
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-013
December 2017

NewWidth Parameters for
Model Counting

Robert Ganian and Stefan Szeider

This is the authors’ copy of a paper that appeared in S. Gaspers and T. Walsh (Eds.):
SAT 2017, LNCS 10491, pp. 38–52, 2017. DOI: 10.1007/978-3-319-66263-3_3

www.ac.tuwien.ac.at/tr

http://dx.doi.org/10.1007/978-3-319-66263-3_3

New Width Parameters for Model Counting

Robert Ganian(B) and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{ganian,sz}@ac.tuwien.ac.at

Abstract. We study the parameterized complexity of the propositional
model counting problem #SAT for CNF formulas. As the parameter we
consider the treewidth of the following two graphs associated with CNF
formulas: the consensus graph and the conflict graph. Both graphs have
as vertices the clauses of the formula; in the consensus graph two clauses
are adjacent if they do not contain a complementary pair of literals,
while in the conflict graph two clauses are adjacent if they do contain a
complementary pair of literals. We show that #SAT is fixed-parameter
tractable for the treewidth of the consensus graph but W[1]-hard for the
treewidth of the conflict graph. We also compare the new parameters
with known parameters under which #SAT is fixed-parameter tractable.

1 Introduction

Propositional model counting (#SAT) is the problem of determining the num-
ber of models (satisfying truth assignments) of a given propositional formula in
conjunctive normal form (CNF). This problem arises in several areas of arti-
ficial intelligence, in particular in the context of probabilistic reasoning [1,23].
The problem is well-known to be #P-complete [29], and remains #P-hard even
for monotone 2CNF formulas and Horn 2CNF formulas. Thus, in contrast to
the decision problem SAT, restricting the syntax of instances does not lead to
tractability.

An alternative to restricting the syntax is to impose structural restrictions
on the input formulas. Structural restrictions can be applied in terms of certain
parameters (invariants) of graphical models, i.e., of certain graphs associated with
CNF formulas. Among the most frequently used graphical models are primal
graphs (sometimes called variable interaction graphs or VIGs), dual graphs, and
incidence graphs (see Fig. 1 for definitions and examples).

The most widely studied and prominent graph parameter is treewidth, which
was introduced by Robertson and Seymour in their Graph Minors Project. Small
treewidth indicates that a graph resembles a tree in a certain sense (e.g., trees
have treewidth 1, cyles have treewidth 2, cliques on k+1 vertices have treewidth
k). Many otherwise NP-hard graph problems are solvable in polynomial time
for graphs of bounded treewidth. It is generally believed that many practically

Supported by the Austrian Science Fund (FWF), project P26696. Robert Ganian is
also affiliated with FI MU, Brno, Czech Republic.

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 38–52, 2017.
DOI: 10.1007/978-3-319-66263-3 3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 39

relevant problems actually do have low treewidth [2]. Treewidth is based on cer-
tain decompositions of graphs, called tree decompositions, where sets of vertices
(“bags”) of a graph are arranged at the nodes of a tree such that certain condi-
tions are satisfied (see Sect. 2.3). If a graph has treewidth k then it admits a tree
decomposition of width k, i.e., a tree decomposition where all bags have size at
most k + 1.

Depending on whether we consider the treewidth of the primal, dual, or inci-
dence graph of a given CNF formula, we speak of the primal, dual, or incidence
treewidth of the formula, respectively. It is known that the number of models
of a CNF formula of size L with primal, dual, or incidence treewidth k can be
computed in time f(k)Lc for a computable function f and a constant c which
is independent of k; in other words, #SAT is fixed-parameter tractable parame-
terized by primal, dual, or incidence treewidth (see, e.g., [26]).

1.1 Contribution

In this paper we consider the treewidth of two further graphical models: the
consensus graph and the conflict graph (see, e.g., [10,18,27]), giving rise to the
parameters consensus treewidth and conflict treewidth, respectively. Both graphs
have as their vertices the clauses of the formula. In the consensus graph two
clauses are adjacent if they do not contain a complementary pair of literals; in the
conflict graph, two clauses are adjacent if they do contain a complementary pair
of literals (see Fig. 1 for examples). Here, we study the parameterized complexity
of #SAT with respect to the new parameters and provide a comparison to known
parameters under which #SAT is fixed-parameter tractable.

Our main result regarding consensus treewidth is a novel fixed-parameter
algorithm for model counting (Theorem 1). The algorithm is based on dynamic
programming along a tree decomposition of the consensus graph. This result is
particularly interesting as none of the known parameters under which #SAT is
fixed-parameter tractable dominates consensus treewidth, in the sense that there
are instances of small consensus treewidth where all the other parameters can
be arbitrarily large (Proposition 1). Hence consensus treewidth pushes the state-
of-the-art for fixed-parameter tractability of #SAT further, and moreover does
so via a parameter that forms a natural counterpart to the already established
primal, dual and incidence treewidth parameters. We also note that the presented
fixed-parameter algorithm generalizes the polynomial-time algorithm on hitting
formulas (see Fact 1 below).

This positive result is complemented by our results on conflict treewidth.
First we observe that when considering the conflict treewidth one needs to
restrict the scope to formulas without pure literals: recall that #SAT remains
#P-complete for monotone 2-CNF formulas, and the conflict graph of such for-
mulas is edge-less and therefore of treewidth 0. We show that conflict treewidth
in its general form does not provide a parameter under which #SAT is fixed-
parameter tractable, even for formulas without pure literals (subject to the well-
established complexity theoretic assumption W[1] �= FPT [8]). In fact, we show

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

40 R. Ganian and S. Szeider

that already the decision problem SAT for formulas without pure literals is W[1]-
hard when parameterized by conflict treewidth, or even by a weaker parameter,
the size of a smallest vertex cover of the conflict graph (Proposition 2). However,
if we bound in addition also the width of clauses (i.e., the number of literals in
clauses), then #SAT becomes fixed-parameter tractable for formulas without
pure literals. This result, however, does not add anything new to the complexity
landscape, as we show that the incidence treewidth of a formula without pure
literals is upper bounded by a function of conflict treewidth and clause width
(Proposition 3).

2 Preliminaries

The set of natural numbers (that is, positive integers) will be denoted by N. For
i ∈ N we write [i] to denote the set {1, . . . , i}.

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), repre-
sented as sets of clauses. That is, a literal is a (propositional) variable x or a
negated variable x; a clause is a finite set of literals not containing a comple-
mentary pair x and x; a formula is a finite set of clauses.

For a literal l = x we write l = x; for a clause C we set C = { l | l ∈ C }.
For a clause C, var(C) denotes the set of variables x with x ∈ C or x ∈ C,
and the width of C is |var(C)|. Similarly, for a formula F we write var(F) =⋃

C∈F var(C). The length of a formula F is the total number of literals it contains,
i.e.,

∑
C∈F |var(C)|. We say that two clauses C,D overlap if C ∩ D �= ∅; we say

that C and D clash if C and D overlap. Note that two clauses can clash and
overlap at the same time. Two clauses C,D are adjacent if var(C)∩ var(D) �= ∅.
A variable is pure if it only occurs as either a positive literal or as a negative
literal; the literals of a pure variable are then called pure literals.

The dual graph of a formula F is the graph whose vertices are clauses of F
and whose edges are defined by the adjacency relation of clauses. We will also
make references to the primal graph and the incidence graph of a formula F .
The former is the graph whose vertices are the variables of F and where two
variables a, b are adjacent iff there exists a clause C such that a, b ∈ var(C),
while the latter is the graph whose vertices are the variables and clauses of F
and where two vertices a, b are adjacent iff a is a clause and b ∈ var(a) (see Fig. 1
for an illustration).

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X. F [τ] denotes the formula obtained from F by removing all
clauses that contain a literal x with τ(x) = 1 and by removing from the remain-
ing clauses all literals y with τ(y) = 0; F [τ] is the restriction of F to τ . Note
that var(F [τ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and every
formula F . An assignment τ : X → {0, 1} satisfies a formula F if F [τ] = ∅.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 41

y

u

v

w

x

z

(a)

C2

C5

C4 C3

C1

(b)

C2
z

C5

x

C4
w

C3

v

C1

u

y

(c)

C2

C5

C4 C3

C1

(d)

C2

C5

C4 C3

C1

(e)

Fig. 1. The primal graph (a), dual graph (b), incidence graph (c), conflict graph (d)
and consensus graph (e) of the formula {C1, . . . , C5} with C1 = {u, v, y}, C2 = {u, z, y},
C3 = {v, w}, C4 = {w, x}, C5 = {x, y, z)}. (a) The primal graph has as vertices the
variables of the given formula, two variables are joined by an edge if they occur together
in a clause. (b) The dual graph has as vertices the clauses, two clauses are joined by an
edge if they share a variable. (c) The incidence graph is a bipartite graph where one
vertex class consists of the clauses and the other consists of the variables; a clause and
a variable are joined by an edge if the variable occurs in the clause. (d) The conflict
graph has as vertices the clauses of the formula, two clauses are joined by an edge
if they do contain a complementary pair of literals. (e) The consensus graph has as
vertices the clauses of the formula, two clauses are joined by an edge if they do not
contain a complementary pair of literals.

A truth assignment τ : var(F) → {0, 1} that satisfies F is a model of F .
We denote by #(F) the number of models of F . A formula F is satisfiable if
#(F) > 0. In the SAT problem, we are given a formula F and the task is to
determine whether F is satisfiable. In the #SAT problem, we are also given a
formula F and the task is to compute #(F).

A hitting formula is a CNF formula with the property that any two of its
clauses clash (see [14,15,20]). The following result makes SAT and #SAT easy
for hitting formulas.

Fact 1 ([13]). A hitting formula F with n variables has exactly 2n −∑
C∈F 2n−|C| models.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

42 R. Ganian and S. Szeider

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts
of parameterized complexity. For an in-depth treatment of the subject we refer
the reader to other sources [8,19].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable (FPT) if instances (I, k) of size n (with respect to some
reasonable encoding) can be solved in time f(k)nc where f is a computable
function and c is a constant independent of k. The function f is called the
parameter dependence.

To obtain our lower bounds, we will need the notion of a parameterized
reduction. Let L1, L2 be parameterized problems. A parameterized reduction (or
fpt-reduction) from L1 to L2 is a mapping P from instances of L1 to instances
of L2 such that

1. (x, k) ∈ L1 iff P (x, k) ∈ L2,
2. the mapping can be computed by a fixed-parameter algorithm w.r.t. parame-

ter k, and
3. there is a computable function g such that k′ ≤ g(k), where (x′, k′) = P (x, k).

The class W[1] captures parameterized intractability and contains all para-
meterized decision problems that are fpt-reducible to Multicolored Clique
(defined below) [8]. Showing W[1]-hardness for a problem rules out the existence
of a fixed-parameter algorithm unless the Exponential Time Hypothesis fails.

Multicolored Clique
Instance: A k-partite graph G = (V,E) with a partition V1, . . . , Vk of V .
Parameter: The integer k.
Question: Are there vertices v1, . . . , vk such that vi ∈ Vi and {vi, vj} ∈ E
for all i and j with 1 ≤ i < j ≤ k (i.e. the subgraph of G induced by
{v1, . . . , vk} is a clique of size k)?

2.3 Treewidth

Let G be a simple, undirected, finite graph with vertex set V = V (G) and edge
set E = E(G). A tree decomposition of G is a pair (T, {Bi : i ∈ I}) where
Bi ⊆ V , T is a tree, and I = V (T) such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Bi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Bi }] is a (connected) tree with at least

one node.

The width of a tree decomposition is maxi∈I |Bi| − 1. The treewidth [16,22] of G
is the minimum width taken over all tree decompositions of G and it is denoted
by tw(G). We call the elements of I nodes and Bi bags. As an example, consider

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 43

the graphs depicted in Fig. 1: graphs (b), (d), (e) have treewidth 2, while graphs
(a) and (c) have treewidth 3.

While it is possible to compute the treewidth exactly using a fixed-parameter
algorithm [3], the asymptotically best running time is achieved by using the
recent state-of-the-art 5-approximation algorithm of Bodlaender et al. [4].

Fact 2 ([4]). There exists an algorithm which, given an n-vertex graph G and
an integer k, in time 2O(k) · n either outputs a tree decomposition of G of width
at most 5k + 4 and O(n) nodes, or correctly determines that tw(G) > k.

For other standard graph-theoretic notions not defined here, we refer to [7]. It
is well known that, for every clique over Z ⊆ V (G) in G, it holds that every tree
decomposition of G contains an element Bi such that Z ⊆ Bi [16]. Furthermore,
if i separates a node j from another node l in T , then Bi separates Bj \ Bi from
Bl \ Bi in G [16]; this inseparability property will be useful in some of our later
proofs..

A tree decomposition (T,B) of a graph G is nice if the following conditions
hold:

1. T is rooted at a node r.
2. Every node of T has at most two children.
3. If a node t of T has two children t1 and t2, then Bt = Bt1 = Bt2 ; in that case

we call t a join node.
4. If a node t of T has exactly one child t′, then exactly one of the following

holds:
(a) |Bt| = |Bt′ | + 1 and Bt′ ⊂ Bt; in that case we call t an introduce node.
(b) |Bt| = |Bt′ | − 1 and Bt ⊂ Bt′ ; in that case we call t a forget node.

5. If a node t of T is a leaf, then |Bt| = 1; we call these leaf nodes.

The main advantage of nice tree decompositions is that they allow the design
of much more transparent dynamic programming algorithms, since one only
needs to deal with four very specific types of nodes. It is well known (and easy
to see) that for every fixed k, given a tree decomposition of a graph G = (V,E)
of width at most k and with O(|V |) nodes, one can construct in linear time a
nice tree decomposition of G with O(|V |) nodes and width at most k [5]. We say
that a vertex v was forgotten below a node t ∈ V (T) if the subtree rooted at t
contains a (forget) node s with a child s′ such that Bs′ \ Bs = {v}.

Finally, we summarize known algorithms for SAT and #SAT when parame-
terized by the treewidth of the three natural graph representations discussed
in previous Subsect. 2.1; we note that the original results assumed that a tree
decomposition is supplied as part of the input, and we can obtain one using
Fact 2 (even while retaining the running time bounds).

Fact 3 ([26]). #SAT is FPT when parameterized by the treewidth of any of the
following graphical models of the formula: the incidence graph, the primal graph,
or the dual graph.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

44 R. Ganian and S. Szeider

3 Consensus Treewidth

Recall that the consensus graph of a CNF formula F is the graph G whose
vertices are the clauses of F and which contains an edge ab iff clauses a and b
do not clash. Observe that the consensus graph of a hitting formula is edgeless.
The consensus treewidth of F , denoted contw(F), is then the treewidth of its
consensus graph.

Before proceeding to the algorithm, we make a short digression comparing
the new notion of consensus treewidth to established parameters for SAT. We
say that parameter X dominates parameter Y if there exists a computable func-
tion f such that for each formula F we have X(F) ≤ f(Y (F)) [25]. In particular,
if X dominates Y and SAT is FPT parameterized by X, then SAT is FPT para-
meterized by Y [25]. We say that two parameters are incomparable if neither
dominates the other. We note that in our comparison, we only consider parame-
ters which are known to give rise to fixed-parameter algorithms for SAT (i.e.,
not incidence cliue-width [21]) and can be used without requiring additional
information from an oracle (i.e., not PS-width [24]).

In the following, we show that consensus treewidth is incomparable with
the signed clique-width [6,28] (the clique-width of the signed incidence graph;
we note that a decomposition for signed clique-width can be approximated by
using signed rank-width [11]), with clustering-width [20] (the smallest number of
variables whose deletion results in a variable-disjoint union of hitting formulas)
and with h-modularity [12] (a structural parameter inspired by the community
structure of SAT instances). We remark that the former claim implies that con-
sensus treewidth is not dominated by the treewidth of neither the incidence
nor the primal graph, since these parameters are dominated by signed clique-
width [28]. Furthermore, consensus treewidth is also not dominated by signed
rank-width [11], which both dominates and is dominated by signed clique-width.

Proposition 1. The following claims hold.

1. Signed clique-width and consensus treewidth are incomparable.
2. Clustering-width and consensus treewidth are incomparable.
3. H-modularity and consensus treewidth are incomparable.

Proof. We prove these claims by showing that there exist classes of formulas
such that each formula in the class has one parameter bounded while the other
parameter can grow arbitrarily. For a formula F , let scw(F) and clw(F) denote
its signed clique-width and clustering width, respectively.

Let us choose an arbitrary positive integer i ∈ N. For the first claim, it is known
that already the class of all hitting formulas has unbounded scw [20]. In particular,
this means that there exists a hitting formula F1 such that scw(F1) ≥ i. Observe
that the consensus graph of F1 is edgeless, and hence contw(F1) = 0.

Conversely, consider the following formula F2 = {c1, . . . , ci}. The formula
contains variables x1, . . . xi, and each variable x� occurs only in clause c�. Since
the incidence graph of F2 is just a matching, its signed clique-width is bounded
by a constant (in particular, it will be 2). However, the consensus graph of F2 is

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 45

a complete graph on i vertices, and it is known that such graphs have treewidth
precisely i − 1, hence contw(F2) = i − 1.

We proceed similarly for the second and third claims; in fact, we can use a
single construction to deal with both h-modularity and clustering width. Let us
once again fix some i ∈ N, let F ′

1 be the union of two variable-disjoint hitting
formulas each containing i clauses. Both h-modularity and clustering width have
a value of 0 for variable-disjoint hitting formulas. However, the consensus graph
of F ′

1 is a complete bipartite graph with each side containing precisely i vertices,
and it is well-known that such graphs have treewidth i; hence, contw(F ′

1) = i.
Conversely, consider the formula F ′

2 over variable sets Y = {y1, . . . , yi} and
X = {x1, . . . , xi}. For each subset α of X, we will add two clauses to F ′

2:

– cα contains α as positive literals and X \ α as negative literals;
– cy

α contains α as positive literals, X \ α as negative literals, and all variables
in Y as positive literals.

We observe that for each α, clause cy
α clashes with all other clauses except for cα

(and vice-versa for cα). This implies that the consensus graph of F ′
2 is a matching,

and hence contw(F ′
2) = 1. On the other hand, note that for each distinct pair

of subsets α, β ⊆ X, the clauses cα, cβ , cy
α, cy

β form a formula which is not a
variable-disjoint union of hitting formulas. However, deleting a subset of X from
F ′

2 will only resolve this obstruction for choices of α and β which differed in X;
for instance, even if we deleted all of X except for a single variable (w.l.o.g. say
x1), the resulting formula would still not be a disjoint union of hitting formulas
(it would contain clauses {x1} ∪ Y, {x1}, {x1} ∪ Y, {x1}). Similarly, deleting any
proper subset Y ′ ⊂ Y will also clearly not result in a disjoint union of hitting
formulas (it would, in fact, not change the consensus graph at all), and the same
goes for any combination of deleting Y ′ along with a proper subset of X. Hence
we conclude that clw(F ′

2) ≥ i.
Finally, we argue that F ′

2 has h-modularity at least i. We note that we will
not need the definition of h-modularity to do so, as it will sufficent to follow the
proof of Lemma 1 in the paper [12] which provides a suitable lower-bound for
h-modularity. In particular, closely following that proof, let us fix q = i and a
clause c ∈ F ′

2. Then:

1. the set Z0 defined in the proof will be equal to F ′
2;

2. the set Z1 defined in the proof will be empty;
3. the set Z defined in the proof will be equal to F ′

2;
4. the set W defined in the proof will be equal to F ′

2;
5. since W is not a hitting formula, by point 3 of the proof it holds that F ′

2 has
h-modularity greater than q = i.

The above general constructions show that for any choice of i, one can produce
formulas with a gap of at least i between consensus treewidth and any of the
three other measures under consideration. �

Next, we proceed to our main algorithmic result. Our algorithm will in cer-
tain cases invoke the previously known algorithm [26] for #SAT parameterized

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

46 R. Ganian and S. Szeider

by dual treewidth as a subroutine, and so we provide the full statement of its
runtime below. We note that the runtime of that algorithm depends on the time
required to multiply two n-bit integers, denoted δ.

Fact 4 ([26]). Given a nice tree decomposition (T,B) of the dual graph of a
formula F , #SAT can be solved in time 2k(k� + δ)N , where N is the number of
nodes of T , k is its width, and � is the maximum width of a clause in F .

In the literature there exist several algorithms for multiplying two n-bit
integers; we refer the interested reader to Knuth’s in-depth overview [17].
One of the most prominent of these algorithms is due to Schönhage and
Strassen [17] and runs in time O(n log n log log n). Thus, we can assume that
δ = O(n log n log log n), where n is the number of variables of the given CNF
formula. Recently, Fürer [9] presented an even faster algorithm. If arithmetic
operations are assumed to have constant runtime, that is, δ = O(1), then we
obtain an upper bound on the runtime of 2O(k) · L2.

Theorem 1. #SAT can be solved in time 2O(k) ·L(L+δ), where L is the length
of the formula and k is the consensus treewidth.

Proof. Let F be an input formula over n variables, and let G be its consensus
graph. Let (T,B) be a nice tree decomposition of G of width at most 5k + 4;
recall that such (T,B) can be computed in time 2O(k) by Fact 2. For brevity,
we will use the following terminology: for a node t with bag Bt and a clause
set X ⊆ Bt, we say that an assignment is Xt-validating if it satisfies all clauses
in X but does not satisfy any clause in Bt \ X. For instance, if X = ∅ then a
Xt-validating assignment cannot satisfy any clause in Bt, while if X = Bt then
a Xt-validating assignment must satisfy every clause in Bt.

Consider the following leaf-to-root dynamic programming algorithm A on T .
At each bag Bt associated with a node t of T , A will compute two mappings
φ+

t , φ∼
t , each of which maps each X ⊆ Bt to an integer between 0 and 2d.

These mappings will be used to store the number of Xt-validating assignments
of var(F) under an additional restriction:

– in φ+
t , we count only assignments which satisfy all clauses that were already

forgotten below t, and
– in φ∼

t , we count only assignments which invalidate at least one clause that
was already forgotten below t.

Since we assume that the root r of a nice tree decomposition is an empty
bag, the total number of satisfying assignments of F is equal to φ+

r (∅). The
purpose of also keeping records for φ∼

t will become clear during the algorithm;
in particular, they will be needed to correctly determine the records for φ+

t at
certain stages.

At each node t, let σt be the set of clauses which were forgotten below t; for
example, σr = F and σ� = ∅ for each leaf � of T . We now proceed to explain
how A computes the mappings φ+

t , φ∼
t at each node t of T , starting from the

leaves, along with arguing correctness of the performed operations.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 47

1. Leaf nodes. Since σt is empty, φ∼
t will map each subset of Bt to 0. As for φ+

t ,
we observe that there are precisely 2n−|c| many assignments which invalidate a
clause c ∈ Bt. Hence we correctly set φ+

t (c) = 2n−|c| and φ+
t (∅) = 2n −2n−|c|.

2. Forget nodes. Let t be a forget node with child p and let Bp \ Bt = {c}.
We begin by observing that the number of Xt-validating assignments which
satisfy all clauses in σt is precisely equal to the number of (X∪{c})p-validating
assignments which satisfy all clauses in σp. In other words, for each X ⊆ Bt

we correctly set φ+
t (X) = φ+

p (X ∪ {c}).
On the other hand, Xt-validating assignments which do not satisfy at least
one clause in σt are partitioned into the following mutually exclusive cases:
(a) (X∪{c})p-validating assignments which do not satisfy at least one clause

in σp;
(b) Xp-validating assignments which do not satisfy at least one clause in σp;
(c) Xp-validating assignments which satisfy all clauses in σp.

Hence, we correctly set φ∼
t (X) = φ∼

p (X ∪ {c}) + φ∼
p (X) + φ+

p (X).
3. Join nodes. Let t be a join node with children p, q. Recall that σp ∩ σq = ∅

and σt = σp ∪ σq due to the properties of tree decompositions. Furthermore,
an assignment satisfies all clauses in σt if and only if it satisfies all clauses
in both σp and σq. In other words, Xt-validating assignments which do not
satisfy at least one clause in σt are partitioned into the following mutually
exclusive cases (recall that Bp = Bq by the definition of join nodes):
(a) Xp-validating assignments which do not satisfy at least one clause in σp

but satisfy all clauses in σq;
(b) Xp-validating assignments which do not satisfy at least one clause in σq

but satisfy all clauses in σp;
(c) Xp-validating assignments which invalidate at least one clause in σp and

also at least one clause in σq.
Recall that Bt is a separator between σp and σq, which means that every
clause in σp clashes with ever clause in σq. That in turn implies that the
number of assignments covered by point 3c must be equal to 0: every assign-
ment that does not satisfy at least one clause in one of σp, σq must satisfy
all clauses in the other set. Since we now know that every assignment which
does not satisfy a clause in σp must satisfy all clauses in σq and vice-versa,
we can correctly set φ∼

t (X) = φ∼
q (X) + φ∼

p (X). Finally, to compute φ+
t (X)

we can subtract φ∼
t (X) from the total number of Xt-validating assignments

(which is equal to the sum of φ+
p (X) and φ∼

p (X) and hence is known to us),

i.e., we set φ+
t (X) = φ+

p (X) + φ∼
p (X) − φ∼

t (X).

4. Introduce nodes. Let t be an introduce node with child p and let Bt = Bp∪{c}.
For each X ⊆ Bp, we consider two cases and proceed accordingly. On one
hand, if φ∼

p (X) = 0 (i.e., there exists no Xp-validating assignment invalidating
at least one clause in σp), then clearly φ∼

p (X) = φ∼
t (X) + φ∼

t (X ∪ {c}) = 0
and in particular φ∼

t (X) = φ∼
t (X ∪ {c}) = 0. On the other hand, assume

φ∼
p (X) > 0 and consider a Xp-validating assignment α which invalidates at

least one clause in σp. Since c clashes with all clauses in σp, it follows that
α must satisfy c. Consequently, we correctly set φ∼

t (X) = φ∼
p (X ∪ c) and

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

48 R. Ganian and S. Szeider

φ∼
t (X) = 0. Since each subset of Bt is a subset of Bp ∪ {c}, it follows that

using the above rules A has computed the mapping φ∼
t for all X ′ ⊆ Bt.

The last remaining step is to compute φ+
t (X ′) for each X ′ ⊆ Bt. In order to

do so, we will first use Fact 4 to compute the number sX′ of all X ′t-validating
assignments of F . Since we are now interested in assignments which must
invalidate all clauses in Bt \ X ′, we can construct the subformula F ′ from
F by
(a) removing all clauses except for those in X ′, i.e., F ′ := X ′, and
(b) assigning all variables which occur in Bt\X ′ in order to invalidate clauses

outside of X ′. Formally, for each clause c ∈ Bt \X ′, we apply the partial
assignment x �→ 0 whenever x ∈ c and the partial assignment x �→ 1
whenever x ∈ c. If a contradiction arises for some variable, then we know
that there exists no X ′-validating assignment and hence set sX′ = 0.

Clearly, F ′ can be constructed in time O(L) and satisfies #F ′ = sX′ . Fur-
thermore, since F ′ contains at most k clauses, we can construct a trivial nice
tree decomposition of F ′of width at most k containing at most 2k+1 nodes in
linear time by first consecutively introducing all of its nodes and then consec-
utively forgetting them. With this decomposition in hand, we invoke Fact 4
to compute #F ′ in time at most 2k(kL+ δ)(2k +1), i.e., 2O(k) · (L+ δ). Once
we compute sX′ , we use the fact that sX′ = φ∼

t (X) + φ+
t (X) and correctly

set φ+
t (X) = sX′ − φ∼

t (X).

Observe that the time requirements for performing the above-specified oper-
ations at individual nodes of T are dominated by the time requirements for
processing introduce nodes, upper-bounded by 2k · (L + 2O(k) · (L + δ)) =
2O(k) · (L+ δ). Furthermore, a nice tree decomposition with at most O(L) nodes
and width at most 5k + 4 can be obtained in time 2O(k) · L by Fact 2. Hence
we conclude that it is possible to compute φ+

r (∅) = #(F) in time at most
2O(k) · L(L + δ). The correctness of the whole algorithm follows from the cor-
rectness of computing the mappings φ∼

t and φ+
t at each node t in T . �

4 Conflict Treewidth

The algorithmic applications of the consensus graph, as detailed above, gives rise
to a natural follow-up question: what can we say about its natural counterpart,
the conflict graph? Recall that the conflict graph of a CNF formula F is the
graph G whose vertices are the clauses of F and which contains an edge ab if
and only if clauses a and b clash. Observe that the conflict graph of a hitting
formula is a complete graph, and that the conflict graph is the complement graph
of the consensus graph. The conflict treewidth of F is then the treewidth of its
conflict graph.

Since the conflict graph is a subgraph of the dual graph, conflict treewidth
can be much (and in fact arbitrarily) smaller than the dual treewidth. However,
unlike the case of dual treewidth, we will show that SAT does not admit a fixed-
parameter algorithm parameterized by conflict treewidth (unless W[1] �= FPT).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 49

Proposition 2. SAT is W[1]-hard when parameterized by conflict treewidth.
Furthermore, SAT remains W[1]-hard when parameterized by the size of a min-
imum vertex cover of the conflict graph, even for instances without pure literals.

Proof. We provide a parameterized reduction from Multicolored Clique.
Given an instance G of Multicolored Clique over vertex set V = V1∪· · ·∪Vk,
we construct a formula F over the variable set V (i.e., each vertex in G is a
variable in F). We add the following clauses to F (observe that F contains no
pure literals):

1. for each i ∈ [k], we add one clause containing one positive literal of each
variable x ∈ Vi;

2. for each i ∈ [k] and each distinct x, y ∈ Vi, we add one clause {x, y};
3. for each non-edge between distinct vertices x, y in G, we add one clause {x, y}.

F can clearly be constructed from G in polynomial time. The intuition behind
the construction is the following: variables set to true correspond to the vertices
of a multicolored clique, clauses in groups 1 and 2 enforce the selection of a single
vertex from each color class, and the remaining clauses ensure that the result is
a clique.

To formally prove that the reduction is correct, consider a solution X to G,
and consider the assignment α which sets variables in X to true and all other
variables to false. Since X contains precisely one vertex from each color class
Vi, α clearly satisfies all clauses in groups 1 and 2. Now consider any clause
in group 3, and observe that it can only be invalidated if both of its variables
are set to true. However, since X is a clique it must hold that for each pair of
distinct variables x, y ∈ C we’ll never have a clause in group 3 between x and y,
and hence in particular each such clause will always contain at least one variable
that is set to false and that therefore satisfies it.

On the other hand, consider a satisfying assignments α for F . Then clauses
in group 1 ensure that at least one variable is set to true in each color class, and
clauses in group 2 ensure that at most one variable is set to true in each color
class. Finally, clauses in group 3 prevent α from setting two variables to true if
they are the endpoints of a non-edge in G. Consequently, the variables set to
true by α must form a solution to the multicolored clique instance G.

Finally, we argue that the parameter values are bounded by k, as claimed
by the hardness result. Observe that all literals in clause groups 2 and 3 are
negative, which means that whenever two clauses clash, at least one of them
must be in group 1. Furthermore, recall that there are precisely k clauses in
group 1. Hence the clauses in group 1 form a vertex cover of size k in the conflict
graph of F . It is well known (and easy to verify) that the vertex cover is an
upper bound on the treewidth of a graph. �

Observe that Proposition 2 implies that there exist instances where the con-
flict treewidth is arbitrarily smaller than the incidence treewidth (since SAT
is known to be FPT when parameterized by the latter). On the other hand,
we can show that in the case of formulas of bounded clause width and without

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

50 R. Ganian and S. Szeider

pure literals, conflict treewidth (denoted conflict-tw) is dominated by incidence
treewidth.

Proposition 3. For any formula F with clauses of width at most d and without
pure literals, it holds that itw(F) ≤ (d + 1) · (conflict-tw(F) + 1).

Proof. Let G be the conflict graph of F and (T,B) be a tree decomposition of G
of width k. Consider the structure (T,B′) obtained as follows: for each Bi ∈ B,
we create a set B′

i in B′ where B′
i = Bi ∪ {x | ∃c ∈ Bi : x ∈ var(c) }. Informally,

the set B′ is obtained by extending the bags in (T,B) by the variables that occur
in the clauses of that bag. We claim that (T,B′) is a tree decomposition of the
incidence graph G′ of F .

Towards proving this claim, first observe that T is still a tree and each B′
i ∈ B′

is a subset of V (G′). Furthermore, for any edge ab of G′ between a clause a and
variable b, it must hold that a ∈ Bi for some Bi ∈ B. By construction, B′

i

must then contain both a and b and so condition 1 of the definition of tree
decompositions is satisfied. As for condition 2, assume first for a contradiction
that some vertex v ∈ G′ is not contained in any bag of (T,B′). This clearly
cannot happen if v is a clause, and so v must be a variable; furthermore, since
F contains no pure literals, v must occur in at least two clauses.

It remains to show that all bags containing v induce a connected subtree of
T . So, let us assume once more for a contradiction that this is not the case. By
construction of (T,B′) this implies that (T,B) must contain a node t such that
Bt separates some set of clauses containing v, say X1, from all remaining clauses
containing v, say X2. Next, observe that X1 ∪ X2 forms a complete bipartite
graph in G: indeed, one side consists of all clauses containing v as a literal, while
the other side consists of all clauses containing v. But these two facts together
contradict the inseparability property of tree decompositions: X1 ∪ X2 induce a
connected subgraph of G′, and yet they are supposedly separated by Bt which
does not intersect X1 ∪ X2. Hence we conclude that no such node Bt exists and
that the bags containing v indeed induce a connected subtree of T .

We conclude the proof by observing that the size of each bag B′
i ∈ B′ is

equal to d+1 times |Bi|, since we added at most d extra vertices for each vertex
in Bi. �

As a consequence of Proposition 3, restricted to formulas of bounded clause
width, #SAT is FPT when parameterized by conflict treewidth, since in this
case the parameter is dominated by incidence treewidth [26]. We note that the
domination is strict: for each i ∈ N there exists a formula Fi of clause width 2
and without pure literals such that itw(Fi) = 1 and contw(Fi) ≥ i. Indeed,
one such example is the formula Fi = {{y, x1}, {x1}, {y, x2}, {x2}, . . . , {y, xi},
{xi}} ∪ {{y, z1}, {z1}, {y, z2}, {z2}, . . . , {y, zi}, {zi}}.

5 Concluding Remarks

We have considered two natural graphical models of CNF formulas and estab-
lished whether #SAT is fixed-parameter tractable parameterized by their

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

New Width Parameters for Model Counting 51

treewidth or not. The introduced notion of consensus treewidth generalizes and,
in some sense, builds upon the classical #SAT algorithm on hitting formulas [13],
and as such may be efficient in cases where other structural parameters fail. Our
results show that it is worthwhile to consider further graphical models in addition
to the already established ones such as primal, dual, and incidence graphs.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT
and Bayesian inference. In: 44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2003), pp. 340–351 (2003)

2. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21
(1993)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: A ck n 5-approximation algorithm for treewidth. SIAM J. Com-
put. 45(2), 317–378 (2016)

5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

6. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of
graph enumeration problems definable in monadic second-order logic. Discr. Appl.
Math. 108(1–2), 23–52 (2001)

7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, New York (2010)

8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

9. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
10. Galesi, N., Kullmann, O.: Polynomial time SAT decision, hypergraph transversals

and the hermitian rank. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 89–104. Springer, Heidelberg (2005). doi:10.1007/11527695 8

11. Ganian, R., Hlinený, P., Obdrzálek, J.: Better algorithms for satisfiability problems
for formulas of bounded rank-width. Fund. Inform. 123(1), 59–76 (2013)

12. Ganian, R., Szeider, S.: Community structure inspired algorithms for SAT and
#SAT. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 223–237.
Springer, Cham (2015). doi:10.1007/978-3-319-24318-4 17

13. Iwama, K.: CNF-satisfiability test by counting and polynomial average time. SIAM
J. Comput. 18(2), 385–391 (1989)

14. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185, chap. 11, pp. 339–
401. IOS Press (2009)

15. Kleine Büning, H., Zhao, X.: Satisfiable formulas closed under replacement. In:
Kautz, H., Selman, B. (eds.) Proceedings for the Workshop on Theory and Appli-
cations of Satisfiability. Electronic Notes in Discrete Mathematics, vol. 9. Elsevier
Science Publishers, North-Holland (2001)

16. Kloks, T.: Treewidth: Computations and Approximations. Springer, Berlin (1994)
17. Knuth, D.E.: How fast can we multiply? In: The Art of Computer Programming.

Seminumerical Algorithms, 3rd edn., vol. 2, chap. 4.3.3, pp. 294–318. Addison-
Wesley (1998)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

52 R. Ganian and S. Szeider

18. Kullmann, O.: The combinatorics of conflicts between clauses. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 426–440. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24605-3 32

19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford (2006)

20. Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. Acta
Informatica 44(7–8), 509–523 (2007)

21. Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic
CNF formulas. Theor. Comput. Sci. 481, 85–99 (2013)

22. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

23. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

24. Sæther, S.H., Telle, J.A., Vatshelle, M.: Solving #SAT and MAXSAT by dynamic
programming. J. Artif. Intell. Res. 54, 59–82 (2015)

25. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, chap. 13, pp. 425–454.
IOS Press (2009)

26. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

27. Scheder, D., Zumstein, P.: How many conflicts does it need to be unsatisfiable?
In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 246–256.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79719-7 23

28. Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In:
Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3 15

29. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
3

