
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-014
December 2017

Backdoor Treewidth for
SAT

Robert Ganian, M.S. Ramanujan, and
Stefan Szeider

This is the authors’ copy of a paper that appeared in S. Gaspers and T. Walsh (Eds.):
SAT 2017, LNCS 10491, pp. 20–37, 2017. DOI: 10.1007/978-3-319-66263-3_2

www.ac.tuwien.ac.at/tr

http://dx.doi.org/10.1007/978-3-319-66263-3_2


Backdoor Treewidth for SAT

Robert Ganian(B), M.S. Ramanujan, and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{ganian,ramanujan,sz}@ac.tuwien.ac.at

Abstract. A strong backdoor in a CNF formula is a set of variables such
that each possible instantiation of these variables moves the formula into
a tractable class. The algorithmic problem of finding a strong backdoor
has been the subject of intensive study, mostly within the parameterized
complexity framework. Results to date focused primarily on backdoors
of small size. In this paper we propose a new approach for algorithmi-
cally exploiting strong backdoors for SAT: instead of focusing on small
backdoors, we focus on backdoors with certain structural properties. In
particular, we consider backdoors that have a certain tree-like structure,
formally captured by the notion of backdoor treewidth.

First, we provide a fixed-parameter algorithm for SAT parameterized
by the backdoor treewidth w.r.t. the fundamental tractable classes Horn,
Anti-Horn, and 2CNF. Second, we consider the more general setting
where the backdoor decomposes the instance into components belonging
to different tractable classes, albeit focusing on backdoors of treewidth
1 (i.e., acyclic backdoors). We give polynomial-time algorithms for SAT
and #SAT for instances that admit such an acyclic backdoor.

1 Introduction

SAT is the problem of determining whether a propositional formula in con-
juntive normal form (CNF) is satisfiable. Since SAT was identified as the first
NP-complete problem, a significant amount of research has been devoted to the
identification of “islands of tractability” or “tractable classes,” which are sets
of CNF formulas on which SAT is solvable in polynomial time. The notion of a
strong backdoor, introduced by Williams et al. [28], allows one to extend these
polynomial-time results to CNF formulas that do not belong to an island of
tractability but are close to one. Namely, a strong backdoor is a set of variables
of the given CNF formula, such that for all possible truth assignments to the
variables in the set, applying the assignment moves the CNF formula into the
island of tractability under consideration. In other words, using a strong back-
door consisting of k variables transforms the satisfiability decision for one general
CNF formula into the satisfiability decision for 2k tractable CNF formulas. A
natural way of exploiting strong backdoors algorithmically is to search for small
strong backdoors. For standard islands of tractability, such as the class of Horn

Supported by the Austrian Science Fund (FWF), project P26696. Robert Ganian is
also affiliated with FI MU, Brno, Czech Republic.

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 20–37, 2017.
DOI: 10.1007/978-3-319-66263-3 2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 21

formulas and the class of 2CNF formulas, one can find a strong backdoor of size
k (if it exists) in time f(k)Lc (where f is a computable function, c is a constant,
and L denotes the length of the input formula) [22]; in other words, the detection
of a strong backdoor of size k to Horn or 2CNF is fixed-parameter tractable [10].
The parameterized complexity of backdoor detection has been the subject of
intensive study. We refer the reader to a survey article [16] for a comprehensive
overview of this topic.

In this paper we propose a new approach for algorithmically exploiting strong
backdoors for SAT. Instead of focusing on small backdoors, we focus on back-
doors with certain structural properties. This includes backdoors of unbounded
size and thus applies in cases that were not accessible by previous backdoor
approaches. In particular, we consider backdoors that, roughly speaking, can be
arbitrarily large but have a certain “tree-like” structure. Formally, this structure
is captured in terms of the treewidth of a graph modeling the interactions between
the backdoor and the remainder of the CNF formula (this is called the backdoor
treewidth [14]). Treewidth itself is a well-established structural parameter that
can be used to obtain fixed-parameter tractability of SAT [26]. The combination
of strong backdoors and treewidth, as considered in this paper, gives rise to new
tractability results for SAT, not achievable by backdoors or treewidth alone.

The notion of backdoor treewidth outlined above was recently introduced in
the context of the constraint satisfaction problem (CSP) [14]. However, a direct
translation of those results to SAT seems unlikely. In particular, while the results
for CSP can be used “out-of-the-box” for CNF formulas of bounded clause width,
additional machinery is required in order to handle CNF formulas of unbounded
clause width.

The first main contribution of our paper is hence the following.

(1) SAT is fixed-parameter tractable when parameterized by the backdoor
treewidth w.r.t. any of the following islands of tractability: Horn, Anti-Horn,
and 2CNF (Theorem 1).

For our second main contribution, we consider a much wider range of islands
of tractability, namely every island of tractability that is closed under partial
assignments (a property shared by most islands of tractability studied in the lit-
erature). Moreover, we consider backdoors that split the input CNF formula into
components where each of them may belong to a different island of tractability
(we can therefore speak of an “archipelago of tractability” [15]). This is a very
general setting, and finding such a backdoor of small treewidth is a challenging
algorithmic task. It is not at all clear how to handle even the special case of
backdoor treewidth 1, i.e., acyclic backdoors.

In this work, we take the first steps in this direction and settle this spe-
cial case of acyclic backdoors. We show that if a given CNF formula has an
acyclic backdoor into an archipelago of tractability, we can test its satisfiability
in polynomial time. We also obtain an equivalent result for the model counting
problem #SAT (which asks for the number of satisfying assignments of the given
formula).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



22 R. Ganian et al.

(2) SAT and #SAT are solvable in polynomial time for CNF formulas with an
acyclic backdoor into any archipelago of tractability whose islands are closed
under partial assignments (Theorems 2 and 3).

We note that the machinery developed for backdoor treewidth in the CSP setting
cannot be used in conjunction with islands of tractability in the general context
outlined above; in fact, we leave open even the existence of a polynomial-time
algorithm for backdoor treewidth 2. An interesting feature of the algorithms
establishing Theorems 2 and 3 is that they do not explicitly detect an acyclic
backdoor. Instead, we only require the existence of such a backdoor in order
to guarantee that our algorithm is correct on such inputs. In this respect, our
results add to the rather small set of backdoor based algorithms for SAT (see
also [13]) which only rely on the existence of a specific kind of backdoor rather
than computing it, in order to solve the instance.

We now briefly mention the techniques used to establish our results. The
general idea behind the proof of Theorem1 is the translation of the given CNF
formula F into a “backdoor-equivalent” CNF formula F ′ which has bounded
clause width. Following this, we can safely perform a direct translation of F ′

into a CSP instance I which satisfies all the conditions for invoking the previous
results on CSP [14]. For Theorems 2 and 3, we consider the biconnected compo-
nents of the incidence graph of the CNF formula and prove that the existence of
an acyclic backdoor imposes useful structure on them. We then design a dynamic
programming algorithm which runs on the block decomposition of the incidence
graph of the CNF formula and show that it correctly determines in polynomial
time whether the input CNF formula is satisfiable (or counts the number of sat-
isfying assignments, respectively) as long as there is an acyclic backdoor of the
required kind.

2 Preliminaries

Parameterized Complexity. We begin with a brief review of the most important
concepts of parameterized complexity. For an in-depth treatment of the subject
we refer the reader to textbooks [8,10].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time O(f(k)nc) where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence.

We say that parameter X dominates parameter Y if there exists a computable
function f such that for each CNF formula F we have X(F ) ≤ f(Y (F )) [25]. In
particular, if X dominates Y and SAT is FPT parameterized by X, then SAT
is FPT parameterized by Y [25]. We say that two parameters are incomparable
if neither dominates the other.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 23

Satisfiability. We consider propositional formulas in conjunctive normal form
(CNF), represented as sets of clauses. That is, a literal is a (propositional) vari-
able x or a negated variable x; a clause is a finite set of literals not containing
a complementary pair x and x; a formula is a finite set of clauses. For a literal
l = x we write l = x; for a clause c we set c = {l | l ∈ c}. For a clause c, var(c)
denotes the set of variables x with x ∈ c or x ∈ c, and the clause width of c is
|var(c)|. Similarly, for a CNF formula F we write var(F ) =

⋃
c∈F var(c). The

length (or size) of a CNF formula F is defined as
∑

c∈F |c|. We will sometimes
use the a graph representation of a CNF formula F called the incidence graph
of F and denoted Inc(F ). The vertices of Inc(F ) are variables and clauses of F
and two vertices a, b are adjacent if and only if a is a clause and b ∈ var(a).

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1−τ(x) for x ∈ X. F [τ ] denotes the CNF formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to τ .
Note that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and
every CNF formula F . An assignment τ : X → {0, 1} satisfies a CNF formula
F if F [τ ] = ∅, and a CNF formula F is satisfiable if there exists an assignment
which satisfies F . In the SAT problem, we are given a CNF formula F and the
task is to determine whether F is satisfiable.

Let X ⊆ var(F ). Two clauses c, c′ are X-adjacent if (var(c)∩var(c′))\X �= ∅.
We say that two clauses c, d are X-connected if there exists a sequence c =
c1, . . . , cr = d such that each consecutive ci, ci+1 are X-adjacent. An X-
component Z of a CNF formula F is then an inclusion-maximal subset of X-
connected clauses, and its boundary is the set var(Z) ∩ X. An ∅-component of
a CNF formula F is also called a connected component of F .

A class F of CNF formulas is closed under partial assignments if, for each
F ∈ F and each assignment τ of a subset of var(F ), it holds that F [τ ] ∈ F .
Examples of classes that are closed under partial assignment include 2CNF, Q-
Horn, hitting CNF formulas and acyclic CNF formulas (see, e.g., the Handbook
of Satisfiability [2]).

Backdoors and Tractable Classes for SAT. Backdoors are defined relative to
some fixed class C of instances of the problem under consideration (i.e., SAT);
such a class C is then often called the base class. One usually assumes that the
problem is tractable for instances from C, as well as that the recognition of C is
tractable; here, tractable means solvable by a polynomial-time algorithm.

In the context of SAT, we define a strong backdoor set into F of a CNF
formula F to be a set B of variables such that F [τ ] ∈ F for each assignment
τ : B → {0, 1}. If we know a strong backdoor of F into F , we can decide the
satisfiability of F by looping over all assignments τ of the backdoor variables
and checking the satisfiability of the resulting CNF formulas F [τ ] (which belong
to F). Thus SAT decision is fixed-parameter tractable in the size k of the strong
backdoor, assuming we are given such a backdoor as part of the input and F
is tractable. We note that every natural base class F has the property that if

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



24 R. Ganian et al.

B ⊆ var(F ) is a backdoor of F into F , then B is also a backdoor of every
B-component of F into F ; indeed, each such B-component can be treated sep-
arately for individual assignments of B. We will hence assume that all our base
classes have this property.

Here we will be concerned with three of the arguably most prominent polyno-
mially tractable classes of CNF formulas: Horn, Anti-Horn and 2CNF, defined
in terms of syntactical properties of clauses. A clause is (a) Horn if it contains
at most one positive literal, (b) Anti-Horn if it contains at most one negative
literal, (c) 2CNF if it contains at most two literals,1

A CNF formula belongs to the class Horn, Anti-Horn, or 2CNF if it contains
only Horn, Anti-Horn, or 2CNF clauses, respectively; each of these classes is
known to be tractable and closed under partial assignments. It is known that
backdoor detection for each of the classes listed above is FPT, which together
with the tractability of these classes yields the following.

Proposition 1 ([16]). SAT is fixed-parameter tractable when parameterized by
the size of a minimum backdoor into F , for each F ∈ {Horn,Anti-Horn, 2CNF}.

We note that in the literature also other types of backdoors (weak backdoors
and deletion backdoors) have been considered; we refer to a survey article for
examples [16]. In the sequel our focus lies on strong backdoors, and for the sake
of brevity will refer to them merely as backdoors.

The Constraint Satisfaction Problem. Let V be a set of variables and D a
finite set of values. A constraint of arity ρ over D is a pair (S,R) where
S = (x1, . . . , xρ) is a sequence of variables from V and R ⊆ Dρ is a ρ-ary
relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. An assign-
ment α : X → D is a mapping of a set X ⊆ V of variables. An assignment
α : X → D satisfies a constraint C = ((x1, . . . , xρ), R) if var(C) ⊆ X and
(α(x1), . . . , α(xρ)) ∈ R. For a set I of constraints we write var(I) =

⋃
C∈I var(C)

and rel(I) = {R | (S,R) ∈ C,C ∈ I}. A finite set I of constraints is satisfiable
if there exists an assignment that simultaneously satisfies all the constraints in
I. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite set
I of constraints, whether I is satisfiable.

Next, we will describe how a partial assignment alters a given CSP instance.
Let α : X → D be an assignment. For a ρ-ary constraint C = (S,R) with
S = (x1, . . . , xρ) and R ∈ Dρ, we denote by C|α the constraint (S′, R′) obtained
from C as follows. R′ is obtained from R by (i) deleting all tuples (d1, . . . , dρ)
from R for which there is some 1 ≤ i ≤ ρ such that xi ∈ X and α(xi) �= di,
and (ii) removing from all remaining tuples all coordinates di with xi ∈ X. S′

is obtained from S by deleting all variables xi with xi ∈ X. For a set I of
constraints we define I|α as {C|α | C ∈ I}. It is important to note that there is
a crucial distinction between assignments in SAT and assignments in CSP: while
in SAT one deletes all clauses which are already satisfied by a given assignment,

1 A clause containing exactly two literals is also known as a Krom clause.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 25

in CSP this is not the case – instead, constraints are restricted to the tuples
which match the assignment (but never deleted).

A constraint language (or language, for short) Γ over a domain D is a set
of relations (of possibly various arities) over D. By CSP(Γ ) we denote CSP
restricted to instances I with rel(I) ⊆ Γ . A constraint language is tractable if
for every finite subset Γ ′ ⊆ Γ , the problem CSP(Γ ′) can be solved in polynomial
time. Let Γ be a constraint language and I be an instance of CSP. A variable
set X is a (strong) backdoor to CSP(Γ ) if for each assignment α : X → D
it holds that I|α ∈ CSP(Γ ). A language is closed under partial assignments if
for each I ∈ CSP(Γ ) and for each assignment α, it holds that I|α ∈ CSP(Γ ).
Finally, observe that the notions of being X-adjacent, X-connected and being a
X-component can be straightforwardly translated to CSP. For example, a CSP
instance containing three constraints ((a, b, d), R1), ((c, d), R2), and ((e, b), R3)
would contain two {b}-components: one containing ((a, b, d), R1), ((c, d), R2) and
the other containing ((e, b), R3).

Each SAT instance (i.e., CNF formula) admits a direct encoding into a CSP
instance (over the same variable set and with domain {0, 1}), which transforms
each clause into a relation containing all tuples which do not invalidate that
clause. Note that this will exponentially increase the size of the instance if the
CNF formula contains clauses of unbounded clause width; however, for any fixed
bound on the clause width of the original CNF formula, the direct encoding into
CSP will only increase the bit size of the instance by a constant factor.

Treewidth and Block Decompositions. The set of internal vertices of a path P
in a graph is denoted by Vint(P ) and is defined as the set of vertices in P which
are not the endpoints of P . We say that two paths P1 and P2 in an undirected
graph are internally vertex-disjoint if Vint(P1) ∩ Vint(P2) = ∅. Note that under
this definition, a path consisting of a single vertex is internally vertex-disjoint to
every other path in the graph.

The graph parameter treewidth will be of particular interest in the context of
this paper. Let G be a simple, undirected, finite graph with vertex set V = V (G)
and edge set E = E(G). A tree decomposition of G is a pair ({Bi : i ∈ I}, T )
where Bi ⊆ V , i ∈ I, and T is a tree with elements of I as nodes such that (a)
for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and (b) for each
vertex v ∈ V , T [{i ∈ I | v ∈ Bi}] is a (connected) tree with at least one node.
The width of a tree decomposition is maxi∈I |Bi| − 1. The treewidth [21,24] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G). We call the elements of I nodes and Bi bags. It is well known that,
for every clique over Z ⊆ V (G) in G, it holds that every tree decomposition of
G contains an element Bi such that Z ⊆ Bi [21].

We now recall the definitions of blocks and block decompositions in a graph.
A cut-vertex in an undirected graph H is a vertex whose removal disconnects
the connected component the vertex belongs to.

A maximal connected subgraph without a cut-vertex is called a block. Every
block of a graph G is either a maximal 2-connected subgraph, or an isolated
vertex or a path on 2 vertices (see, e.g., [9]).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



26 R. Ganian et al.

By maximality, different blocks of a graph H overlap in at most one vertex,
which is then easily seen to be a cut-vertex of H. Therefore, every edge of H lies
in a unique block and H is the union of its blocks.

Let A denote the set of cut-vertices of H and B the set of its blocks. The
block-graph of H is the bipartite graph on A ∪ B where a ∈ A and b ∈ B are
adjacent if and only if a ∈ b. The set of vertices in B are called block-vertices.

Proposition 2 ([9]). The block-graph of a connected undirected graph is a tree.

Due to the above proposition, we will henceforth refer to block-graphs of
connected graphs as block-trees. Furthermore, this proposition implies that the
block-graph of a disconnected graph is precisely the disjoint union of the block-
trees of its connected components. As a result, we refer to block-graphs in general
as block-forests. Finally, it is straightforward to see that the leaves of the block-
tree are all block-vertices.

The block decomposition of a connected graph G is a pair (T, η : V (T ) →
2V (G)) where T is the block-tree, and (a) for every t ∈ V (T ) such that t is a
block-vertex, G[η(t)] is the block of G corresponding to this block-vertex and
(b) for every t ∈ V (T ) such that t is a cut-vertex, η(t) = {t}. For a fixed root of
the tree T and a vertex t ∈ V (T ), we denote by child(t) the set of children of t
with respect to this root vertex.

Proposition 3 ([7,18]). There is an algorithm that, given a graph G, runs in
time O(m + n) and outputs the block decomposition of G.

3 Backdoor Treewidth

The core idea of backdoor treewidth is to fundamentally alter how the quality of
a backdoor is measured. Traditionally, the aim has always been to seek for back-
doors of small size, since these can easily be used to obtain fixed-parameter algo-
rithms for SAT. Instead, one can define the treewidth of a backdoor—obtained
by measuring the treewidth of a graph obtained by “collapsing” the CNF formula
into the backdoor—and show that this is more beneficial than focusing merely
on its size. In line with existing literature in graph algorithms and theory, we
call the resulting “collapsed graph” the torso.

Definition 1. Let F be a CNF formula and X be a backdoor in F to a class
F . Then the X-torso graph GX

F of F is the graph whose vertex set is X and
where two variables x, y are adjacent if and only if there exists an X-component
A such that x, y ∈ var(A). The treewidth of X is then the treewidth of GX

F , and
the backdoor treewidth of F w.r.t. F is the minimum treewidth of a backdoor
into F .

Given the above definition, it is not difficult to see that backdoor treewidth
w.r.t. F is upper-bounded by the size of a minimum backdoor to F , but can be
arbitrarily smaller than the latter. As a simple example of this behavior, consider
the CNF formula {{x1, x2}, {x2, x3}, . . . , {xi−1, xi}}, which does not contain a

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 27

constant-size backdoor to Horn but has backdoor treewidth 1 w.r.t. Horn (one
can use, e.g., a backdoor containing every variable with an even index). This
motivates the design of algorithms for SAT which are fixed-parameter tractable
when parameterized not by the size of a smallest backdoor into a particular base
class but by the value of the backdoor treewidth with respect to the base class.
Our first main contribution is the following theorem.

Theorem 1. SAT is fixed-parameter tractable when parameterized by the back-
door treewidth w.r.t. any of the following classes: Horn, Anti-Horn, 2CNF.

In order to prove Theorem1, we first show that a backdoor of small treewidth
can be used to design a fixed-parameter algorithm for solving SAT if such a
backdoor is provided in the input; we note that the proof of this claim proceeds
along the same lines as the proof for the analogous lemma in the case of constraint
satisfaction problems [14].

Lemma 1. Let F be a CNF formula and let X be a strong backdoor of F into
a tractable class F . There is an algorithm that, given F and X, runs in time

2tw(GX
F )|F |O(1) and correctly decides whether F is satisfiable or not.

Proof. We prove the lemma by designing an algorithm which constructs an
equivalent CSP instance I (over domain {0, 1}) and then solves the instance
in the specified time bound. The variables of I are precisely the set X. For
each X-component Z of F with boundary B, we add a constraint cB into I
over var(Z), where cB contains one tuple for each assignment of B which can
be extended to a satisfying assignment of Z. For instance, if B = {a, b, c} and
the only assignment which can be extended to a satisfying assignment for Z is
a 
→ 0, b 
→ 1, c 
→ 1, then cB will have the scope (a, b, c) and the relation with a
single tuple (0, 1, 1).

We note that since B is a backdoor of Z to F of size at most k = GX
F (as

follows from the fact that B is a clique in GX
F and hence must fully lie in some

bag of T , and from our discussion following the introduction of backdoors), we
can loop through all assignments of B and test whether each such assignment
can be extended to satisfy Z or not in time at most 2k · |B|O(1). Consequently, we
can construct I from F and X in time 2k|F |O(1). As an immediate consequence
of this construction, we see that any assignment satisfying I can be extended
to a satisfying assignment for F , and vice-versa the restriction of any satisfying
assignment for F onto X is a satisfying assignment in I.

Next, in order to solve I, we recall the notion of the primal graph of a CSP
instance. The primal graph of I is the graph whose vertex set is X and where two
vertices a, b are adjacent iff there exists a constraint whose scope contains both
a and b. Observe that in the construction of I, two variables a, b will be adjacent
if and only if they occur in some X-component of F , i.e., a, b are adjacent in I iff
they are adjacent in GX

F . Hence the primal graph of I is isomorphic to GX
F , and

in particular the primal graph of I must have treewidth at most k. To conclude
the proof, we use the well-known fact that boolean CSP can be solved in time
2t · nO(1), where n is the number of variables and t the treewidth of the primal
graph [27]. ��

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



28 R. Ganian et al.

With Lemma 1 in hand, it remains to show that a backdoor of small treewidth
can be found efficiently (if such a backdoor exists). The main tool we will use in
this respect is the following result, which solves the problem of finding backdoors
of small treewidth in the context of CSP for classes defined via finite languages;
we note that backdoor treewidth on backdoors for CSP is defined analogously
as for SAT.

Proposition 4 ([14]). Let Γ be a finite language. There exists a fixed-parameter
algorithm which takes as input a CSP instance I and a parameter k, and either
finds a backdoor of treewidth at most k into CSP(Γ ) or correctly determines that
no such backdoor exists.

In order to prove Proposition 4, Ganian et al. [14] introduced a subroutine
that is capable of replacing large parts of the input CSP by a strictly smaller CSP
in such a way that the existence of a backdoor of treewidth at most k into CSP(Γ )
is not affected. Their approach was inspired by the graph replacement tools
dating back to the results of Fellows and Langston [11] and further developed by
Arnborg, Bodlaender, and other authors [1,3–5,12]. Subsequently, they utilized
the recursive-understanding technique, introduced by Grohe et al. [17] to show
that as long as the instance has a size exceeding some function of k, then it is
possible to find a large enough part of the input instance which can then be
strictly reduced. Their theorem then follows by a repeated application of this
subroutine, followed by a brute-force step at the end when the instance has size
bounded by a function of k.

There are a few obstacles which prevent us from directly applying
Proposition 4 to our SAT instances and backdoors to our classes of interest
(Horn, Anti-Horn and 2CNF). First of all, while SAT instances admit a direct
encoding into CSP, in case of unbounded clause width this can lead to an expo-
nential blowup in the size of the instance. Second, the languages corresponding
to Horn, Anti-Horn and 2CNF in such a direct encoding are not finite. Hence,
instead of immediately using the direct encoding, we will proceed as follows:
given a CNF formula F , we will first construct an auxiliary CNF formula F ′ of
clause width at most 3 which is equivalent as far as the existence of backdoors
is concerned. We note that the CNF formula F ′ constructed in this way will
not be satisfiability-equivalent to F . But since F ′ has bounded clause width, we
can then use a direct encoding of F ′ into CSP and apply Proposition 4 while
circumventing the above obstacles.

Lemma 2. Let F ∈ {Horn,Anti-Horn, 2CNF}. There exists a polynomial-time
algorithm which takes as input a CNF formula F and outputs a 3-CNF formula
F ′ such that var(F ) = var(F ′) with the following property: for each X ⊆ var(F ),
X is a backdoor of F into F if and only if X is a backdoor of F ′ into F .

Proof. We first describe the construction and then complete the proof by arguing
that the desired property holds. We construct the CNF formula F ′ as follows:
for each clause c ∈ F of width at least 4, we loop over all sets of size 3 of literals
from c and add each such set into F ; afterwards, we remove c. Observe that

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 29

|F ′| ≤ (2 · |var(F )|)3 and each clause in F ′ is either equal to or “originated
from” at least one clause in F .

Now consider a set X ⊆ var(F ) which is a backdoor of F into F (for an
arbitrary choice of F ∈ H). We claim that X must also be a backdoor of F ′

into F . Indeed, if F = Horn then for each assignment τ of X, each clause c in
F [τ ] must be a horn clause, i.e., cannot contain more than one positive literal.
But then each c′ in F ′[τ ] that originated from taking a subset of literals from
c must also be a horn clause. If F = 2CNF then for each assignment τ of X,
each clause c in F [τ ] must contain at most two literals; once again, each c′ in
F ′[τ ] that originated from taking a subset of literals from c must also contain
at most 2 literals. Finally, the same argument shows that the claim also holds if
F = Anti-Horn.

On the other hand, consider a set X ⊆ var(F ) which is a backdoor of F ′ into
some F ∈ H. Once again, we claim that X must also be a backdoor of F into
F . Indeed, let F = Horn and assume for a contradiction that there exists an
assignment τ of X such that F [τ ] contains a clause c with at least two positive
literals, say a and b. Then F ′[τ ] must either also contain c, or it must contain
a subset c′ of c such that a, b ∈ c′; in either case, we arrive at a contradiction
with X being a backdoor of F ′ into Horn. The argument for F = Anti-Horn is,
naturally, fully symmetric. Finally, let F = 2CNF and assume for a contradiction
that there exists an assignment τ of X such that F [τ ] contains a clause c or width
at least 3; let us pick three arbitrary literals in c, say a1, a2, a3, and observe that
these cannot be contained in X. Then, by construction, F ′[τ ] contains the clause
{a1, a2, a3}—contradicting the fact that X is a backdoor of F ′ into 2CNF. ��

Our final task in this section is to use Lemma2 to obtain an algorithm
to detect a backdoor of small treewidth, which along with Lemma1 implies
Theorem 1.

Lemma 3. Let F ∈ {Horn,Anti-Horn, 2CNF}. There exists a fixed-parameter
algorithm which takes as input a CNF formula F and a parameter k, and either
finds a backdoor of treewidth at most k into F or correctly determines that no
such backdoor exists.

Proof. We begin by invoking Lemma2 to obtain a 3-CNF formula F ′ which
preserves the existence of backdoors. Next, we construct the direct encoding of
F ′ into a CSP instance I; since F ′ has bounded clause width, it holds that |I| ∈
O(|F ′|). For each choice of class F , we construct the language Γ corresponding
to the class in the setting of CSPs with arity at most 3. Specifically, if F is
2CNF, then Γ will contain all relations of arity at most 2; if F is Horn, then for
each Horn clause of width at most 3, Γ will contain a relation with all tuples
that satisfy the clause; and analogously for Anti-Horn. Finally, since Γ is a finite
language, we invoke Proposition 4 to compute a backdoor of width at most k or
correctly determine that no such backdoor exists in I. Correctness follows from
Lemma 2, the equivalence of F and CSP(Γ ), and the natural correspondence of
backdoors of F ′ into F to backdoors of I into CSP(Γ ). ��

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



30 R. Ganian et al.

4 Acyclic Backdoors to Scattered Classes for SAT

In this section, we build upon the notion of so-called scattered classes [15] and
backdoor treewidth to introduce a new polynomial time tractable class of CNF
formulas.

Definition 2. Let U = {F1, . . . ,Fr} be a set of classes of CNF formulas. For
a CNF formula F , we say that X ⊆ var(F ) is a backdoor of F into U if for
every X-component F ′ and every partial assignment τ to var(F ′) ∩ X, the CNF
formula F ′[τ ] belongs to a class in U .

We let btwU (F ) = min{tw(GX
F ) | X is a strong backdoor of F into U}, and

observe that if U = {F} then backdoors into U coincide with backdoors into F .
Next, we define the general property we will require for our base classes. We note
that these precisely coincide with the notion of permissive classes [23], and that
being permissively tractable (see Definition 3) is clearly a necessary condition for
being able to use any sort of backdoor into F .

Definition 3. Let F be a class of CNF formulas closed under partial assign-
ments. Then F is called permissively tractable if there is a polynomial time
algorithm that, given a CNF formula F , either correctly concludes that F /∈ F
or correctly decides whether F is satisfiable.

Similarly, the class F is called #-permissively tractable if there is a polyno-
mial time algorithm that, given a CNF formula F either correctly concludes that
F /∈ F or correctly returns the number of satisfying assignments of F .

We now state the two main results of this section.

Theorem 2. Let U = {F1, . . . ,Fr} be a set of permissively tractable classes.
There is a polynomial time algorithm that decides whether any given CNF for-
mula F with btwU (F ) = 1 is satisfiable.

Theorem 3. Let U = {F1, . . . ,Fr} be a set of #-permissively tractable classes.
There is a polynomial time algorithm that counts the number of satisfying assign-
ments for any given CNF formula F with btwU (F ) = 1.

We call S an acyclic (strong) backdoor of F into U if it is a backdoor of F
into U and the treewidth of the S-torso graph GS

F is 1. Let us now illustrate
a general high-level example of CNF formulas that can now be considered as
polynomial time tractable due to Theorem2. Let U contain the tractable class
Q-Horn [6] and the tractable class of hitting CNF formulas [19,20]. The class
Q-Horn is a proper superset of 2CNF, Horn and Anti-Horn, and hitting CNF
formulas are those CNF formulas where, for each pair of clauses, there exists a
variable x which occurs positively in one clause and negatively in the other. We
can solve any CNF formula F which is iteratively built from “building blocks”,
each containing at most 2 backdoor variables such that any assignment of these

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 31

variables turns the block into a hitting CNF formula or Q-Horn formula. Next we
provide one example of such a building block (with backdoor variables x1, x2).

F ′ =
{
{x1, x2, a, b, c}, {x1, x2, a, c}, {x1, x2, a, c}, {x1, x2, a, b, c},

{x1, x2, a, b, c}, {x1, x2, a, b, c}, {x1, x2, a, b, c
}

Observe that, for each assignment to x1, x2, we are either left with a Q-Horn
formula (in case of all assignments except for x1, x2 
→ 1) or a hitting CNF
formula (if x1, x2 
→ 1). Now we can use F ′ as well as any other building blocks
with this general property (including blocks of arbitrary size) to construct a
CNF formula F of arbitrary size by identifying individual backdoor variables
inside the blocks in a tree-like pattern. For instance, consider the CNF formula
F defined as follows. Let n be an arbitrary positive integer and define var(F ) =
{y1, . . . , yn}⋃ {ai, bi, ci|1 ≤ i ≤ n − 1}. We define

F =

n−1⋃

i=1

{
{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, ci}, {yi, yi+1, ai, ci},

{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, bi, ci},

{yi, yi+1, ai, bi, ci}, {yi, yi+1, ai, bi, ci}
}
.

Observe that Y = {y1, . . . , yn} is a strong backdoor of F into {Q-Horn, Hitting
CNF formulas} and the Y -torso graph is a path.

We now proceed to proving Theorems 2 and 3. For technical reasons, we
will assume that every clause in the given CNF formula occurs exactly twice.
Observe that this does not affect the satisfiability of the CNF formula or the
fact that a set of variables is an acyclic strong backdoor into U . However, it does
impose certain useful structure on the incidence graph of F , as is formalized
in the following observation (recall that a cut-vertex is a vertex whose deletion
disconnects at least 2 of its neighbors). For the following, recall that Inc(F )
denotes the incidence graph of F .

Observation 1. Let F be a CNF formula where every clause has a duplicate.
Then, every cut-vertex of the graph Inc(F ) corresponds to a variable-vertex.

Proof. Let c and c′ be the clause-vertices in Inc(F ) corresponding to a clause and
its duplicate. Observe that if c were a cut-vertex, then deleting it must disconnect
at least two variables contained in c. But this leads to a contradiction due to the
presence of the clause-vertex c′. ��

The following lemma is a consequence of Proposition 3 and the fact that the
size of the incidence graph of F is linear in the size of F .

Lemma 4. There is an algorithm that takes as input a CNF formula F of size
n and outputs the block decomposition of Inc(F ) in time O(n).

Henceforth, we will drop the explicit mention of F having duplicated clauses.
We will also assume without loss of generality that Inc(F ) is connected. Let (T, η)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



32 R. Ganian et al.

be the block decomposition of Inc(F ). For every t ∈ T , we define the tree βt as
the subtree of T rooted at t and we denote by γt the subformula of F induced by
the clauses whose corresponding vertices are contained in the set

⋃
t′∈V (βt)

η(t′).
We provide a useful observation which allows us to move freely between

speaking about the CNF formula and its incidence graph. For a graph G and
X ⊆ V (G), we denote by TorsoG(X) the graph defined over the vertex set X
as follows: for every pair of vertices x1, x2 ∈ X, we add the edge (x1, x2) if (a)
(x1, x2) ∈ E(G) or (b) x1 and x2 both have a neighbor in the same connected
component of G − X.

Observation 2. Let F be a CNF formula, G = Inc(F ) and X ⊆ var(X). Then,
there is an edge between x1 and x2 in the X-torso graph GX

F if and only if there
is an edge between x1 and x2 in the graph TorsoG(X).

The following lemma formalizes the crucial structural observation on which
our algorithm is based.

Lemma 5. Let F be a CNF formula and let S ⊆ var(F ) be such that the S-torso
graph is a forest. Let G = Inc(F ). Then, the following statements hold.

1. No block of G contains more than two variables of S.
2. In the rooted block decomposition (T, η(T )) of G, no block vertex has three dis-

tinct children x0, x1, x2 such that var(γxi
) intersects S for every i ∈ {0, 1, 2}.

Proof. Due to Observation 2, it follows that the graph TorsoG(S) is acyclic. Now,
suppose that the first statement does not hold and let v0, v1, v2 be variables of
S contained in the same block of G. We prove that for every i ∈ {0, 1, 2}, there
is a pair of internally vertex-disjoint vi-vi+1 (mod3) and vi-vi+2 (mod3) paths in
TorsoG(S). This immediately implies that the graph TorsoG(S) contains a cycle;
indeed, the existence of vertex-disjoint v0-v1 and v0-v2 paths would mean that
any v1-v2 path disjoint from v0 guarantees a cycle, and the existence of vertex-
disjoint v1-v2 and v1-v0 paths means that such a v1-v2 path must exist. We only
present the argument for i = 0 because the other cases are analogous.

Observe that since v0, v1, v2 are in the same block of G, there are paths P
and Q in G where P is a v0-v1 path, Q is a v0-v2 path and P and Q are internally
vertex-disjoint. Let p1, . . . , ps be the vertices of S which appear (in this order)
when traversing P from v0. If no such vertex appears as an internal vertex of
P then we set p1 = ps = v1. Similarly, let q1, . . . , qr be the vertices of S which
appear when traversing Q from v0 and if no such vertex appears as an internal
vertex of Q, then we set q1 = qr = v2.

It follows from the definition of TorsoG(S) that if s = 1 (r = 1), then
there are edges (v0, v1) and (v0, v2) in this graph. Otherwise, there are edges
(v0, p1), (p1, p2), . . . , (ps, v1) and edges (v0, q1), (q1, q2), . . . , (qr, v2). In either
case, we have obtained a pair of internally vertex-disjoint paths in TorsoG(S);
one from v0 to v1 and the other from v0 to v2. This completes the argument for
the first statement.

The proof for the second statement proceeds along similar lines. Suppose to
the contrary that there are three cut-vertices x0, x1, x2 which are children of a

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 33

block-vertex b such that var(γxi
) intersects S for every i ∈ {0, 1, 2} and let vi be

a variable of S chosen arbitrarily from γxi
(see Fig. 1). Observe that there are

paths P0, P1, P2 in G such that for every i ∈ {0, 1, 2}, the path Pi is a vi-xi path
which is vertex-disjoint from any vertex (variable or clause) of G in γxi+1 (mod3)

or γxi+2 (mod3)
. Without loss of generality, we assume that vi is the only vertex

of S on the path Pi.
Now, following the same argument as that for the first statement, the

paths P0, P1, P2 and the fact that x0, x1, x2 are contained in the same block
of G together imply that TorsoG(S) has a pair of internally vertex-disjoint vi-
vi+1 (mod3) and vi-vi+2 (mod3) paths for every i ∈ {0, 1, 2}. This in turn implies
that v0, v1, v2 are in the same block of TorsoG(S). Hence, we conclude that
TorsoG(S) is not acyclic, a contradiction. ��

Fig. 1. An illustration of the configuration in the second statement of Lemma 5. The
vertices denoted as concentric circles correspond to S. The dotted edges are edges of
TorsoG(S).

We are now ready to present the proofs of Theorems 2 and 3. Since the
proofs of both theorems are similar, we present them together. In what fol-
lows, we let U = {F1, . . . ,Fr} be a set of permissively tractable classes and
let U� = {F�

1 , . . . ,F�
q } be a set of #-permissively tractable classes. For each

i ∈ {1, . . . , r}, we let Ai denote a polynomial time algorithm that certifies that
Fi is permissively tractable and for each i ∈ {1, . . . , q}, we let A�

i denote a poly-
nomial time algorithm that certifies that F�

i is permissively tractable. Finally,
let F be a CNF formula such that btwU (F ) = btwU�(F ) = 1.

Proof (of Theorems 2 and 3). Let S be a hypothetical strong backdoor of F
into U (U�) such that the S-torso graph is acyclic. We first handle the case
when |S| ≤ 2. In this case, we simply go over all possible pairs of variables
and by assuming that they form a strong backdoor of F into U (respectively
U�), go over all instantiations of this pair of variables and independently solve
(count the satisfying assignments of) each distinct connected component of the

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



34 R. Ganian et al.

resulting CNF formula. For this, we make use of the polynomial time algorithms
A1, . . . ,Ar and A�

1, . . . ,A�
q respectively.

This step takes polynomial time and if |S| ≤ 2, then for some guess of a
pair of variables, we will be able to correctly determine whether F is satisfiable
(correctly compute the number of satisfying assignments of F ). In the case when
for every pair x, y ∈ var(F ) there is an assignment τ : {x, y} → {0, 1} and
a connected component of F [τ ] which is found to be not in any class of U
(respectively U�), it must be the case that |S| > 2.

Since S must have at least 3 variables, it follows from Lemma 5 (1) that S
cannot be contained in a single block of Inc(F ), which implies that Inc(F ) has
at least 2 distinct blocks. We now invoke Lemma 4 to compute (T, η), the block
decomposition of Inc(F ) (recall that by our assumption, Inc(F ) is connected) and
pick an arbitrary cut-vertex as the root for T . We will now execute a bottom up
parse of T and use dynamic programming to test whether F is satisfiable and
count the number of satisfying assignments of F . The high-level idea at the core
of this dynamic programming procedure is that, by Lemma5, at each block and
cut-vertex we only need to consider constantly many vertices from the backdoor;
by “guessing” these (i.e., brute-forcing over all possible choices of these), we can
dynamically either solve or compute the number of satisfying assignments for
the subformula “below them” in the rooted block decomposition.

For every t, b ∈ V (T ) such that t is a cut-vertex, b is a child of t and i ∈ {0, 1},
we define the function δi(t, b) → {0, 1} as follows: δ0(t, b) = 1 if γb[t 
→ 0]
is satisfiable and δ0(t, b) = 0 otherwise. Similarly, δ1(t, b) = 1 if γb[t 
→ 1] is
satisfiable and δ1(t, b) = 0 otherwise. Finally, for every t ∈ V (T ) such that t
is a cut-vertex, we define the function αi(t) → {0, 1} as follows. α0(t) = 1 if
γt[t = 0] is satisfiable and α0(t) = 0 otherwise. Similarly, α1(t) = 1 if γt[t = 1] is
satisfiable and α1(t) = 0 otherwise. Clearly, the formula is satisfiable if and only
if α1(t̂) = 1 or α0(t̂) = 1, where t̂ is the root of T .

Similarly, for every t, b ∈ V (T ) such that t is a cut-vertex, b is a child of
t and i ∈ {0, 1}, we define δ�

i (t, b) to be the number of satisfying assignments
of the CNF formula γb[t = i]. For every t ∈ V (T ) such that t is a cut-vertex
and i ∈ {0, 1}, we define α�

i (t) to be the number of satisfying assignments of
γt[t = i]. Clearly, the number of satisfying assignments of F is α�

0(t̂) + α�
1(t̂),

where t̂ denotes the root of T .
Due to Observation 1, every cut-vertex corresponds to a variable and hence

the functions δ and δ� are well-defined. We now proceed to describe how we
compute the functions δ, δ�, α, and α� at each vertex of T assuming that the
corresponding functions have been correctly computed at each child of the vertex.

We begin with the leaf vertices of T . Let b be a leaf in T . We know that b
corresponds to a block of Inc(F ) and it follows from Lemma 5 (1) that S contains
at most 2 variables of γb. Let Zb = S ∩ var(η(b)). We guess (i.e., branch over
all possible choices for) the set Zb and for every τ : Zb ∪ {t} → {0, 1}, we
run the algorithms A1, . . . ,Ar (respectively A�

1, . . . ,A�
q) on the CNF formula

γb[τ ] to decide whether γb[τ ] is satisfiable or unsatisfiable (respectively count
the satisfying assignments of γb[τ ]) or it is not in F for any F ∈ U . By going

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 35

over all possible partial assignments τ : Zb ∪ {t} → {0, 1} in this way, we can
compute δi(t, b) and δ�

i (t, b) for i ∈ {0, 1} . Hence, we may assume that we have
computed the functions δi(t, b) and δ�

i (t, b) for i ∈ {0, 1} for every leaf b. We now
proceed to describe the computation of α, α�, δ and δ� for the internal nodes of
the tree.

Let t be a cut-vertex in T such that δi(t, b) (δ�
i (t, b)) has been computed for

every i ∈ {0, 1} and b ∈ child(t). Then, αi(t) is simply defined as
∧

b∈child(t) δi(t, b)

for each i ∈ {0, 1}. On the other hand, for each i ∈ {0, 1} α�
i (t) is defined as∏

b∈child(t) δi(t, b).

Finally, let b be a block-vertex in T such that for every i ∈ {0, 1}, the value
αi(t) (α�

i (t)) has been computed for every child t of b. Let t∗ be the parent of b
in T . It follows from Lemma 5 (2) that for at most 2 children t1, t2 ∈ child(b), the
CNF formulas γt1 and γt2 contain a variable of S. Furthermore, it follows from
Lemma 5 (1) that at most 2 variables of S are contained in η(b). This implies
that the CNF formula γb\(γt1 ∪γt2) has a strong backdoor of size at most 2 into
U (respectively U�). Hence, we can simply guess the set Z = {t1, t2}∪ (S ∩ η(b))
which has size at most 4. We can then use the polynomial time algorithms
A1, . . . ,Ar (A�

1, . . . ,A�
q) to solve (count the satisfying assignments of) the CNF

formula (γb\(γt1 ∪γt2))[τ ] for every partial assignment τ : Z ∪{t∗} → {0, 1} and
along with the pre-computed functions αi(tj), α�

i (tj) for i ∈ {0, 1}, j ∈ {1, 2},
compute δp(t

∗, b) and δ�
p(t∗, b) for each p ∈ {0, 1}. While computing δp(t

∗, b) is
straightforward, note that δ�

p(t∗, b) is defined as
∑

τ :τ(t∗)=p(ατ(t1)(t1) ·ατ(t2)(t2) ·

τ ), where 
τ is the number of satisfying assignments of (γb\(γt1 ∪ γt2))[τ ].

The only remaining technical subtlety in the case of counting satisfying
assignments is the following. If b has exactly one child, then t2 is left unde-
fined and we call the unique child t1 and work only with it in the definition of
δp(b, t

∗). In other words, we remove the term ατ(t2)(t2) from the definition of
δ�
p(t∗, b). On the other hand, if b has at least two children but there is exactly

one t ∈ child(b) such that γt contains a variable of S, then we set t1 = t and t2
to be an arbitrary child of b distinct from t. Finally, if b has at least two children
and there is no t ∈ child(b) such that γt contains a variable of S, then we define
t1 and t2 to be an arbitrary pair of children of b. Since the set of possibilities
has constant size, we can simply iterate over all of them.

Since we go over a constant number (at most 25) of partial assignments of
Z ∪{t∗}, we will execute the algorithms A1, . . . ,Ar (A�

1, . . . ,A�
q) only a constant

number of times each. Therefore, this step also takes polynomial time, and the
algorithm as a whole runs in polynomial time. This completes the proof of both
theorems. ��

5 Conclusions

We have introduced the notion of backdoor treewidth in the context of SAT and
developed algorithms for deciding the satisfiability of formulas of small backdoor
treewidth: (1) a fixed-parameter tractability result for backdoor treewidth with
respect to Horn, Anti-Horn, and 2CNF, and (2) a polynomial-time result for

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



36 R. Ganian et al.

backdoor treewidth 1 with respect to a wide range or archipelagos of tractability.
Both results significantly extend the borders of tractability for SAT. Our work
also points to several avenues for interesting future research. In particular, our
first result raises the question of whether there are further tractable classes
w.r.t. which backdoor treewidth allows fixed-parameter tractability of SAT. Our
second result provides a promising starting point towards the goal of obtaining
a polynomial time algorithm for SAT (and #-SAT) for every fixed value of the
backdoor treewidth with respect to a set of permissively tractable classes.

References

1. Arnborg, S., Courcelle, B., Proskurowski, A., Seese, D.: An algebraic theory of
graph reduction. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Gram-
mars 1990. LNCS, vol. 532, pp. 70–83. Springer, Heidelberg (1991). doi:10.1007/
BFb0017382

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-
bility. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

3. Bodlaender, H.L., Fluiter, B.: Reduction algorithms for constructing solutions
in graphs with small treewidth. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON
1996. LNCS, vol. 1090, pp. 199–208. Springer, Heidelberg (1996). doi:10.1007/
3-540-61332-3 153

4. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Inf. Comput. 167(2), 86–119 (2001)

5. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995. LNCS, vol. 944,
pp. 268–279. Springer, Heidelberg (1995). doi:10.1007/3-540-60084-1 80

6. Boros, E., Hammer, P.L., Sun, X.: Recognition of q-Horn formulae in linear time.
Discr. Appl. Math. 55(1), 1–13 (1994)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd edn. MIT Press, Cambridge (2009). http://mitpress.mit.edu/books/
introduction-algorithms

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015).
doi:10.1007/978-3-319-21275-3

9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012). doi:10.1007/978-3-662-53622-3

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013). doi:10.1007/978-1-4471-5559-1

11. Fellows, M.R., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its
use in computing finite-basis characterizations (extended abstract). In: FOCS, pp.
520–525 (1989)

12. de Fluiter, B.: Algorithms for graphs of small treewidth. Ph.D. thesis, Utrecht
University (1997)

13. Fomin, F.V., Lokshtanov, D., Misra, N., Ramanujan, M.S., Saurabh, S.: Solving d-
SAT via backdoors to small treewidth. In: Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, pp. 630–641, 4–6 January 2015 (2015)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4



Backdoor Treewidth for SAT 37

14. Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors for
CSP. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 66, pp. 36:1–
36:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

15. Ganian, R., Ramanujan, M.S., Szeider, S.: Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms 13(2), 29:1–29:32
(2017). http://doi.acm.org/10.1145/3014587

16. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey,
R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and
Beyond. LNCS, vol. 7370, pp. 287–317. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30891-8 15

17. Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological sub-
graphs is fixed-parameter tractable. In: Proceedings of the 43rd ACM Symposium
on Theory of Computing, STOC 2011, San Jose, CA, USA, pp. 479–488, 6–8 June
2011

18. Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H]
(algorithm 447). Commun. ACM 16(6), 372–378 (1973)

19. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies, Chap.
11. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp.
339–401. IOS Press, Amsterdam (2009)

20. Kleine Büning, H., Zhao, X.: Satisfiable formulas closed under replacement. In:
Kautz, H., Selman, B. (eds.) Proceedings for the Workshop on Theory and Appli-
cations of Satisfiability. Electronic Notes in Discrete Mathematics, vol. 9. Elsevier
Science Publishers, North-Holland (2001)

21. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). doi:10.1007/BFb0045375

22. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn
and binary clauses. In: Proceedings of Seventh International Conference on Theory
and Applications of Satisfiability Testing (SAT 2004), Vancouver, BC, Canada, pp.
96–103, 10–13 May 2004

23. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)

24. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

25. Samer, M., Szeider, S.: Fixed-parameter tractability, Chap. 13. In: Biere, A., Heule,
M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 425–454. IOS
Press, Amsterdam (2009)

26. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

27. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited.
J. Comput. Syst. Sci. 76(2), 103–114 (2010)

28. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings
of the Sixth International Conference on Theory and Applications of Satisfiability
Testing (SAT 2003), S. Margherita Ligure - Portofino, Italy, pp. 222–230, 5–8 May
2003

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
4


