables 3 and 4. We consider all of the 180 small instances and all
of the large instances except for those with b = 20 as those turned out to be
too challenging to provide meaningful insights. Instead, we included further
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instances with fifteen commodities whose base graphs were also generated by
Cabral et al. [2] but remained unpublished. Hence, the large set consists in total
of 450 instances. In our result tables we mark the subsets of large instances
considered by Li et al. [19] with the set indices used in their paper.

Konak instances. Konak [15] generated instances by first placing |V | ∈
{40, 50, 60, 80, 160} nodes at random integer coordinates (x, y) ∈ [0, 100] ×
[0, 100]. Initially all node pairs i, j ∈ V are connected by arcs with lengths
dij set to the Euclidean distance, while the costs are either equal to the arc
length (type I) or equal to λmax − dij (type II). Edges with length beyond the
distance limit are omitted. This leads to instance sizes ranging from |V | = 40
and |E| = 198 up to |V | = 160 and |E| = 3624. Relay costs are selected uni-
formly at random from {0, 1, . . . , 100}. Using λmax ∈ {30, 35} and |K| ∈ {5, 10},
20 instances have been generated for each of the two types. Each of these in-
stances typically contains multiple sources and targets.

Directed instances are obtained by replacing each edge by two directed arcs.
However, this time both arcs have the cost and distance of the original edge.
This is done to keep the instance Euclidean and also to preserve the direct or
indirect correlation of edge costs and distances. See Table 5 for an overview.

The newly generated third instance group uses a similar construction prin-
ciple as the instances by Konak [15] and is specifically designed to reflect a
practical application from telecommunications. Further details are given in
Section 4.6 below.

4.2. Comparison to the State of the Art

As indicated above, we could not obtain the instances used in the previous
literature. However, the Cabral instances are comparable in structure and size
to those tested in [19], which allows us to use them to obtain at least an intuition
on how our exact algorithms compare to those presented in [19]. As reference
point we employ the node-arc formulation. We compare speedups between NA
and the best B&P approach from the literature as well as the algorithms based
on our layered graph formulations. The respective values are computed by
tNA/talg for alg ∈ {B&P,LMCF,LCUT-s,LCUT-d}. Since the Cabral instances
feature 10 instances of each type, results have been aggregated by computing
averages. The results are shown in Table 2. Observe that we provide this
comparison only for the small Cabral instances because there are no NA results
in Li et al. [19] for the large set. The speedup values of our algorithms are
slightly worse than those from the literature for the smallest instances but they
are considerably better for a ≥ 6. Also note that on our instances the node-arc
formulation sometimes terminated prematurely due to the time limit. Allowing
the algorithm to finish—as done in [19]—would have resulted in even larger
speedups.

Without the original benchmark set, a precise comparison is impossible. Yet
these results indicate that our algorithms are at least as fast as those from the
existing literature and most likely outperform them significantly.

4.3. LP Relaxation Bounds

In the following, we compare the quality of lower bounds that can be obtained
by the three algorithms from Table 1: LMCF, LCUT (note that both LCUT-s and
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Table 2: Speedup ratio to the node-arc formulation. Values have been obtained by dividing the
computation time of the node-arc formulation through the computation time of the respective
algorithm. The first column has been obtained by extracting the respective results from [19].
The highest speedup per row is marked bold.

Speedup ratio

Instance B&P2 (Li et al.) LMCF LCUT-s LCUT-d

04A05B70L05K 8.4 1.3 3.1 3.2
04A05B70L10K 55.9 9.6 35.7 19.8
05A05B70L05K 20.8 8.2 15.7 14.1
05A05B70L10K 107.3 14.4 53.6 44.9
06A05B70L05K 7.1 14.0 25.4 22.3
06A05B70L10K 61.1 67.8 164.4 98.7
07A05B70L05K 31.8 15.0 19.2 16.2
07A05B70L10K 34.6 224.1 476.3 289.8
08A05B70L05K 9.3 194.9 216.3 81.7
08A05B70L10K 92.0 286.1 543.7 218.6
09A05B70L05K 9.9 97.1 110.9 69.0
09A05B70L10K 40.5 217.8 391.6 237.8
10A05B70L05K 40.9 305.6 319.8 122.1
10A05B70L10K 33.6 467.7 1337.3 683.9
11A05B70L05K 25.1 266.0 306.5 123.0
11A05B70L10K 45.4 731.0 1500.4 555.7
12A05B70L05K 5.2 597.4 528.4 215.0
12A05B70L10K 110.1 538.7 1164.3 405.9

LCUT-d provide the same lower bounds), and NA. Note that we ignore infeasible
path constraints in this comparison since we only use them to cut off infeasible
integer solutions in cases of fractional distances and not to strengthen the LP
bounds. When computing LP bounds we deactivate CPLEX presolving, general
purpose heuristics, and general purpose cuts. In addition, no threshold value is
set for the separation of cut-set inequalities (3b) and (7).

LP gaps are computed as (UB∗ − LB)/UB∗ where UB∗ is the best known
upper bound and LB is the lower bound obtained by the LP relaxation. Tables 3
and 4 report results obtained on the Cabral instances, and Table 5 provides
results for the Konak instances.

Cabral instances. We observe that the algorithms based on (LCUT) yield the
strongest bounds. LMCF follows closely behind but mostly delivers strictly
weaker bounds. The reason for this is the fact that the Cabral instances con-
sider only a single source node. This means that algorithms based on (LCUT)
use precisely one set of variables with respect to the layered graph on which
they model an arborescence. The multi-commodity flow formulation, on the
other hand, uses one set of variables per commodity pair. In this situation the
cut model benefits from aggregating per source which enables it to obtain a
stronger bound by means of flow-balance constraints (4). Moreover, the cut
formulation yields a much smaller model here with respect to the number of
variables. In general, both algorithms based on layered graph models deliver
excellent bounds well below 5 %. The only exception are the larger instances
with fifteen commodities where the bounds are slightly larger or even missing
due to hitting the time limit. For the reasons mentioned above we observe
that the performance of the multi-commodity flow formulation is much more
susceptible to an increasing number of commodities than the cut formulation.
As expected, the node-arc formulation is the weakest model with significantly
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Table 3: LP gaps for the small directed Cabral instances. Each line represents the average
across ten instances. The strongest bounds per row are marked bold.

Properties LP gap [%]

Instance |V | |A| λmax |K| LMCF LCUT NA

04A05B70L05K 20 62 70 5 0.2 0.0 27.6
04A05B70L10K 20 62 70 10 0.2 0.0 35.0
05A05B70L05K 25 80 70 5 0.8 0.0 31.4
05A05B70L10K 25 80 70 10 0.1 0.0 34.4
06A05B70L05K 30 98 70 5 0.5 0.0 36.8
06A05B70L10K 30 98 70 10 0.6 0.0 34.9
07A05B70L05K 35 116 70 5 0.1 0.0 40.5
07A05B70L10K 35 116 70 10 0.7 0.1 40.6
08A05B70L05K 40 134 70 5 0.1 0.0 45.1
08A05B70L10K 40 134 70 10 1.0 0.1 40.2
09A05B70L05K 45 152 70 5 0.1 0.0 42.9
09A05B70L10K 45 152 70 10 0.7 0.0 39.8
10A05B70L05K 50 170 70 5 0.1 0.0 46.2
10A05B70L10K 50 170 70 10 0.9 0.0 43.9
11A05B70L05K 55 188 70 5 0.5 0.0 46.2
11A05B70L10K 55 188 70 10 0.2 0.1 42.5
12A05B70L05K 60 206 70 5 0.5 0.1 43.3
12A05B70L10K 60 206 70 10 0.8 0.1 42.6

worse bounds than the layered graph models. On the other hand, we obtain
lower bounds for all instances in relatively short CPU times due to the small
size of the model.

Konak instances. Compared to the Cabral instances we face much denser graphs
here. Moreover, we are now dealing with multiple source nodes instead of just a
single one. This means that now also the (LCUT) formulation requires multiple
sets of layered graph variables. Under these circumstances we still obtain strong
LP bounds but not as strong as on the Cabral instances, see Table 5. For the
larger instances of type I it becomes challenging to solve the LP relaxation to
optimality as indicated by dashes in the table. The instances with indirectly
correlated costs (type II) turned out to be much easier to solve. Here LMCF as
well as LCUT provide results for all instances before exceeding the time limit.
The results indicate that the bound strength is excellent if the computations
can be completed. As before, we observe that the bounds provided by LCUT

are at least as strong as those of LMCF. The node-arc formulation (NA) yields
much weaker bounds but also terminates significantly faster. Therefore, NA
gives the only bounds for the two largest instances of type I where the time
limit is reached for the layered graph models. In contrast to the layered graph
models, the node-arc formulation seems to work much better on type I instances
than on type II instances where the bounds are much worse, roughly by a factor
of two.

4.4. Overall Performance

We continue by evaluating the performance of the MILP runs on the in-
stances by Cabral et al. [2] and Konak [15].

Cabral instances. Our layered graph models are able to solve all 180 small
instances to proven optimality and 334 of the 450 large instances. The MILP
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Table 4: LP gaps for the large directed Cabral instances. Each line considers ten instances.
Averages for the gaps are computed only with respect to the instances for which all algorithms
terminated within the time limit. Column #tl denotes the number of instances that termi-
nated due to the time limit. The strongest bounds per row are marked bold. Superscripts
next to the instance names refer to the comparable instance group in Li et al. [19].

Properties Gap [%] #tl

Instance |V | |A| λmax |K| LMCF LCUT NA LMCF LCUT NA

10A05B70L05K 50 170 70 5 0.4 0.0 47.5 0 0 0
10A05B70L10K 50 170 70 10 1.0 0.0 44.8 0 0 0
10A05B70L15K 50 170 70 15 1.3 0.0 42.2 0 0 0
10A10B70L05K19 100 360 70 5 1.6 0.0 48.4 0 0 0
10A10B70L10K25 100 360 70 10 0.8 0.0 45.1 0 0 0
10A10B70L15K 100 360 70 15 2.6 0.0 45.6 0 0 0
10A15B70L05K20 150 550 70 5 2.0 0.3 52.9 0 0 0
10A15B70L10K 150 550 70 10 3.3 0.0 50.1 0 0 0
10A15B70L15K 150 550 70 15 3.9 0.1 46.7 0 0 0
20A05B70L05K21 100 350 70 5 0.3 0.0 53.2 0 0 0
20A05B70L10K26 100 350 70 10 0.4 0.1 48.6 0 0 0
20A05B70L15K 100 350 70 15 0.1 0.0 48.7 0 0 0
20A10B70L05K 200 740 70 5 0.7 0.0 51.8 0 0 0
20A10B70L10K 200 740 70 10 2.0 0.0 50.6 0 0 0
20A10B70L15K 200 740 70 15 3.6 0.1 49.9 0 0 0
20A15B70L05K 300 1130 70 5 1.4 0.0 52.4 0 0 0
20A15B70L10K 300 1130 70 10 3.7 0.1 52.2 0 0 0
20A15B70L15K 300 1130 70 15 6.6 2.5 53.2 2 2 0
30A05B70L05K22 150 530 70 5 0.0 0.0 55.3 0 0 0
30A05B70L10K27 150 530 70 10 0.1 0.0 53.2 0 0 0
30A05B70L15K 150 530 70 15 0.3 0.0 51.3 0 0 0
30A10B70L05K 300 1120 70 5 1.0 0.1 54.2 0 0 0
30A10B70L10K 300 1120 70 10 1.4 0.0 54.2 0 0 0
30A10B70L15K 300 1120 70 15 1.9 0.1 53.1 4 0 0
30A15B70L05K 450 1710 70 5 0.7 0.0 56.0 0 0 0
30A15B70L10K 450 1710 70 10 1.6 0.5 53.6 5 0 0
30A15B70L15K 450 1710 70 15 - - - 10 3 0
40A05B70L05K23 200 710 70 5 0.1 0.0 56.6 0 0 0
40A05B70L10K28 200 710 70 10 0.3 0.0 55.7 0 0 0
40A05B70L15K 200 710 70 15 0.1 0.0 53.0 0 0 0
40A10B70L05K 400 1500 70 5 0.4 0.0 56.4 0 0 0
40A10B70L10K 400 1500 70 10 1.6 0.4 55.1 2 0 0
40A10B70L15K 400 1500 70 15 5.9 4.7 54.8 7 0 0
40A15B70L05K 600 2290 70 5 0.5 0.0 56.1 0 0 0
40A15B70L10K 600 2290 70 10 3.3 1.9 54.8 7 3 0
40A15B70L15K 600 2290 70 15 - - - 10 10 0
50A05B70L05K24 250 890 70 5 0.1 0.0 58.1 0 0 0
50A05B70L10K29 250 890 70 10 0.2 0.0 56.6 0 0 0
50A05B70L15K 250 890 70 15 0.1 0.0 54.9 0 0 0
50A10B70L05K 500 1880 70 5 0.2 0.0 56.6 0 0 0
50A10B70L10K 500 1880 70 10 1.0 0.3 55.2 3 0 0
50A10B70L15K 500 1880 70 15 - - - 10 0 0
50A15B70L05K 750 2870 70 5 0.5 0.0 56.4 0 1 0
50A15B70L10K 750 2870 70 10 0.0 0.0 54.4 9 7 0
50A15B70L15K 750 2870 70 15 - - - 10 10 0
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Table 5: LP gaps for the directed Konak instances. Missing gap values correspond to runs
that did not complete within the time limit. Bold values indicate the tightest bounds per type
and instance.

LP gap [%]

Properties Type I Type II

Instance |V | |A| λmax |K| LMCF LCUT NA LMCF LCUT NA

040N 05K 30L 40 396 30 5 21.2 21.2 39.2 37.9 37.9 77.3
040N 05K 35L 40 544 35 5 4.7 4.7 25.1 0.6 0.6 75.2
040N 10K 30L 40 396 30 10 22.9 21.4 41.3 31.3 31.3 76.6
040N 10K 35L 40 544 35 10 7.2 6.3 26.5 6.9 4.9 72.3
050N 05K 30L 50 558 30 5 0.8 0.8 31.6 0.0 0.0 76.5
050N 05K 35L 50 744 35 5 0.0 0.0 29.6 0.0 0.0 83.6
050N 10K 30L 50 558 30 10 20.1 16.1 48.8 0.4 0.4 79.6
050N 10K 35L 50 744 35 10 12.4 9.4 36.5 0.0 0.0 83.0
060N 05K 30L 60 610 30 5 8.8 8.8 51.7 5.4 5.4 84.9
060N 05K 35L 60 824 35 5 2.6 2.6 36.9 0.0 0.0 79.7
060N 10K 30L 60 610 30 10 13.4 13.4 51.1 7.2 7.2 82.1
060N 10K 35L 60 824 35 10 4.8 4.8 36.7 0.0 0.0 79.3
080N 05K 30L 80 1282 30 5 1.7 1.7 17.9 1.2 1.2 71.5
080N 05K 35L 80 1706 35 5 0.0 0.0 14.0 0.2 0.2 75.2
080N 10K 30L 80 1282 30 10 4.3 - 25.4 0.6 0.6 66.9
080N 10K 35L 80 1706 35 10 4.4 - 21.3 0.0 0.0 75.1
160N 05K 30L 160 5546 30 5 0.3 - 21.1 2.1 2.1 85.2
160N 05K 35L 160 7248 35 5 6.2 - 21.3 3.2 3.2 83.0
160N 10K 30L 160 5546 30 10 - - 32.1 2.4 2.4 81.1
160N 10K 35L 160 7248 35 10 - - 29.5 0.2 0.2 78.7

runs are consistent with the LP results, however, LMCF is now much closer to
the cut model despite its worse bounds—at least for the small instances, see
Table 6. Optimality gaps are computed by (UB∗−LB)/UB∗ where UB∗ is the
best known upper bound and LB is the lower bound obtained by the investigated
algorithm.

On the small instances we observe a clear difference between the static and
the dynamic variant of the cut formulation LCUT-s and LCUT-d, respectively.
The reasons for the advantage of the static approach are the sparseness and the
size of the input graphs. Both lead to rather small models and the overhead for
adding the valid inequalities in advance is manageable. Therefore, the slowdown
for solving the LP relaxations is negligible but we can reduce the number of cut
iterations in each node of the B&C tree significantly. Similarly, we also observe
that much fewer B&B nodes—about 17 % on average—are needed until opti-
mality can be proven. LMCF, however, performs better in this respect: It solves
the majority of instances already at the root node and the two “outliers” with
19 and 23 B&B nodes, respectively. The cut formulation, albeit being stronger,
solves 52 instances fewer at the root node and requires up to 67 B&B nodes
when adding flow-balance and two-cycle inequalities statically. The reasons for
this seem to be that the fractional solutions of LMCF are closer to being feasible
and that LMCF interacts better with the solver since no further inequalities are
added in the solution process. Although the computation times of LMCF and
LCUT-s are quite similar, we still observe that the former is considerably more
sensitive to changes in the number of commodities due to the resulting increase
in model size, see also Table 2. The node-arc formulation is significantly outper-
formed and cannot even solve all instances to optimality within the time limit.
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Table 6: Results for the small directed Cabral instances. Each line represents the average
across ten instances. Column #opt provides the number of optimally solved instances.

Gap [%] CPU time [s] #opt

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

04A05B70L05K 0.0 0.0 0.0 0.0 < 1 < 1 < 1 1 10 10 10 10
04A05B70L10K 0.0 0.0 0.0 0.0 1 < 1 < 1 8 10 10 10 10
05A05B70L05K 0.0 0.0 0.0 0.0 1 < 1 < 1 4 10 10 10 10
05A05B70L10K 0.0 0.0 0.0 0.0 1 < 1 < 1 16 10 10 10 10
06A05B70L05K 0.0 0.0 0.0 0.0 1 < 1 1 11 10 10 10 10
06A05B70L10K 0.0 0.0 0.0 0.0 2 1 1 111 10 10 10 10
07A05B70L05K 0.0 0.0 0.0 0.0 1 1 1 10 10 10 10 10
07A05B70L10K 0.0 0.0 0.0 0.0 3 1 2 639 10 10 10 10
08A05B70L05K 0.0 0.0 0.0 0.0 1 1 2 167 10 10 10 10
08A05B70L10K 0.0 0.0 0.0 0.0 3 2 5 991 10 10 10 10
09A05B70L05K 0.0 0.0 0.0 0.0 1 1 1 78 10 10 10 10
09A05B70L10K 0.0 0.0 0.0 0.0 4 2 4 891 10 10 10 10
10A05B70L05K 0.0 0.0 0.0 0.0 1 1 2 302 10 10 10 10
10A05B70L10K 0.0 0.0 0.0 3.2 9 3 6 4126 10 10 10 8
11A05B70L05K 0.0 0.0 0.0 0.0 1 1 3 382 10 10 10 10
11A05B70L10K 0.0 0.0 0.0 6.8 6 3 8 4168 10 10 10 6
12A05B70L05K 0.0 0.0 0.0 1.9 2 2 4 906 10 10 10 9
12A05B70L10K 0.0 0.0 0.0 6.6 9 4 11 4666 10 10 10 6

Most of the observations with respect to the small instance set directly trans-
fer to the large one, see Table 7. Considering the two algorithms based on
(LCUT) we now observe an advantage for the dynamic variant. Due to the
larger graph sizes it is no longer beneficial to add all the strengthening inequal-
ities to the initial formulation. In total the cut formulations solve the highest
number of instances to optimality: 318 in the static and 334 in the dynamic
variant. The multi-commodity flow formulations follows closely behind with
303 instances solved to proven optimality. In general, we observe that the flow
formulation works quite well for instances with only five commodities, frequently
even outperforming the cut formulation. However, as the number of commodi-
ties increases, the performance starts to deteriorate. We observe significant
advantages for the cut formulations in these cases. In particular, for the largest
instances the algorithm based on (LMCF) often delivers no bounds while both
algorithms based on (LCUT) still terminate with comparatively tight gaps. This
appears to be a natural consequence of the larger model size of (LMCF) that
depends to a higher degree on the number of commodities. We omit results for
NA for reasons of space and since the results are by far not competitive to our
layered graph approaches.

Konak instances. The results of solving the MILP formulations are provided in
Tables 8 and 9. In accordance with the experiments on the LP bounds, type II
instances are again easier to solve than type I instances. LMCF and LCUT-d
solve all instances of type II to optimality. LCUT-s, on the other hand, cannot
solve the largest two instances of this set to optimality. Similarly, LCUT-s solves
fewer instances of type I to optimality than the dynamic variant and leaves larger
gaps whenever both terminate prematurely due to the time limit. As the graphs
are denser here than the 4-grid graphs of the Cabral instances, it is no longer
beneficial to add all valid inequalities in advance. Thus, dynamic separation
helps to reduce the size of the LP relaxations. While being slightly slower on
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Table 7: Results for the large directed Cabral instances. Each line represents the average across
ten instances. Column #opt provides the number of optimally solved instances. Superscripts
next to the instance names refer to the comparable instance group in Li et al. [19].

Gap [%] CPU time [s] #opt

Instance LMCF LCUT-s LCUT-d LMCF LCUT-s LCUT-d LMCF LCUT-s LCUT-d

10A05B70L05K 0.0 0.0 0.0 1 1 2 10 10 10
10A05B70L10K 0.0 0.0 0.0 8 3 8 10 10 10
10A05B70L15K 0.0 0.0 0.0 48 7 15 10 10 10
10A10B70L05K19 0.0 0.0 0.0 15 20 37 10 10 10
10A10B70L10K25 0.0 0.0 0.0 71 38 79 10 10 10
10A10B70L15K 0.0 0.0 0.0 1200 108 212 10 10 10
10A15B70L05K20 0.0 0.0 0.0 70 125 184 10 10 10
10A15B70L10K 1.0 0.0 0.0 2505 638 732 8 10 10
10A15B70L15K 2.9 0.0 0.0 4606 1961 2701 5 10 10
20A05B70L05K21 0.0 0.0 0.0 5 6 11 10 10 10
20A05B70L10K26 0.0 0.0 0.0 62 28 40 10 10 10
20A05B70L15K 0.0 0.0 0.0 88 32 74 10 10 10
20A10B70L05K 0.0 0.0 0.0 46 96 172 10 10 10
20A10B70L10K 1.1 0.0 0.0 4101 1332 1731 5 10 10
20A10B70L15K 2.8 2.1 1.7 4886 3170 3146 4 7 7
20A15B70L05K 0.0 0.0 0.0 423 1589 1179 10 10 10
20A15B70L10K 3.1 4.1 1.8 6159 6086 5231 2 2 7
20A15B70L15K 16.7 8.2 8.0 7200 6877 6937 0 1 1
30A05B70L05K22 0.0 0.0 0.0 13 14 32 10 10 10
30A05B70L10K27 0.0 0.0 0.0 149 77 155 10 10 10
30A05B70L15K 0.0 0.0 0.0 567 222 303 10 10 10
30A10B70L05K 0.0 0.0 0.0 398 380 512 10 10 10
30A10B70L10K 0.5 0.6 0.4 4574 3444 2506 6 8 9
30A10B70L15K 31.4 2.7 1.8 7200 5811 5548 0 4 5
30A15B70L05K 0.1 2.1 0.8 1192 2829 2092 9 7 9
30A15B70L10K 21.6 5.5 4.4 6028 6414 6008 3 2 3
30A15B70L15K 90.1 9.9 9.7 7200 7200 7200 0 0 0
40A05B70L05K23 0.0 0.0 0.0 32 26 45 10 10 10
40A05B70L10K28 0.0 0.0 0.0 468 195 221 10 10 10
40A05B70L15K 0.0 0.0 0.0 841 271 374 10 10 10
40A10B70L05K 0.0 0.5 0.0 407 2184 1474 10 8 10
40A10B70L10K 11.2 3.6 2.7 6079 5982 5455 3 4 5
40A10B70L15K 90.0 8.0 7.2 6736 6254 6329 1 2 2
40A15B70L05K 0.1 1.8 1.1 2061 4232 4063 9 6 6
40A15B70L10K 80.5 10.0 9.1 6949 7200 7200 1 0 0
40A15B70L15K 100.0 10.6 11.9 7200 7200 7200 0 0 0
50A05B70L05K24 0.0 0.0 0.0 57 51 86 10 10 10
50A05B70L10K29 0.0 0.0 0.0 525 254 359 10 10 10
50A05B70L15K 0.0 0.0 0.0 1583 884 939 10 10 10
50A10B70L05K 0.0 1.2 0.5 628 2453 2379 10 8 8
50A10B70L10K 40.4 4.2 3.1 6496 6241 5799 3 2 3
50A10B70L15K 100.0 8.9 8.3 7200 7025 6958 0 1 1
50A15B70L05K 0.3 2.3 1.5 2971 4108 3820 9 6 7
50A15B70L10K 90.0 8.1 12.1 6690 7200 7115 1 0 1
50A15B70L15K 100.0 13.9 16.1 7200 7200 7200 0 0 0
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the largest type II instances, LMCF outperforms the LCUT approaches on the
type I instances. There it solves seven more instances to optimality and features
considerably smaller computation times on the remaining ones. However, for
the largest two instances it fails to provide any non-trivial bounds. LCUT-d
terminates still in the root note, but at least provides reasonable bounds. It is
noticeable that LMCF proves optimality for 17 out of 20 type II instances and
6 out of 20 type I instances already at the root note, mostly with non-zero LP
gap. LCUT-s performs quite similar in this respect and solves 2 type I and 12
type II instances at the root node. LCUT-d, on the other hand, achieves this
only for a single type II instance. Again, we presume that LMCF interacts better
with the solver due to having most information available from the beginning.
Since these instances feature fractional distances, infeasible path constraints
have to be separated to ensure feasibility. The indirectly correlated instances
of type II require such cuts only in rare cases. LCUT-s and LMCF solve all but
two instances without infeasible path constraints and those two instances with
just one cut each. LCUT-d requires cuts for one additional instance and uses no
more than three such cuts. The directly correlated instances of type I require
a higher number of infeasible path cuts. This can be explained by the fact that
cost reductions can be achieved by exhausting the distance limit. Among the
optimally solved instances LMCF requires no more than 27 infeasible path cuts
while five instances can be solved without them. LCUT-s solves only few of
the type I instances to optimality, three of them without infeasible path cuts
and the remaining five with at most 9. LCUT-d solves four instances without
infeasible path cuts and the remaining ones with at most 18. With respect to
the instances that terminated due to the time limit the maximum number of
added infeasible path cuts is 34 for LCUT-d, the highest among all algorithms.
The node-arc formulation is not competitive and features large gaps even on the
smaller instances. In contrast to the results of the LP runs it provides better
results on the type II instances, like the layered graph algorithms.

4.5. Evaluation of Algorithm Properties

In the following we evaluate the impact of specific instance properties and
algorithmic components on the performance of the introduced approaches.

We start by evaluating the sensitivity of our layered graph algorithms to the
distance limit. We decided to use the small Cabral instances which could all
be solved to optimality with the original distance limit of λmax = 70. For our
experiments we consider increased distance limits of 140, 210, and 280, while
leaving the remaining instance characteristics the same. Increasing the limit
further does not make sense because with λmax ≥ 280 the solutions no longer
contain any relays. Figure 5 shows box plots for the respective computation
times. We observe a moderate slowdown, leveling off as we converge towards
the relay-free scenario. In general, LCUT-d appears to be slightly more resilient
to the parameter change due to the smaller base model. The observed slow-
down is to be expected since increasing the distance limit allows connecting the
commodities with more complex paths consisting of a higher number of arcs.
We conjecture that paths with a higher number of arcs impact most kinds of
algorithms alike. In our case the number of layers increases, which leads to
larger models. Column generation based approaches, on the other hand, suf-
fer from the additional computational effort for solving the subproblems and
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Table 8: Results for the directed Konak instances of type I.

Gap [%] CPU time [s]

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

040N 05K 30L 0.0 0.0 0.0 0.0 6 103 120 1204
040N 05K 35L 0.0 0.0 0.0 3.4 23 575 329 7200
040N 10K 30L 0.0 0.0 0.0 11.3 45 1217 1357 7200
040N 10K 35L 0.0 5.2 0.0 16.3 153 7200 4202 7200
050N 05K 30L 0.0 0.0 0.0 7.3 1 23 15 7200
050N 05K 35L 0.0 0.0 0.0 0.0 3 234 71 5417
050N 10K 30L 0.0 7.7 1.9 42.6 690 7200 7200 7200
050N 10K 35L 0.0 13.5 7.4 31.3 638 7200 7200 7200
060N 05K 30L 0.0 0.0 0.0 38.0 25 282 213 7200
060N 05K 35L 0.0 0.0 0.0 23.1 3 211 280 7200
060N 10K 30L 0.0 8.3 7.8 46.7 392 7200 7200 7200
060N 10K 35L 0.0 7.8 7.9 31.3 469 7200 7200 7200
080N 05K 30L 0.0 0.0 0.0 10.9 12 2664 1040 7200
080N 05K 35L 0.0 5.4 0.0 6.3 24 7200 5500 7200
080N 10K 30L 0.6 6.9 4.9 19.3 7200 7200 7200 7200
080N 10K 35L 3.4 65.4 32.5 17.5 7200 7200 7200 7200
160N 05K 30L 0.0 76.4 7.7 18.5 1123 7200 7200 7200
160N 05K 35L 6.0 76.7 10.4 19.8 7200 7200 7200 7200
160N 10K 30L 100.0 78.1 26.8 31.7 7200 7200 7200 7200
160N 10K 35L 100.0 77.7 26.6 29.0 7200 7200 7200 7200

Table 9: Results for the directed Konak instances of type II.

Gap [%] CPU time [s]

Instance LMCF LCUT-s LCUT-d NA LMCF LCUT-s LCUT-d NA

040N 05K 30L 0.0 0.0 0.0 0.0 < 1 2 13 7
040N 05K 35L 0.0 0.0 0.0 0.0 1 2 2 51
040N 10K 30L 0.0 0.0 0.0 0.0 1 16 36 352
040N 10K 35L 0.0 0.0 0.0 0.0 5 30 13 3420
050N 05K 30L 0.0 0.0 0.0 0.0 < 1 1 1 19
050N 05K 35L 0.0 0.0 0.0 0.0 1 3 2 4679
050N 10K 30L 0.0 0.0 0.0 49.9 1 8 42 7200
050N 10K 35L 0.0 0.0 0.0 62.5 4 27 18 7200
060N 05K 30L 0.0 0.0 0.0 44.1 3 73 88 7200
060N 05K 35L 0.0 0.0 0.0 0.0 1 3 3 1039
060N 10K 30L 0.0 0.0 0.0 70.7 57 1903 621 7200
060N 10K 35L 0.0 0.0 0.0 62.9 3 11 8 7200
080N 05K 30L 0.0 0.0 0.0 34.3 8 18 14 7200
080N 05K 35L 0.0 0.0 0.0 44.2 13 27 20 7200
080N 10K 30L 0.0 0.0 0.0 42.7 26 48 39 7200
080N 10K 35L 0.0 0.0 0.0 59.2 33 334 56 7200
160N 05K 30L 0.0 0.0 0.0 73.5 301 1428 246 7200
160N 05K 35L 0.0 0.0 0.0 73.4 661 1681 153 7200
160N 10K 30L 0.0 45.0 0.0 71.8 2616 7200 2041 7200
160N 10K 35L 0.0 50.8 0.0 69.3 2466 7200 620 7200
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Figure 5: Sensitivity of LMCF and LCUT-d to increasing values of λmax on the Cabral in-
stances. Both box plots use a logarithmic scale.
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Figure 6: Impact of preprocessing and initial heuristic for LMCF on the Konak instances.
Both box plots use a logarithmic scale. The four boxes are labeled as follows: “P+H” uses
both preprocessing and initial heuristic, “P” uses only preprocessing, “H” uses only the initial
heuristic, “N” uses neither preprocessing nor the initial heuristic.

an increased number of pricing iterations (cf. [18], where we conduct a similar
experiment for a B&P algorithm for the NDPR).

In Figure 6 we evaluate the impact of the introduced preprocessing tech-
niques and the initial heuristic on the performance of LMCF. We omit the
results for the algorithms based on (LCUT) for brevity as they lead to similar
conclusions. The box plots indicate that both techniques are beneficial though
preprocessing appears to be a little more important due to providing larger
speedups. However, when looking at the detailed results we observe that the
initial heuristic is significant for proving optimality. Compared to LMCF with
preprocessing and initial heuristic we can solve 5 fewer instances of type I when
not using the heuristic, 4 fewer instances of type I when not using preprocessing,
and 6 fewer instances of type I as well as 1 fewer instance of type II when using
neither preprocessing nor the initial heuristic.

4.6. Managerial Insights

In this section we provide more insights into managerial implications of our
study. We focus on the design of translucent optical WDM networks (cf. Sec-
tion 1) and analyze some of their major key performance indicators (KPIs).
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To this end, we consider a set of instances in which cost parameters are set
to mimic a realistic setting in which commodities correspond to node pairs that
need to communicate with each other, and arc costs are directly proportional
to the arc lengths (multiplied by some factor that corresponds to cable costs
per unit of distance). The cost parameters in our study are chosen so as to
reflect this difference between arc and regenerator costs, the latter ones being
often significantly more expensive than the arc costs (cf., e.g., [24]). The Konak
instances of type I seem to be particularly relevant from this practical perspec-
tive due to their direct correlation between arc distances and arc costs. Because
of the limited size of the Konak data set, we have generated further instances
using the method proposed by Konak [15].

We sampled a set of five base instances for each |V | ∈ {20, 25, 30, 35, 40}
and |K| ∈ {5, 7, 10} with λmax = 30. The relay costs were selected according
to a normal distribution with µ = 200 and a standard deviation of 25 to model
a base cost for purchasing the relay and a slightly varying construction cost.
Then, we varied the distance limit λmax ∈ {30, 35, 40, 45} with arc costs set to
cij = dij ·(1+(λmax−30)/100), i.e., a cost increase of 1 % per unit increase in the
distance limit. This is intended to model a scenario in which transmission over
increased distances is only possible when relying on material of higher quality
which is in turn more expensive. In total, we consider 300 new instances ranging
from 60 to 696 arcs.

In what follows, we provide a cost-effectiveness analysis by comparing the
costs for installing regenerators and arcs in the network. In addition, one of the
major concerns when designing WDM optical networks is the power consump-
tion. The power consumption is directly correlated with the number of deployed
regenerators. We therefore analyze the energy efficiency of obtained solutions in
function of the size of the network, the input demand, and the operating range
of regenerators.

Cost-effectiveness analysis. The major goal of this analysis is to find out what
are the potential benefits of investing into regenerators with a higher operating
range. We measure these benefits in terms of the savings of the overall solution
costs, when compared to the nominal solution, in which the regenerators of the
minimum range (λmax = 30 in our setting) are purchased. Figure 7 provides
a detailed overview of the overall costs of optimal DNDPR solutions. The
results are sorted according to increasing value of λmax (starting with λmax = 30
and ranging up to λmax = 45). In addition, we separately show the costs
needed to install regenerators, and those for installing the links in the network,
respectively. For each fixed value of λmax, the number of commodities grows
from 5 to 10.

We observe that the overall solution cost significantly decreases when re-
generators with a higher range are deployed (i.e., increasing the value of λmax

from 30 to 45 allows for a reduction of the overall cost of up to 50 %). This
can be explained by the fact that a larger distance limit allows to reduce the
number of relays. Through the increased freedom in placing the relays they can
be shared to a higher degree by using more direct connections. Consequently,
also fewer arcs have to be installed but the impact of savings due to economizing
regenerators dominates as a consequence of their higher cost. The portion of the
costs spent on the regenerators decreases between 20 (5K) and 23 % (10K) when
increasing the distance limit from 30 to 45. We also observe that the increase
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in the total costs is less sensitive to the increase in the number of commodities
when regenerators with higher range are deployed. This can be particularly
important in realistic scenarios in which the future demand is uncertain but
it is expected to increase. In such a scenario, networks with regenerators of
higher range are expected to be more resilient to the increasing demand, so that
fewer upgrades might be needed in a later stage, once the uncertain demand is
revealed.

Hence, our analysis clearly indicates that the decision makers need to care-
fully explore the cost structure of the underlying solutions and to consider dif-
ferent available technologies before deciding on the type of regenerators to be
deployed in the network. Sometimes, investing in more expensive hardware may
result in an overall reduction of the capital expenditures (CapEx), as is shown
in Figure 7.

Energy efficiency analysis. From the environmental and operational perspec-
tive, one of the major concerns when designing WDM networks is the power
consumption which is directly correlated with the number of deployed regenera-
tor devices [31]. In the following we study the dependency between the number
of deployed regenerators and their operational range.

Figure 8 reports the average number of arcs and regenerators in an optimal
solution. The results are grouped according to the values of λmax, ranging be-
tween 30 and 45, and according to the number of commodities, ranging between
5 and 10.

The obtained results indicate that increasing the number of commodities has
a stronger effect on the total size of the network (in terms of the number of arcs)
than on the number of deployed regenerators. Furthermore, this effect does not
depend on the range of regenerators. For example, by increasing the number of
commodities by 100 % (i.e., from 5 to 10), the number of links in the network
raises by around 50 %. On the contrary, the number of deployed regenerators
remains relatively stable and raises only by a single unit. A much stronger effect
on the number of deployed regenerators comes from their range. So, for example,
the number of regenerators can be reduced by 50 %, by deploying regenerators
of range λmax = 45, when compared to the number of regenerators needed with
λmax = 30.

Overall, when it comes to operational expenditures (OpEx) associated to
energy costs, our result shows that significant savings in OpEx can be achieved
by purchasing regenerators of higher range. Hence, there is a clear trade-off
between CapEx and potential savings in OpEx that has to be carefully examined
before final decisions are made.

5. Conclusion

We introduced two exact solution approaches for the directed network de-
sign problem with relays (DNDPR) based on layered graphs. The first ap-
proach relies on a multi-commodity flow formulation (LMCF) which is pseudo-
polynomial in size, and the second is a branch-and-cut (B&C) approach based
on the (LCUT) model with an exponential number of constraints. Both mod-
els provide extremely tight linear programming (LP) bounds on the considered
benchmark instances. Fractional distance values are handled efficiently by an
exponentially-sized set of infeasible path constraints. We proposed additional
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Figure 7: Cost-effectiveness analysis: distribution of the solution costs, separated by the cost
for building the network (arc costs) and the cost for deploying relays. Each group of bars
considers the mean of 25 instances, 5 for each |V | ∈ {20, 25, 30, 35, 40}.

29

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

1



30
L
5K

30
L
7K

30
L
10
K

35
L
5K

35
L
7K

35
L
10
K

40
L
5K

40
L
7K

40
L
10
K

45
L
5K

45
L
7K

45
L
10
K

2

4

6

8

10

12

14

16

18

20

22

24

n
u
m
b
er

arcs relays

Figure 8: Solution structure of the newly generated Euclidean instances. Each group of bars
considers the mean of 25 instances, 5 for each |V | ∈ {20, 25, 30, 35, 40}.

30

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-1
8-
00

1



valid inequalities for strengthening the (LCUT) formulation and also for break-
ing symmetries induced by the layered graph structure. We investigated two
approaches for adding the strengthening inequalities to the (LCUT) formulation:
a static and a dynamic one. For small instances from Cabral et al. [2], repre-
senting sparse 4-grid graphs with very few commodities, it turns out that the
overhead of adding more inequalities a priori to the model is negligible. On
the contrary, for larger and denser instances from Cabral et al. [2] and Konak
[15], this overhead does not pay off, and dynamic separation of strengthening
inequalities is recommended.

The overall performance of the proposed layered graph approaches based on
(LMCF) and (LCUT) is comparable. In general, we observed that the former
performs slightly better on sparse graphs with very few commodities, whereas
the latter can be used as an alternative for larger and denser graphs and when
dealing with a larger number of commodities.

Using the existing node-arc formulation as base line for a comparison with
the existing approaches, we showed that our exact approaches are significantly
faster than the state of the art from [19].

Our managerial study sends a strong signal to decision makers that, even
though the capital expenditures might be higher when acquiring regenerators
of a higher range, there are significant long term savings in terms of operating
expenditures that need to be taken into account. These savings are notably
related to the energy consumption, network maintenance, and the network up-
grade costs caused by an increasing future demand.
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