
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-012
December 2017

SAT-Encodings for Special
Treewidth and Pathwidth

Neha Lodha, SebastianOrdyniak,
Stefan Szeider

This is the authors’ copy of a paper that appeared in S. Gaspers and T. Walsh (Eds.):
SAT 2017, LNCS 10491, pp. 429–445, 2017. DOI: 10.1007/978-3-319-66263-3_27

www.ac.tuwien.ac.at/tr

http://dx.doi.org/10.1007/978-3-319-66263-3_27

SAT-Encodings for Special Treewidth
and Pathwidth

Neha Lodha, Sebastian Ordyniak(B), and Stefan Szeider

Algorithms and Complexity Group, Tu Wien, Vienna, Austria
{neha,ordyniak,sz}@ac.tuwien.ac.at

Abstract. Decomposition width parameters such as treewidth provide
a measurement on the complexity of a graph. Finding a decomposition of
smallest width is itself NP-hard but lends itself to a SAT-based solution.
Previous work on treewidth, branchwidth and clique-width indicates that
identifying a suitable characterization of the considered decomposition
method is key for a practically feasible SAT-encoding.

In this paper we study SAT-encodings for the decomposition width
parameters special treewidth and pathwidth. In both cases we develop
SAT-encodings based on two different characterizations. In particular, we
develop two novel characterizations for special treewidth based on parti-
tions and elimination orderings. We empirically obtained SAT-encodings.

1 Introduction

The decomposition of graphs is a central topic in combinatorics and combina-
torial optimization where various decomposition methods have been developed.
Decomposition methods gives rise to a so-called width parameters that indicates
how well the graph is decomposable by the considered decomposition method.
For instance tree decomposition, the most famous decomposition method, gives
rise to the parameter treewidth, where the treewidth of a graph is the smallest
width over all tree decompositions. Typically, finding an optimal decomposi-
tion (i.e., one of smallest width), is an NP-hard problem, for which various
exponential-time algorithms have been suggested. Previous work indicates that
SAT provides a valuable practical approach for finding optimal decompositions.
This approach was pioneered by Samer and Veith for treewidth [16]; their meth-
ods was further improved [2] and achieved excellent results in a recent solver
challenge [8]. Heule and Szeider [11] developed the first practically feasible app-
roach for computing the decomposition parameter clique-width by means of a
SAT encoding, which allowed for the first time to identify the clique-width of
some well-known named graphs. A SAT-encoding for the decomposition para-
meter branchwidth was suggested by Lodha et al. [14], who also showed how the
encoding can be used to improve heuristically obtained branch decompositions
of large graphs.

Special Treewidth and Pathwidth. In this paper we consider new SAT encod-
ings for the decomposition parameters special treewidth and pathwidth. Spe-
cial treewidth, a decomposition parameter introduced by Courcelle [6,7], is

c© Springer International Publishing AG 2017
S. Gaspers and T. Walsh (Eds.): SAT 2017, LNCS 10491, pp. 429–445, 2017.
DOI: 10.1007/978-3-319-66263-3 27

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

430 N. Lodha et al.

closely related to the well-known decompositional parameters pathwidth and
treewidth [13]. A tree decomposition of a graph G is a tree T whose nodes are
labeled with sets of vertices, called bags, such that for each edge of G there is a
bag containing both ends of the edge, and for each vertex of G, the nodes of T
labeled with bags containing this vertex form a non-empty connected subtree.
The width of the tree decomposition is the size of a largest bag minus 1, and the
treewidth of a graph is the smallest width over all its tree decompositions. Spe-
cial treewidth is defined similar to treewidth, with the additional property that
T is a rooted tree, and for each vertex of G there is some root-to-leaf path in T
which contains all the nodes labeled with bags containing this vertex. Pathwidth
is also defined similar to treewidth, where T itself is a path. It follows from these
definitions that special treewidth is in-between treewidth and pathwidth, i.e.,
for every graph G we have

treewidth(G) ≤ special treewidth(G) ≤ pathwidth(G).

The motivation for special treewidth is that it allows for more efficient model-
checking algorithms for variants of Monadic Second Order Logic than treewidth,
but is often smaller than pathwidth. Special treewidth has been the subject of
several theoretical investigations [4,5]. Pathwidth, on the other hand, was intro-
duced by Robertson and Seymour in the first of their famous series of papers on
graph minors [15] and has since then attracted a lot of attention. The compu-
tation of special treewidth and pathwidth are NP-hard problems. For the latter
this has been known [1] for long, for the former we observe that it can be deduced
from known results (Theorem 1).

Characterizations of Width Parameters. Previous work on SAT encodings for
treewidth, branchwidth and clique-width indicates that identifying a suitable
characterization of the considered decomposition method is key for a practically
feasible SAT-encoding. In fact, the standard encoding for treewidth [16] is based
on the characterization of treewidth in terms of elimination orderings, which
are linear orderings of the vertices of the decomposed graph, where after adding
certain “fill-in” edges, the largest number of neighbors of a vertex ordered higher
than the vertex itself, gives the width of the decomposition. For clique-width, on
the other hand, no characterization based on elimination ordering is known, and
the known SAT-encoding [11] uses a partition-based characterization, where one
considers a sequence of partitions of the vertex set. A similar partition-based
characterization was used for the SAT encoding of branchwidth [14]. Recently,
an encoding for pathwidth and similar decompositional parameters based on the
interval model of a path-decomposition has been introduced by Biedl et al. [3].

In this paper we develop and compare SAT encodings based on two charac-
terizations of special treewidth and two characterizations for pathwidth.

Results for Special Treewidth. For special treewidth we develop a new charac-
terization based on elimination orderings (Theorem 3), as one could expect that
a characterization that is similar to the characterization successfully used for a

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 431

SAT encoding of treewidth also works well for special treewidth. We also develop
a partition-based characterization which is close to the original characterization
by Courcelle [6]. Our experiments show that the partition-based encoding clearly
outperforms the ordering-based encoding. For instance, the former could process
square grids and complete graphs being almost twice as large as the square grids
and complete graphs within the reach of the latter. The partition-based encoding
also beats the ordering-based encoding on many of the well-known named graphs
that we consider by an order of magnitude and is competitive in running-times
to the currently leading encoding for treewidth.

Results for Pathwidth. For pathwidth, there exists a well known characterization
in terms of linear orderings [12] which gives rise to a natural SAT encoding,
similar in spirit to the Samer-Veith encoding for treewidth [16]. However, we
also considered a partition-based encoding, similar in spirit to the Heule-Szeider
encoding for clique-width [11]. Our experiments indicate that the ordering-based
encoding has a slight advantage on average over the partition-based encoding.
However, the partition-based encoding has an extraordinary advantage on dense
graphs. This encourages the development of a portfolio-based approach for SAT-
encodings for pathwidth.

2 Preliminaries

2.1 Satisfiability and SAT-Encodings

We consider propositional formulas in Conjunctive Normal Form (CNF formulas,
for short), which are conjunctions of clauses, where a clause is a disjunction
of literals, and a literal is a propositional variable or a negated propositional
variable. A CNF formula is satisfiable if its variables can be assigned true or false,
such that each clause contains either a variable set to true or a negated variable
set to false. The satisfiability problem (SAT) asks whether a given formula is
satisfiable.

We will now introduce a few general assumptions and notation that is shared
among the encodings. Namely, for our encodings we will assume that we are
given an undirected graph G = (V,E) and an integer ω, which represents the
width that we are going to test. Moreover, we will assume that the vertices of
G are numbered from 1 to n and similarly the edges are numbered from 1 to m.
Details on how we used the formulas to calculate the exact width of a graph are
given in Sect. 6.1. For the counting part of all our encodings we will employ the
sequential counter approach [16] since this approach has turned out to provide
the best results in our setting. To illustrate the idea behind the sequential counter
consider the case that one has a variable S(v) for every vertex v ∈ V (G) and one
needs to restrict the number of vertices for which the variable S(v) is set to true
to be at most some integer ω. In this case one introduces a counting variable
#(v, j) for every v ∈ V (G) and j with 1 ≤ j ≤ ω, which is true whenever there
are at least j variables S(v) set to true in {S(u) | 1 ≤ u ≤ v }. Then the following
clauses ensure the semantics for the variable #(v, i) and ensure that at most ω of

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

432 N. Lodha et al.

the variables S(v) are set to true. A clause ¬S(v)∨#(v, 1) for every v ∈ V (G), a
clause ¬#(v−1, j)∨#(v, j) for every v ∈ V (G) and j with v > 1 and 1 ≤ j ≤ ω,
a clause ¬S(v) ∨ ¬#(v − 1, j − 1) ∨ #(v, j) for every v ∈ V (G) and j with v > 1
and 1 < j ≤ ω, and a clause ¬S(v)∨¬#(v−1, ω) for every v ∈ V (G) with v > 1.

2.2 Graphs

We consider finite and simple undirected graphs. For basic terminology on graphs
we refer to a standard text book [9]. For a graph G we denote by V (G) the vertex
set of G and by E(G) the edge set of G. If E ⊆ E(G), we denote by G \ E the
graph with vertices V (G) and edges E(G) \ E.

We will often consider various forms of trees, i.e., connected acyclic graphs,
as they form the backbone of tree decompositions. Let T be an undirected tree
and t ∈ V (T). We will often assume that T is rooted (in some arbitrary vertex
r) and hence the parent and child relationships between its vertices are well-
defined. We write Tt to denote the subtree of T rooted in t, i.e., the component
of T\{{t, p}} containing t, where p is the parent of t in T . For a tree T , we
denote by h(T), the height of T , i.e., the length of a longest path between the
root and any leaf of T plus one.

2.3 Special Treewidth

To define special treewidth, it is convenient to first introduce treewidth and
pathwidth and then show how to adapt the definition to obtain special treewidth.

A tree decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a
tree and χ is a function that assigns each tree node t a set χ(t) ⊆ V of vertices
such that the following conditions hold: (T1) for every vertex u ∈ V , there is a
tree node t such that u ∈ χ(t), (T2) for every edge {u, v} ∈ E there is a tree
node t such that {u, v} ⊆ χ(t), and (T3) for every vertex v ∈ V , the set of
tree nodes t with v ∈ χ(t) forms a subtree of T . The sets χ(t) for any t ∈ V (T)
are called bags of the decomposition T and χ(t) is the bag associated with the
tree node t. The width of a tree decomposition (T, χ) is the size of a largest
bag minus 1. A tree decomposition of minimum width is called optimal. The
treewidth of a graph G is the width of an optimal tree decomposition of G. A
path decomposition is a tree decomposition T = (T, χ), where T is required to
be a path and the pathwidth of a graph is the minimum width of any of its path
decompositions.

A special tree decomposition T = (T, χ) of a graph G = (V,E) is a tree
decomposition that is rooted at some node r ∈ V (T) and additionally satisfies
the following property [4,6]: (ST) for every vertex v ∈ V , the set of tree nodes
t with v ∈ χ(t) forms a subpath of a path in T from r to a leaf. Note that (ST)
subsumes (T3), which implies that a special tree decomposition merely needs
to satisfy (T1), (T2), and (ST). The width of a special tree decomposition as
well as the special treewidth of a graph G are defined analogously to the width
of a tree decomposition and the treewidth, respectively. Figure 1 illustrates an
(optimal) special tree decomposition of a graph.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 433

1

2 4 6

3 5 7

1,6

1,4 6,7

1,2 4,5

2,3

Fig. 1. A graph G (left) and an optimal (special) tree decomposition T = (T, χ) of G
(right).

As a prerequisite for the development of SAT-encodings for the problem, and
since to the best of our knowledge this has never been explicitly stated previously,
we first show that computing the special treewidth of a graph is NP-hard.

Theorem 1. Given a graph G and an integer ω, then determining whether G
has special treewidth at most ω is NP-complete.

Proof. The problem is clearly in NP, because there is always an optimal (spe-
cial) tree decomposition, where the number of nodes is at most the number of
vertices in the graph. The NP-hardness follows from [10], where it was shown
that pathwidth equals treewidth on the class of co-comparability graphs and
moreover computing both width measures for co-comparability graphs is still
NP-hard. Because special treewidth is in-between pathwidth and treewidth it
equals both width measures on co-comparability graphs and its computation is
therefore also NP-hard.

We remark that if ω is constant and not part of the input, then one can check in
linear time whether a given graph has special treewidth at most ω (the running
time depends exponentially on ω) [4]; similar results are well known to hold for
treewidth and pathwidth.

2.4 Weak Partitions

A weak partition of a set S is a set P of nonempty subsets of S such that any two
sets in P are disjoint. We denote by U(P) the union of all sets in P . If additionally
S = U(P), then P is a partition. The elements of P are called equivalence classes.
Let P, P ′ be weak partitions of S. Then P ′ is a refinement of P if U(P) ⊆ U(P ′)
and any two elements x, y ∈ S that are in the same equivalence class of P ′ are
not in distinct equivalence classes of P (this entails the case P = P ′). Moreover,
we say that P ′ is a k-ary refinement of P if additionally it holds that for every
p ∈ P there are p1, . . . , pk in P ′ such that p ⊆ ⋃

1≤i≤k pi. Intuitively, if P ′ is a
k-ary refinement of P , then P is obtained from P ′ by forgetting some elements
and joining up to k equivalence classes.

3 Partition-Based Approach for Special Treewidth

In this section we introduce a novel characterization of special treewidth, in
terms of special derivations. The characterization is inspired by the partition-
based approaches employed for branchwidth and clique-width [11,14].

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

434 N. Lodha et al.

3.1 Characterization: Special Derivations

Let G = (V,E) be a graph. A special derivation P of G of length l is a sequence
(P1, . . . , Pl) of weak partitions of V such that: (SD1) U(P1) = V , (SD2) for
every i ∈ {1, . . . , l − 1}, Pi is a refinement of Pi+1, and (SD3) for every edge
{u, v} ∈ E it holds that there is a Pi and a set p ∈ Pi such that {u, v} ⊆ p. The
width of P is the maximum size of any set in P1 ∪ . . .∪Pl minus 1. We will refer
to Pi as the i-th level of P and we will refer to elements in

⋃
1≤i≤l Pi as sets

of P. We will show that any special tree decomposition can be transformed into
a special derivation of the same width and vice verse. The following example
illustrates the close connection between special tree decompositions and special
derivations.

Example 1. Consider the special tree decomposition T given in Fig. 1. Then
T can, e.g., be translated into the special derivation P = (P1, . . . , P4) defined
by setting P1 = {{1}, {2, 3}, {4, 5}, {6, 7}}, P2 = {{1, 2}, {4, 5}, {6, 7}}, P3 =
{{1, 4}, {6, 7}}, P4 = {{1, 6}}. The width of T is equal to the width of P.

The following theorem shows that special derivations provide an alternative
characterization of special tree decompositions. The main observation behind the
proof of the equivalence between the two characterizations is that after padding
the special tree decomposition such that every leaf has the same distance from
the root, it holds that the weak partition on a certain level of a special derivation
is given by the set of bags that are at the same distance from a leaf in a special
tree decomposition and vice versa.

Theorem 2. A graph G has a special tree decomposition of width at most ω and
height at most h if and only if G has a special derivation of width at most ω and
length at most h. Moreover, there is a special derivation of optimal width with
length at most |V (G)| − ω.

Note that the second statement of the above theorem allows us to restrict our
search to special derivations of length at most |V (G)|−ω. Its proof crucially uses
the observation that a restricted form of tree decompositions, so called small tree
decompositions, can be shown to have height at most |V (G)| − ω.

3.2 SAT-Encoding of a Special Derivation

Here we will provide our encoding for special derivations. Namely, we will con-
struct a CNF formula F (G,ω, l) that is satisfiable if and only if G has a special
derivation of width at most ω and length at most l. Because of Theorem 2 (after
setting l to the value specified in the theorem) it holds that F (G,ω, n − ω) is
satisfiable if and only if G has special treewidth at most ω. To achieve this aim
we first construct a formula F (G, l) that is satisfiable if and only if G has a
special derivation of length at most l

The formula F (G, l) uses a set variable set(u, v, i), for every u, v ∈ V (G) and
i with u ≤ v and 1 ≤ i ≤ l. Informally, set(u, v, i) is true whenever either u �= v
and u and v are contained in the same set at level i of the special derivation or

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 435

u = v and u is contained in some set at level i. We now describe the clauses of
the formula. The following clauses ensure transitive of the relation between two
vertices u, v ∈ V (G) defined by set(u, v, i) for every i with 1 ≤ i ≤ l.

(¬set(u, v, i) ∨ ¬set(u,w, i) ∨ set(v, w, i))

∧(¬set(u, v, i) ∨ ¬set(v, w, i) ∨ set(u,w, i))

∧(¬set(u,w, i) ∨ ¬set(v, w, i) ∨ set(u, v, i))

∧(¬set(u, v, i) ∨ ¬set(u, u, i)) for u, v, w ∈ V (G), u < v < w, 1 ≤ i ≤ l.

To ensure Property (SD1), we add the clause set(u, u, 1) for every u ∈ V (G).
The following clauses ensure (SD2), i.e., Pi is a refinement of Pi+1 for every
1 ≤ i < l.

(¬set(u, u, i + 1) ∨ ¬set(v, v, i + 1) ∨ set(u, v, i + 1) ∨ ¬set(u, v, i))

wedge(set(u, u, i) ∨ ¬set(u, u, i + 1)) for u, v ∈ V (G), u < v, 1 ≤ i < l

Towards presenting the clauses employed to ensure (SD3), we will use the fol-
lowing property that is easily seen to be equivalent to (SD3).
(SD3’) For every edge {u, v} ∈ E, it holds that:

– if there is an i with 1 ≤ i < l such that u, v ∈ U(Pi) and v /∈ U(Pi+1), then
u, v ∈ p for some p ∈ Pi and

– if u, v ∈ U(Pl), then u, v ∈ p for some p ∈ Pl.

Note that (SD3) and (SD3’) are equivalent because whenever there is a set
p ∈ Pi for some i with 1 ≤ i ≤ l containing two vertices u and v, then such a set
also exists in every Pj for j ≥ i as long as u, v ∈ U(Pj). The following clauses
now ensure (SD3’) and thereby (SD3).

((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(u, u, i + 1)) ∨ set(u, v, i))

∧ ((¬set(u, u, i) ∨ ¬set(v, v, i) ∨ set(v, v, i + 1)) ∨ set(u, v, i))

∧ ((¬set(u, u, l) ∨ ¬set(v, v, l)) ∨ set(u, v, l))

for e ∈ E(G), u, v ∈ e, u < v, 1 ≤ i < l

We now ready to to extend F (G, l) to the formula F (G,ω, l). We achieve this
by restricting the sizes of all sets in Pi for every 1 ≤ i ≤ l to be at most ω +1, or
in other words for every v ∈ V (G) and i with 1 ≤ i ≤ l, we need to restrict the
number of variables set(v, u, i) set to true to be at most ω + 1. We achieve this
by using the sequential counter approach described in Subsect. 2.1. The obtained
formula F (G, l, ω) contains O(n3ω) variables and O(n4 + mn3) clauses.

4 Ordering-Based Approach for Special Treewidth

In this section we introduce a second characterization of special treewidth,
namely special elimination orderings, inspired by elimination orderings char-
acterizing treewidth [13].

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

436 N. Lodha et al.

4.1 Characterization: Special Elimination Orderings

We start by introducing elimination orderings characterizing treewidth and then
show how to adapt the notion in the context of special treewidth. Towards this
aim we start with a slightly non-standard definition of elimination orderings for
treewidth, from which it is particularly easy to obtain our adaptation for special
treewidth.

Let G be a graph with n vertices and let ≤S be a total order (v1, . . . , vn) of

the vertices of G. For two vertices u and v with u ≤S v we denote by N≤S

G (u, v)
the set of all neighbors of u in G that are larger than v w.r.t. ≤S . We extend this
notation to sets U ⊆ V (G), where u ≤S v for every u ∈ U , by setting N≤S

G (U, v)

to be the set
⋃

u∈U N≤S

G (u, v). We next define the sequence G≤S

0 , . . . , G≤S

n−1 of

supergraphs of G inductively as follows: We set G≤S

0 = G and for every i with 1 ≤
i < n we let G≤S

i be the graph obtained from G≤S

i−1 after adding all edges in the

set E≤S

i , which is defined as follows. Let C≤S

i be the set of all components of the

graph Gi−1[v1, . . . , vi−1, vi]. Then E≤S

i is the set { {u, v} | u, v ∈ N≤S

Gi−1
(C, vi) ∧

C ∈ C≤S

i }. We call G≤S
= G≤S

n−1 the fill-in graph of G w.r.t. ≤S and G≤S

i

the i-th fill-in graph of G w.r.t. ≤S . Then any total ordering ≤S gives rise to
an elimination ordering of G and the width of an elimination ordering ≤S is
the maximum of max{ |N≤S

G≤S
(C, vi)| | C ∈ C≤S

i } over all i with 1 ≤ i < n.

Furthermore, the elimination width of a graph G is the minimum width of any
elimination ordering of G. It is known that the elimination width of a graph is
equal to the treewidth of a graph [13].

We are now ready to show how to adapt elimination orderings for special
treewidth. Informally, the crucial observation here is that because of Property
(ST) a special tree decomposition, in contrast to a normal tree decomposi-
tion, cannot have separate branches for components that have at least one
common neighbor. This property directly translates to elimination orderings
in the sense that whenever two components C and C ′ in C≤S

i share a neighbor
that comes later in the ordering, they need to be handled together both for
obtaining the fill-in edges as well as for determining the width of the ordering.
To formalize this idea, we say that two components C and C ′ in C≤S

i clash if

N≤S

Gi−1
(C, vi) ∩ N≤S

Gi−1
(C ′, vi) �= ∅. Moreover, let H be the graph with vertex-set

C≤S

i having an edge between two vertices C and C ′ if and only if their associated

components clash and let P≤S

i be the partition of C≤S

i that corresponds to the
connected components of H. Then special elimination orderings are obtained
from elimination orderings by using P≤S

i instead of C≤S

i to determine both the
fill-in edges as well as the width of the ordering. Formally, for special elimination
orderings the set E≤S

i becomes { {u, v} | u, v ∈ N≤S

Gi−1
(P, vi) ∧ P ∈ P≤S

i } and

the width of ≤S becomes the maximum of max{ |N≤S

G≤S
(P, vi)| | P ∈ P≤S

i } over

all i with 1 ≤ i < n. We show next that special elimination orderings properly
characterize special treewidth. The main ideas behind the proof of the theorem
are similar to the proof showing the equivalence between eliminations orderings

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 437

and treewidth [13], however, the proof is significantly more involved due to the
properties of special treewidth.

Theorem 3. A graph G has a special tree decomposition of width at most ω if
and only if G has a special elimination ordering of width at most ω.

4.2 SAT-Encoding for Special Elimination Orderings

Here we provide our encoding for special elimination orderings as introduced in
the previous subsection. In particular, we will construct a CNF formula F (G,ω)
that is satisfiable if and only if G has a special elimination ordering of width at
most ω. Because of Theorem 3 it then holds that F (G,ω) is satisfiable if and
only if G has special treewidth at most ω. Towards this aim we first construct
the formula F (G) that is satisfiable if and only if G has a special elimination
ordering and building upon F (G) we will then use cardinality constraints to
obtain F (G,ω). For the definition of the formula we use the same notation as
introduced in Sect. 4.1, i.e., we refer to the required elimination ordering by
≤S , and use C≤S

v and P≤S
v to refer to the components and parts of the graph

G≤S

v−1[1, . . . , v] (recall that we assume that the vertices of G are numbered from
1 to n).

The formula F (G) uses the following variables. An order variable o(u, v) for
all u, v ∈ V (G) with u < v. The variable o(u, v) will be true if and only if u < v
and u ≤S v. The idea behind the variable o(u, v) is that it can used to model
the total ordering ≤S witnessing the elimination width of G by requiring that
u ≤S v for arbitrary u, v ∈ V (G) if and only if u = v or u < v and u ≤S v or
u > v and ¬o(v, u). In order to be able to refer to ≤S in the clauses of F (G), we
define the “macro” o∗(u, v) by setting o∗(u, v) = true if u = v, o∗(u, v) = o(u, v)
if u < v and o∗(u, v) = ¬o(v, u) if u > v. Additionally, F (G) contains an arc
variable a(u, v) for all u, v ∈ V (G). The variable a(u, v) is true if u ≤S v and
{u, v} ∈ E(G≤S

) and moreover it is not true if v <S u. Finally, F (G) has a part
variable p(u, v) for all u, v ∈ V (G). The variable p(u, v) is true if and only if
the vertices u and v belong to the same part in P≤S

v . Observe that whenever a
vertex u belongs to the same part as a vertex v in P≤S

v , then u will also be in
the same part as v in P≤S

w for any w with v ≤S w.
We will now provide the clauses for the formula F (G). The following clauses

ensure that o∗(u, v) is a total ordering of V (G) by ensuring that the relation
between u and v defined by o∗(u, v) is transitive:

(¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w))
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.

We also introduce the clause a(u, v) ∨ a(v, u) for every {u, v} ∈ E(G), which
ensure that at least one of a(u, v) or a(v, u) is true for every edge {u, v} ∈ E(G).
Towards ensuring that the ordering ≤S represented by o∗(u, v) is compatible with
the direction of the edges given by a(u, v), we introduce the clause ¬a(u, v) ∨
o∗(u, v) for every u, v ∈ V (G). Moreover, to ensure that the relation given by

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

438 N. Lodha et al.

p(u, v) is reflexive, i.e., every vertex belongs to its own part, we introduce the
clause p(v, v) for every v ∈ V (G).

The following clauses ensure that if p(u, v) is true, then also p(w, v) is true
for every w that is in the same component as u in C≤S

v . This is achieved by
enforcing that whenever a vertex w with w ≤S v is connected via an edge in
G≤S

to some vertex u with p(u, v) being true, then also p(w, v) is true.

(¬a(u,w) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))
∧(¬a(w, v) ∨ ¬p(u, v) ∨ ¬o∗(w, v) ∨ p(w, v))

for u,w, v ∈ V (G) and u �= w and w �= v.

The following clauses complete the definition of p(u, v) by enforcing that when-
ever there is a vertex u with u ≤S v that shares a neighbor x with some vertex
w with p(w, v) being true, then also p(u, v) is true, as u must also be in this
part.

¬a(u, x) ∨ ¬a(w, x) ∨ ¬p(w, v) ∨ ¬o∗(u, v) ∨ p(u, v)
for u,w, x, v ∈ V (G) and u �= w �= x.

The following clauses ensure that at least one of a(u, v) or a(v, u) is true for
every “fill-in edge”, i.e., for every edge in E(G≤S

)\E(G).

¬p(u1, v) ∨ ¬p(u2, v) ∨ ¬a(u1, w1) ∨ ¬a(u2, w2) ∨ ¬o∗(v, w1) ∨ ¬o∗(v, w2)
∨a(w1, w2) ∨ a(w2, w1) for u1, u2, w1, w2, v ∈ V (G) with w1 �= w2.

This completes the construction of F (G). Informally, the crucial parts to verify
the correctness of the formula are that for any ordering of the vertices of G,
which is defined by the setting of the ordering variables o(u, v), the formula
ensures that whenever {u, v} ∈ G≤S

then either a(u, v) or a(v, u) is true. This
way the formula ensures that all edges of G≤S

are considered for the definition of
the part variables p(u, v), which in turn ensures the correctness of the formula.

We are now ready to construct the formula F (G,ω). To achieve this it only

remains to restrict the sizes of the sets N≤S

G≤S
(P, v) to be at most ω for every

v ∈ V (G) and P ∈ P≤S
v . Indeed we need to restrict the number of vertices w sat-

isfying the formula a(u,w)∧p(u, v)∧ o∗(v, w) for every u, v ∈ V (G). We achieve
this again by using the sequential cardinality counter described in Subsect. 2.1.
This concludes the description of the formula F (G,ω), which contains O(n2ω)
variables and O(n5) clauses.

5 SAT-Encodings for Pathwidth

In this section we introduce our characterizations and encodings for pathwidth.
Namely, we first introduce an encoding for pathwidth based on the well-known
vertex separation number and then provide a second encoding based on path
decompositions, which can be seen as a special case of the derivation-based
encoding for special treewidth.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 439

5.1 Partition-Based Encoding for Pathwidth

In this section we provide the partition-based encoding for pathwidth. Note
that since a path decomposition has no branches, and therefore the partition on
every level consists merely of a single set, the partition-based characterization
of pathwidth becomes much simpler than its counterpart for special treewidth.
In particular, the encoding is very closely based on the characterization of path-
width in terms of a path decomposition, which can be equivalently stated as
follows. A path decomposition can be seen as a sequence (P1, . . . , P�) of bags
satisfying the following conditions: (P1) for every v ∈ V (G) there is a bag Pi

with v ∈ Pi, (P2) for every i with 1 ≤ i < l, if v ∈ Pi and v /∈ Pi+1, then v /∈ Pj

for every j > i. We say that the vertex v has been forgotten at level i + 1. (P3)
for every u, v ∈ V (G) with {u, v} ∈ E(G) and every i with 1 ≤ i < �, it holds
that if u and v have not yet been forgotten at level i but u is forgotten at level
i + 1, then u and v are contained in Pi. In the following we describe the CNF
formula F (G,ω, �), which for a graph G and two integers ω and � is satisfied
if and only if G has a path decomposition of width at most ω with at most
� bags. Note that since path decompositions are a special case of special tree
decompositions, we can bound the maximum number of bags in an optimal path
decomposition by n − ω in accordance with Theorem 2. Therefore, the formula
F (G,ω, n − ω) is satisfied if and only if G has a path decomposition of width at
most ω.

F (G,ω, �) contains the following variables for every v ∈ V (G) and every i
with 1 ≤ i ≤ �: The bag variable s(v, i), which is true if Pi contains the vertex v,
and the forgotten variable f(v, i), which is true if the vertex v has been forgotten
at some step j ≤ i. Moreover, F (G,ω, �) contains the following clauses:

– for every v ∈ V (G), the clause ¬f(v, 1) mirroring the property that no vertex
is marked forgotten at (or before) the first bag of the path decomposition,

– for every v ∈ V (G), the clause f(u, �), which ensures Property (P1),
– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬s(v, i) ∨ ¬s(v, i +

1) ∨ f(v, i), which ensures that if a vertex does occur in the bag at level i but
not in the bag at level i + 1, then it is marked as forgotten.

– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬f(v, i) ∨ ¬s(v, i),
which ensures that if a vertex has already been forgotten at level i, then it
does not occur in the i-th bag of the path decomposition,

– for every v ∈ V (G) and every i with 1 ≤ i < �, the clause ¬f(v, i)∨ f(v, i+1),
which ensures that if a vertex is forgotten at level i then it remains forgotten
at any level j > i (note that these clauses together with the clauses defined
in the previous item ensure Property (P2),

– for every u, v ∈ V (G) with {u, v} ∈ E(G) and every i with 1 ≤ i < �, the
clauses f(u, i)∨f(v, i)∨¬f(u, i+1)∨s(u, i) and f(u, i)∨f(v, i)∨¬f(u, i+1)∨s(v, i),
which together ensure Property (P3).

Finally, it remains to restrict the maximum size of the set s(u, i) for any level i
to be at most ω + 1, i.e., for every level i with 1 ≤ i ≤ �, we need to restrict the
number of variables s(u, i) set to true to be at most ω +1. We achieve this using

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

440 N. Lodha et al.

the sequential cardinality counter described in Subsect. 2.1. This completes the
construction of the formula F (G,ω, �), which including the counter variables and
clauses contains O(n2ω) variables and O(n3) clauses.

5.2 Ordering-Based Encoding for Pathwidth

Our second encoding for pathwidth is based on the characterization of pathwidth
in terms of the vertex separation number, which is defined as follows. Given a
graph G, an ordering ≤V of the vertices of G, and a vertex v ∈ V (G), we denote
by S≤V

(v) the set of all vertices in G that are smaller or equal to v w.r.t. ≤V .
Moreover, for a subset S of the vertices of G, we denote by δ(S), the set of guards
of S in G, i.e., the set of all vertices in S that have a neighbor in V (G)\S. Then
a graph G has vertex separation number at most ω if and only if there is an
ordering ≤V of its vertices such that |δ(S≤V

(v))| ≤ ω for every v ∈ V (G). It is
well-known that G has vertex separation number at most ω if and only if G has
pathwidth at most ω [12].

We will now show how to construct the formula F (G,ω) which is satisfiable
if and only if G has vertex separation number (and hence pathwidth) at most
ω. Apart from the variables needed for counting (which we will introduce later),
the formula F (G,ω), has an order variable o(u, v) for every u, v ∈ V (G) with
u < v. The variable o(u, v) will be true if and only if u < v and u ≤V v. The
idea behind the variable o(u, v) is that it can used to model the total ordering
≤V witnessing the vertex separation number of G by requiring that u ≤V v for
arbitrary u, v ∈ V (G) if and only if u = v or u < v and u ≤V v or u > v and
¬o(v, u). In order to be able to refer to ≤V in the clauses, we define the “makro”
o∗(u, v) by setting o∗(u, v) = true if u = v, o∗(u, v) = o(u, v) if u < v and
o∗(u, v) = ¬o(v, u) if u > v. Moreover, F (G,ω) has a guard variable c(v, u) for
every u, v ∈ V (G), which is true if u ≤V v and vertex u has a neighbor vertex
w such that v ≤V w, i.e., vertex u contributes to the separation number for
vertex v.

We will next provide the clauses for F (G,ω). Towards ensuring that o∗(u, v)
is a total ordering of V (G), it is sufficient to ensure that the relation described
by o∗(u, v) is transitive, which is achieved by the following clauses:

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ o∗(u,w)
for u, v, w ∈ V (G) where u, v, and w are pairwise distinct.

The next clauses provide the semantics for the variables c(v, u). Namely, c(v, u)
is set to true if u ≤V v and there is an edge {u,w} ∈ E(G) with v ≤V w.

¬o∗(u, v) ∨ ¬o∗(v, w) ∨ c(v, u) for v ∈ V (G), {u,w} ∈ E(G) and v �= w.

It remains to restrict the number of guards of each vertex set S≤V
(v) given by

the ordering o∗(u, v). Using the variables c(v, u) this is equivalent to restricting
the number of variables c(v, u) that are true to be at most ω for every v ∈ V (G).
Towards this aim, we again employ the sequential cardinality counter described
in Subsect. 2.1. This completes the construction of the formula F (G,ω), which

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 441

including the variables and clauses used for counting has O(n2ω) variables and
O(n3) clauses.

6 Experiments

We run the experiments on a 4-core Intel Xeon CPU E5649, 2.35 GHz, 72 GB
RAM machine with Ubuntu 14.04 with each process having access to at most
8 GB RAM. For each individual SAT call we set a timeout of 1000 s and we do not
impose an overall timeout for the whole process. The compilation of all encodings
is implemented in C++ and we compared the performance of the encodings
using the SAT solvers Minisat 2.2 (m), Glucose 4.0 (g), and MapleSAT (a). As
benchmark instances we used the benchmark set of well-known named graphs
from the literature [17] (previously also used in [11,14]) as well as uniformly
generated instances like square grids and complete graphs. In the following we
will refer to the two encodings introduced in Subsects. 3.2 and 5.1 as partition-
based encodings (P) and to the encodings introduced in Subsects. 4.2 and 5.2 as
ordering-based encodings (O). All our experimental results as well as the code for
the compilation of our encodings can be found at https://github.com/nehal73/
SATencoding.

6.1 Results

Our main experimental results are provided in Tables 1 and 3. Table 1 shows our
results for the benchmark set of well-known named graphs from the literature.
The benchmark set is a collection of well-known small to mid-sized graphs from
the literature that has already been used in the comparison of encodings for
other width measures such as clique-width [11] and branchwidth [14]. For each
graph in the benchmark set we run our four encodings as well as, for comparison,
the encoding for treewidth based on elimination orderings [16], using the three
above mentioned SAT-solvers with the aim of computing the exact width of the
graph. Namely, starting from width zero (ω = 0) we increased ω by one as long
as either the instance became satisfiable (in which case the current ω equals the
width of the graph) or the SAT-call reached the timeout of 1000 s (in which
case the current ω minus 1 is a lower bound for the width of the graph). If we
reached a timeout, we further increased ω until the instance could be solved again
within the timeout and returned satisfiable, thereby obtaining an upper bound
for the width of the graph. In three cases (marked with an asterix in Table 1) we
obtained the exact width using a longer timeout of 10000 s using the partition-
based encoding for special treewidth. For each width parameter the obtained
width of the graph (or an interval for the width giving the best possible lower
bound and upper bound obtained by any encoding) is provided in the ω column of
the table. Moreover, for special treewidth and pathwidth, the table contains the
two columns (P) and (O), which show the best result obtained by any SAT-solver
for the partition-based and ordering-based encodings, respectively. Namely, if
the exact width of the graph could be determined, then the column shows the

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

442 N. Lodha et al.

overall running-time in seconds (the sum of all SAT-calls) for the best SAT-
solver, whose initial is given as a superscript. Otherwise the table shows the best
possible interval that could be obtained within the timeout or “M.O.” if every
SAT-call resulted in a memory out.

Table 3 shows our results for square grids and complete graphs. The idea
behind using square grids and complete graphs is that they represent two types of
graphs with high treewidth, i.e., sparse and dense graphs. Moreover, square grids
and complete graphs are also naturally well-suited to compare the encodings
along the three considered width measures (i.e., pathwidth, special treewidth,
and treewidth) as it is well-known that all three width measures coincide on
square grids and complete graphs. Namely, the pathwidth, special treewidth,
and treewidth of an n × n-grid and a complete graph on n vertices is n and
n − 1, respectively. For all our encodings, the table shows the largest size of
square grids and complete graphs, whose width could be determined exactly
within the timeout (using any of the three considered SAT-solvers). That is,
starting from n = 1 we called each encoding for ω = n − 1 and ω = n (in the
case of the n × n-grid) and for ω = n − 1 and ω = n − 2 (in the case of the
complete graph on n vertices) and increased n as long as both calls completed
within the timeout.

6.2 Discussion

In the case of special treewidth, our experiments indicate that the partition-based
encoding is superior to the ordering-based encoding for all of the considered
instances. Namely, the partition-based encoding can solve grids and complete
graphs that are almost twice as large as the ones solvable using the ordering-
based encoding (Table 3). The partition-based encoding almost always beats the
ordering-based encoding by at least one order of magnitude on the well-known
named graphs, and it also provides better lower bounds and upper bounds for
the graphs that could not be solved exactly (Table 1). Overall, the partition-
based encoding can be seen as the clear winner for special treewidth, which is
somewhat unexpected for two reasons: (i) the ordering-based encoding is similar
in spirit to the currently leading encoding for treewidth and (ii) asymptotically,
the ordering-based encoding has fewer variables and almost the same number of
clauses as the partition-based encoding (Table 2). It can be observed that the
partition-based encoding for special treewidth is competitive with the leading
encoding for treewidth, with both encodings showing advantages on different
instances.

In the case of pathwidth the difference between the two encodings is far less
pronounced. Whereas the ordering-based encoding has a clear advantage on the
benchmark set of well-known named graph (Table 1), although far less significant
than the advantage of the partition-based encoding for special treewidth, the
partition-based encoding has an extraordinary advantage on complete graphs
(Table 3). We note that both encodings have asymptotically the same numbers
of clauses and variables (Table 2). It seems that in general the partition-based
encoding has an advantage on dense graphs, whereas the ordering-based encoding

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 443

Table 1. Results for the benchmark set of the well-known named graphs.

Instance |V | |E| Special treewidth Pathwidth Treewidth

ω O P ω O P ω O

Petersen 10 15 5 5.03m 0.48m 5 0.28a 0.35m 4 0.15

Goldner-Harary 11 27 4 2.53m 0.27m 4 0.17m 0.17m 3 0.11

Grötzsch 11 20 5 4.27m 0.43m 5 0.18a 0.36m 5 0.28

Herschel 11 18 4 3.32m 0.34m 4 0.17a 0.20m 3 0.14

Chvátal 12 24 6 11.09m 0.92m 6 0.44g 0.69a 6 0.61

Dürer 12 18 4 7.28a 0.63m 4 0.13m 0.33m 4 0.25

Franklin 12 18 5 12.30a 1.40m 5 0.30m 0.60m 4 0.30

Frucht 12 18 4 7.56g 0.71m 4 0.21g 0.31a 3 0.12

Tietze 12 18 5 11.34m 1.26m 5 0.27m 0.53m 4 0.21

Paley13 13 39 8 22.13m 1.16m 8 1.02a 1.23m 8 2.60

Poussin 15 39 6 61.07a 1.65m 6 0.39m 0.65m 6 0.37

Clebsch 16 40 9 234.28m 13.20m 9 25.76a 17.17a 8 6.30

4 × 4-grid 16 24 4 97.98m 1.13m 4 0.22a 0.39m 4 0.28

Hoffman 16 32 7 204.73a 20.22m 7 6.30g 8.21m 6 2.39

Shrikhande 16 48 9 234.76m 10.42m 9 11.78a 8.04m 9 131.11

Sousselier 16 27 5 127.87m 3.33m 5 0.24m 0.62m 5 0.31

Errera 17 45 6 153.83a 2.78m 6 0.40m 0.76m 6 0.49

Paley17 17 68 12 504.54a 15.76m 12 106.99a 27.52a 11 35.23

Pappus 18 27 7 912.69a 438.24g 7 16.47g 54.62g 6 160.90

Robertson 19 38 8 1082.73a 130.26m 8 11.84g 36.02g 8 307.21

Desargues 20 30 6 1349.67m 237.57g 6 0.84m 10.16m 6 324.21

Dodecahedron 20 30 6 1564.23a 337.20g 6 4g 38.52g 4–6 4–6

FlowerSnark 20 30 6 1352.67m 201.40g 6 1.04m 10.99m 6 400.06

Folkman 20 40 7 1434.93a 130.20m 7 2.84g 23.15m 6 10.87

Brinkmann 21 42 8 2548.46m 354.62m 8 14.85g 63.71g 8 593.45

Kittell 23 63 7 160.33g 24.70m 7 1.05m 8.28m 7 4.38

McGee 24 36 8∗ 5–8 5–8 8 62.47a 524.21g 5–7 5–7

Nauru 24 36 8∗ 5–8 5–8 8 181.73a 6–8 6 457.92

Holt 27 54 10∗ 7–10 6–10 10 386.16a 8–10 7–9 7–9

Watsin 50 75 3–8 M.O. 3–8 7 76.77m 5–7 4–7 4–7

B10Cage 70 106 2–20 M.O. 2–20 8-16 8-16 6–16 4–17 4–17

Ellingham 78 117 3–9 M.O. 3–9 6 22.88m 5–7 4–6 4–6

Table 2. The number of variables and
clauses for our four encodings in terms of
the number n of vertices, the number m
of edges m, and the width ω

sptw pw

Vars Cls Vars Cls

P O(n3ω) O(n4 + mn3) O(n2ω) O(n3)

O O(n2ω) O(n5) O(n2ω) O(n3)

Table 3. Experimental results for
square-grids and complete graphs:
number of vertices of largest
graphs solved within the timeout

Graphs sptw pw

O P O P

Square grids 16 36 81 64

Complete graphs 34 76 26 123

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

444 N. Lodha et al.

is better suited for sparse graphs. The results seem to indicate that different
encodings should be employed for different classes of graphs. This underlines the
importance of developing different encodings for the same width parameter and
encourages the development of a portfolio-based approach for SAT-encodings.

Moreover, we would like to mention a few general observations concerning the
performance of the three SAT-solvers. Generally the differences in the performance
of the three SAT-solvers were quite minor over all encodings. In particular, the
conclusions drawn about the comparison of the different encodings were the same
for each of the three SAT-solvers. With respect to the special treewidth encodings,
it can be inferred from Table 1 that MiniSAT has the best performance for more
instances than Glucose or MapleSAT. However, we observed that Glucose was the
most robust among the three solvers, since there are instances that could only be
solved by Glucose and all instances that could be solved by any of the solvers could
also be solved by Glucose. With respect to the pathwidth encodings, the differences
between the solvers is less pronounced, each having advantages on about the same
number of instances.

We also conducted initial experiments on random graphs, whose results (due
to space limitations) can only be found in our github repository. Namely, we
tested all our encodings on random graphs with 20, 40, and 60 vertices and edge
probabilities 0.1, 0.2, . . . , 0.9. For each setting we generated 10 random graphs
and reported the average running time for each of our encodings (we used a
timeout of 2000s per SAT-call as well as an overall timeout of 6 h). Our results
on random graphs strongly support our conclusions reported above concerning
the relative performance of the various encodings.

7 Conclusion

We compared two SAT encodings for special tree width and pathwidth respec-
tively. For the former we introduced two novel characterizations which might be
of independent interest. Based on these characterizations for special treewidth
and two related characterizations for pathwidth, we developed and empirically
compared SAT-encodings for the computation of special treewidth and path-
width. Our empirical results emphasize that the performance of SAT-encodings
can strongly depend on the underlying characterization. Interestingly, for spe-
cial treewidth, a partition-based encoding far outperforms an ordering-based
encoding, although the latter encoding is closely related to the currently leading
encoding for the prominent width parameter treewidth. It is only natural to ask
whether a similar partition-based approach can be fruitful for treewidth. More-
over, for pathwidth, we obtained two SAT-encodings which both perform well,
each of them having an advantage on different classes of instances; thus suggests
a portfolio-based approach.

Acknowledgments. The authors kindly acknowledge the support by the Austrian
Science Fund (FWF, projects W1255-N23 and P-26200).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

SAT-Encodings for Special Treewidth and Pathwidth 445

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebr. Discret. Method. 8(2), 277–284 (1987)

2. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evalu-
ation. In: 26th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Com-
puter Society (2014)

3. Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.:
Using ILP/SAT to determine pathwidth, visibility representations, and other grid-
based graph drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242,
pp. 460–471. Springer, Cham (2013). doi:10.1007/978-3-319-03841-4 40

4. Bodlaender, H.L., Kratsch, S., Kreuzen, V.J.C.: Fixed-parameter tractability and
characterizations of small special treewidth. In: Brandstädt, A., Jansen, K., Reis-
chuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 88–99. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45043-3 9

5. Bodlaender, H.L., Kratsch, S., Kreuzen, V.J., Kwon, O.J., Ok, S.: Characterizing
width two for variants of treewidth (part 1). Discr. Appl. Math. 216, 29–46 (2017)

6. Courcelle, B.: Special tree-width and the verification of monadic second-order
graph properties. In: Lodaya, K., Mahajan, M. (eds) 2010 IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS, LIPIcs, Chennai, India, vol. 8, pp. 13–29. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 15–18 Dec 2010

7. Courcelle, B.: On the model-checking of monadic second-order formulas with edge
set quantifications. Discr. Appl. Math. 160(6), 866–887 (2012)

8. Dell, H., Rosamond, F.: The 1st parameterized algorithms and computational
experiments challenge–track A: Treewidth. Technical report (2016). https://
pacechallenge.wordpress.com/2016/09/12/here-are-the-results-of-the-1st-pace-
challenge/

9. Diestel, R.: Graph Theory: Graduate Texts in Mathematics, 2nd edn. Springer
Verlag, New York (2000)

10. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-
theoretic parameter. Order 1, 47–60 (1994)

11. Heule, M., Szeider, S.: A SAT approach to clique-width. ACM Trans. Comput.
Log. 16(3), 24 (2015)

12. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42(6), 345–350 (1992)

13. Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin
(1994)

14. Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In:
Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195.
Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 12

15. Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin.
Theory Ser. B 35(1), 39–61 (1983)

16. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.)
SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02777-2 6

17. Weisstein, E.: MathWorld online mathematics resource (2016). http://mathworld.
wolfram.com

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
2

