
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-17-010
Dec 2017

The Treewidth of Proofs

MoritzMüller and Stefan Szeider

This is the authors’ copy of a paper that appeared in Information and Computation
volume 255, pp. 147–164 (2017), DOI: 10.1016/j.ic.2017.05.005

www.ac.tuwien.ac.at/tr

https://doi.org/10.1016/j.ic.2017.05.005

The Treewidth of ProofsI

Moritz Müller

Universität Wien
Kurt Gödel Research Center for Mathematical Logic

Währinger Straße 25,1090 Vienna, Austria

moritz.mueller@univie.ac.at

Stefan Szeider

Technische Universität Wien
Algorithms and Complexity Group

Favoritenstraße 9-11, 1040 Vienna, Austria
stefan@szeider.net

Abstract

So-called ordered variants of the classical notions of pathwidth and treewidth are introduced and proposed as proof
theoretically meaningful complexity measures for the directed acyclic graphs underlying proofs. Ordered pathwidth is
roughly the same as proof space and the ordered treewidth of a proof is meant to serve as a measure of how far it is
from being treelike. Length-space lower bounds for k-DNF refutations are generalized to arbitrary infinity axioms and
strengthened in that the space measure is relaxed to ordered treewidth.

Key words: Proof Complexity, Infinity Axioms, Treewidth, Pathwidth, Resolution, Proof Space.

1. Introduction

Razborov says that “in most cases the basic question of propositional proof complexity boils down to this. Given
a mathematical statement encoded as a propositional tautology φ and a class of admissible mathematical proofs
formalized as a propositional proof system P, what is the minimal possible complexity of a φ-proof of φ?” [41, p.415]
This is also the perspective of “Bounded Reverse Mathematics” taken in Cook and Nguyen’s monograph [13, p.xiv].

1.1. Resolution-based proof systems

A proof system of fundamental interest is Resolution. The most important complexity measures for refutations
are the length, the width and the space of a resolution refutation. Space (formula-space or clause-space) has been
introduced by Esteban and Torán [18]. Intuitively, a space 100 refutation of a set Γ of clauses is one that can be
presented as follows.

A teacher is in class equipped with a blackboard containing up to 100 clauses. The teacher starts from the
empty blackboard and finally arrives at one containing the empty clause. The blackboard can be altered
by either writing down a clause from Γ, or by wiping out some clause, or by deriving a new clause from
clauses currently written on the blackboard by means of the Resolution rule.

Some interesting restrictions of Resolution are obtained by requiring a particular simple structure of the DAGs
(directed acyclic graphs) underlying refutations. Examples are Input, linear and treelike Resolution – we refer to the
monograph [26]. Interesting extensions of Resolution include R(1),R(2), . . . ,R(log) from [28]. The system R(1) is

IAn extended abstract of this work appeared as [35].

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

just Resolution, and R(k) is a straightforward generalization operating with k-DNFs instead of clauses. The treelike
versions of these systems are all simulated by (daglike) Resolution [27], so all treelike and daglike systems R(k) line up
in a hierarchy. The hierarchy is strict with respect to length as shown in [17] for the treelike systems and in [46, 44]
for the daglike ones. The hierarchy is also strict with respect to space, see again [17] for the treelike, and [7] for the
daglike systems.

From a practical perspective the special interest in Resolution derives from its connections to SAT-solvers with
length and space of refutations corresponding to time and space of algorithms. We refer to [37] for a recent survey.
From the more theoretical perspective of “Bounded Reverse Mathematics”, the systems R(k) deserve some special
interest because length lower bounds for them imply independence from weak arithmetics based on various forms
of ∀∃-induction schemes. For example, super-quasipolynomial length lower bounds on treelike or daglike R(log)
imply independence from relativized bounded arithmetics T 1

2 (α) or T 2
2 (α) respectively [28]. See [9] for independence

derivable from super-polynomial length lower bounds for daglike R(1),R(2), . . .
Concerning the relationship of the complexity measures for (daglike) Resolution, Ben-Sasson and Wigderson [8]

famously showed how to derive length lower bounds from width lower bounds. Also space lower bounds follow from
width lower bounds [2] (see [19] for a recent alternative proof) but not vice-versa [36]. Ben-Sasson [6] initiated “the
research of optimizing two of the measures at once” [6] and proved a trade-off, i.e. a negative answer, for length
and width in treelike Resolution. Recently, Razborov [42] found an “ultimate” such trade-off. Ben-Sasson and
Nordström [7] proved various trade-offs for length and space, for example, they constructed CNFs refutable by (daglike)
Resolution in length O(n) as well as in space O(n/ log n), but every refutation in this space has length 2nΩ(1)

. Beame et
al. [5] found a length-space trade-off applying to Resolution refutations of superlinear space.

1.2. Infinity axioms

Many of the abovementioned lower bounds for the different complexity measures are witnessed by quite artificial
CNFs. Recalling the introductory quote, CNFs that naturally express certain combinatorial principles deserve some
special interest. A large class of such CNFs is obtained from first-order sentences ϕ letting CNFs 〈ϕ〉n naturally describe
models of ϕ of size n. If ϕ does not have finite models, then these CNFs are contradictory and we ask for the complexity
to refute them. If ϕ has no model at all, there are polynomial length refutation even in treelike Resolution [43]. If ϕ has
no finite but an infinite model, i.e., ϕ is an infinity axiom, then exponential length lower bounds have been shown for
the treelike systems, namely 2Ω(n) for treelike Resolution by Riis [43], 2Ω(n log k/k) for treelike R(k) by Dantchev and
Riis [16], and already earlier 2Ω(

√
n) for treelike R(log) by Krajı́ček [29].

But the daglike systems have short refutations of some infinity axioms. Stålmarck [47] gave a polynomial length
Resolution refutation of the (CNFs expressing the) least number principle, the infinity axiom asserting a pre-order
without minimal elements. Dantchev and Riis [16] showed that Resolution needs exponential length to refute any
relativized infinity axiom. Iterating relativizations of the least number principle yields natural witnesses to the
exponential separations of R(k) and R(k + 1) [15]. It is not understood which (say, by some model-theoretic criterion)
infinity axioms do have short refutations, say, in R(k) for constant k; see [14] for a discussion.

As a second example, Maciel et al. [32] gave quasipolynomial length R(log)-refutations of the weak pigeonhole
principle with n2 pigeons and n holes. It is not known whether this can be improved to polynomial. A lower bound
2Ω(n/(log n)2) is known [40] for Resolution. We refer to [39, 45] for surveys of the proof complexity of pigeonhole
principles.

For Resolution, space lower bounds have been obtained in [18] for the pigeonhole principles and in [1] for the least
number principle. [17] generalizes these bounds to R(k).

1.3. Ordered treewidth

Short R(log)-refutations of infinity axioms cannot be treelike, in Razborov’s words, they “must necessarily use a
high degree of parallelism.” [42, Abstract]. It would be desirable to quantify the amount of parallelism used by a proof
and consider it as a complexity measure of proofs.

An hint how to do so comes from considering space. Space can be seen as a connectivity measure of the DAG
underlying a refutation: Esteban and Torán [18] characterized space as a certain pebbling number of the refutation
DAG. Following Beame et al. [5] the space of a linearly written Resolution refutation is the minimal number w such
that at any derivation step at most w many already derived clauses are to be used at a later step. These characterizations

2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

are superficially reminiscent of characterizations of pathwidth for undirected graphs (see [24] and [25]), the second
being akin to the vertex separation number.

Pathwidth and treewidth play an important role in Robertson and Seymour’s graph minors project and have evolved
as very successful and ubiquitously used complexity measures of graphs. We refer to [10] for a survey. Many graph
problems can be efficiently solved by dynamic programing on a tree-decomposition witnessing small treewidth (see
e.g. [20, Chapter 11]), and in fact treewidth turned out to be the key parameter to understand the complexity of graph
homomorphism problems ([22, 33, 31] is a sample of some seminal results).

With an eye to proof DAGs, we introduce notions of path and tree decompositions of digraphs with associated
width notions ordered pathwidth and ordered treewidth. Starting with [23] a number of width notions for digraphs
have been proposed (see [21] for a survey, [4] for a monograph). But, citing Kreutzer and Ordyniak, “all digraph
decompositions proposed so far measure in some way the similarity of a graph to being acyclic. In particular, acyclic
graphs have small width in all of these measures” [30, p.4689]. In contrast, the ordered width notions allow us to
distinguish between DAGs. We feel that these notions are handy in that they enjoy some of the basic combinatorics
familiar from the undirected setting. The notions are well-motivated from a graph theoretic point of view; for example
on DAGs, ordered pathwidth coincides with a straightforward variant of the vertex separation number adapted to DAGs
(Proposition 3.17).

More importantly, we show that the ordered width notions have proof theoretic sense: the connection to the
vertex separation number readily implies that the pathwidth of a refutation DAG is roughly the same as its space
(Proposition 5.1). Resolution refutations of minimal ordered pathwidth ‘are’ Input Resolution refutations (up to some
elementary rewriting, see Theorem 4.1 and its proof). Conceptually, this allows us to think of space as a measure of
how far a Resolution refutation is from being an Input Resolution refutation.

We propose ordered treewidth as a measure of parallelism, that is, of how far a refutation is from being treelike. We
show that Resolution refutations of minimal ordered treewidth ‘are’ treelike refutations (see Theorem 4.3). We also
give an interpretation of ordered treewidth in terms of space (Theorem 5.4), using the following two player game, that
continues the metaphor above.

A student visits the teacher in her office asking her to explain the proof. The teacher has a blackboard
potentially containing up to 10 clauses and writes the empty clause on it. The student asks how to prove it.
The teacher produces a length ≤ 10 proof from Γ plus some additional clauses. The student chooses one of
these additional clauses and asks how to prove it. The blackboard is cleaned, the teacher answers and so
on. The game ends when the teacher comes up with a proof using no additional clauses.

1.4. Lower bounds

Our main result (Theorem 6.1) is a lower bound on length and ordered treewidth for R(k)-refutations of infinity
axioms in general. More precisely, let k,w, ` be functions of n and ϕ an infinity axiom; then R(k)-refutations of 〈ϕ〉n of
ordered treewidth w and length ` must satisfy

k · w · log ` ≥ nΩ(1).

This generalizes the lower bounds for treelike R(log) mentioned above. It makes progress with respect to the known
length-space lower bounds in that it applies to infinity axioms in general, and thereby to a large class of formulas
having a natural meaning. It relaxes the refutation space measure (i.e., ordered pathwidth) to ordered treewidth, and it
gives nontrivial lower bounds for all R(k) simultaneously, and for R(log). The latter feature overcomes a bottleneck in
constructions from [7] which give good lower bounds for R(k) with constant k but become trivial for R(log).

We state some corollaries concerning issues mentioned in this introduction. First, as a corollary to the proof, we
also get lower bounds on space, i.e., ordered pathwidth, for infinity axioms in general. Namely, R(k)-refutations of 〈ϕ〉n
of ordered pathwidth w and any length must satisfy k · w ≥ nΩ(1) (Corollary 6.3).

Concerning short refutations of infinity axioms we can now make quantitative sense of the statement that they
require a high degree of parallelism, even for the rather strong system R(log). Namely, already subexponential
length 2no(1)

R(log)-refutations of 〈ϕ〉n require ordered treewidth nΩ(1) (Corollary 6.6).
This implies a trade-off for length and parallelism that is witnessed by a natural example, namely the least number

principle, and where the upper bounds hold for Resolution while the lower bound holds for R(log) (Corollary 6.8).

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

1.5. Proof idea
The proof of our main result follows the adversary type argument of [29] against treelike R(log)-refutations of

infinity axioms. One uses restrictions that describe finite parts of some infinite model of the infinity axiom. Starting
with the empty restriction, first choose a node as in Spira’s theorem, namely one that splits the refutation tree into two
subtrees of size at most 2/3 of total. Then distinguish two cases, namely whether no extension of the current restriction
satisfies the formula at the chosen node or not. In the first case stick with the current restriction and recurse to the
subtree rooted at the chosen node. In the second case delete this subtree and recurse with a “small” extension of the
current restriction that satisfies the formula at the chosen node.

The invariant maintained is a proof of a formula “forced false” from axioms plus some formulas “forced true.” If
the proof has length `, this process reaches a constant size proof after O(log `) steps. If ` is not too large, it is argued
that the final restriction can be further extended to force all remaining axioms true and a contradiction is reached.

The proof of our lower bound proceeds similarly but by recursion on an ordered tree decomposition of the refutation.
To make sense of this idea we show that we can always find a tree decomposition whose underlying tree is binary
(to find a Spira type split node) and whose size is linear in the length of the refutation (Lemma 3.12). Further care
is needed to ensure that the partial tree decompositions during the recursion are decompositions of refutations with
similar properties as the invariant described above (Lemma 3.8).

2. Preliminaries

2.1. Digraphs
We consider directed graphs (digraphs, for short) without self-loops and denote the set of vertices and the set of

directed edges of a digraph D by V(D) and E(D), respectively. If (u, v) ∈ E(D), then u is a predecessor of v and v a
successor of u. An ancestor of v ∈ V(D) is a vertex w such that there is a directed path from w to v in D; we understand
that vertices in a path are pairwise distinct, and that there is a directed path from any vertex to itself. By the length of
a path we mean its number of edges. The in-degree (out-degree) of v is the number of its predecessors (successors).
The in-degree (out-degree) of D is the maximal in-degree (out-degree) over all vertices. Vertices of in-degree 0 are
sources, vertices of out-degree 0 are sinks. An (induced) subdigraph of D is a digraph D[X] induced on a nonempty
X ⊆ V(D); if V(D) \ X is nonempty, we write D − X for D[V(D) \ X]. The graph D underlying a digraph D has the
same vertices as D and as edges E(G) ∪ {(u, v) | (v, u) ∈ E(G)}, the symmetric closure of E(D). In general, a graph is a
digraph D with symmetric E(D). A DAG is a directed acyclic graph (i.e., a digraph without directed cycles), and a tree
is a DAG T with a unique sink rT called root such that for every v ∈ V(T) there is exactly one directed path from v
to rT . We shall refer to vertices in a tree as nodes. The subtree Tt rooted at t ∈ V(T) is the subtree of T induced on the
set of ancestors of t in T ; it has root rTt = t. The height of a tree is the maximal length in a branch (leaf-to-root path)
in T . By the perfect binary tree Bh of height h we mean the tree where every node which is not a leaf has exactly two
predecessors and all branches have length exactly h.

2.2. Propositional logic
A literal is a propositional variable X or its negation ¬X; for a literal ` we let ¬` denote ¬X, if ` = X, and X, if

` = ¬X. A (k-)term is a set of (at most k) literals. A (k-)DNF is a set of (k-)terms. The empty DNF is denoted by 0 and
the empty term by 1. A clause is a 1-DNF. An assignment is a function from the propositional variables into {0, 1}. A
restriction ρ is a finite partial assignment. For a restriction or assignment ρ and a term t we let t � ρ be 0 if t contains a
literal falsified by ρ (in the usual sense) and otherwise the subterm obtained by deleting all literals satisfied by ρ. For a
DNF D we let D � ρ be 1 if t � ρ = 1 for some t ∈ D; otherwise D � ρ is the DNF {t � ρ | t ∈ D} \ {0}. Note that, if ρ is
defined on all variables appearing in D then D � ρ equals the truth value of D under ρ.

Definition 2.1. A (k-)DNF proof is a pair (D, (Fv)v∈V(D)) where D is a DAG with a unique sink and in which every
vertex has at most two predecessors, and Fv is a (k-)DNF for every v ∈ V(D). The proof is said to be of F if F = Fv

for v the sink of D, and from Γ if Fv ∈ Γ for all sources v of D. It is said to be treelike if D is a tree. Proofs of 0 are
refutations. The length of the proof is |V(D)|. A refutation system is a set of refutations.

Usually one requires refutation systems to satisfy certain further properties like soundness or completeness or being
polynomial time decidable (cf. [12]).

4

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Definition 2.2. A DNF proof (D, (Fv)v∈V(D)) is sound if for every inner vertex v ∈ V(D) and every assignment ρ we
have Fv � ρ = 1 whenever Fu � ρ = 1 for all predecessors u of v in D. It is strongly sound (cf. [46]) if for every inner
vertex v ∈ V(D) and every restriction ρ we have Fv � ρ = 1 whenever Fu � ρ = 1 for all predecessors u of v in D.

Obviously, strongly sound proofs are sound. The next statement is also obvious.

Lemma 2.3. If there is a strongly sound proof of F from Γ and ρ is a restriction such that G � ρ = 1 for all G ∈ Γ, then
F � ρ = 1.

We consider the following rules of inference, namely weakening, introduction of conjunction and cut:

D
D ∪ {t}

D ∪ {t} D′ ∪ {t′}
D ∪ D′ ∪ {t ∪ t′}

D ∪ {t} D′ ∪ D′′

D ∪ D′ ,

where D,D′,D′′ are DNFs, t, t′ are terms and in the cut rule we assume ∅ , D′′ ⊆ {{¬`} | ` ∈ t}. A k-DNF proof
(D, (Fv)v∈V(D)) is an R(k)-proof if for every inner vertex v with predecessors u,w the formula Fv is obtained from Fu

and Fw by one of the three rules above. An R(k)-proof is an R(log)-proof if its length is at least 2k. An R(1)-proof is a
Resolution proof. The refutation system consisting of all R(k)-refutations (resp. R(log)-refutations) is denoted R(k)
(resp. R(log)).

Remark 2.4. R(k) is strongly sound. We have completeness in the sense that for every k-DNF F implied by some set
Γ of k-DNFs, there is an R(k)-proof of F from Γ plus some additional ‘axioms’ of the form (X ∨ ¬X), i.e., {{X}, {¬X}}.
R(k) is refutation-complete in the sense that no such axioms are needed in case F = 0. If one adds a new rule allowing
to infer such an axiom from any formula, then the system ceases to be strongly sound.

2.3. First-order logic and propositional translation
A vocabulary is a finite set τ of relation and function symbols, each with an associated arity; function symbols

of arity 0 are constants. The arity of τ is the maximum arity of one of its symbols. τ-terms are first-order variables
x, y, z . . . or of the form f t1 · · · tr where the ti are again τ-terms and f ∈ τ is an r-ary function symbol. τ-atoms are
of the form t1=t2 or Rt1 · · · tr where the ti are τ-terms and R ∈ τ an r-ary relation symbol. τ-formulas are built from
τ-atoms using ∧,∨,¬ and quantification ∃x,∀x. For a tuple of first-order variables x̄ we write ϕ(x̄) for a τ-formula ϕ to
indicate that the free variables of ϕ are among the components of x̄. A τ-sentence is a τ-formula without free variables.
A τ-structure M consists of a nonempty universe, that we also denote by M, and for all r-ary relation and function
symbols R ∈ τ and f ∈ τ interpretations RM ⊆ Mr and f M : Mr → M; we identify the interpretation of a constant with
its unique value. A τ-structure M is a model of a τ-sentence ϕ if ϕ is true in M.

The spectrum of a first-order sentence ϕ is the set of those naturals n ≥ 1 such that ϕ has a model (with universe)
of cardinality n. An infinity axiom is a satisfiable first-order sentence with empty spectrum, i.e., a sentence without a
finite but with an infinite model. Skolemization and elementary formula manipulation allows to compute from every
first-order sentence ψ a sentence ϕ with the same spectrum and of a special form defined below; moreover, ϕ has an
infinite model if and only if ψ does.

Definition 2.5. A first-order formula is ready for translation if it is of the form

∀x̄
∧

i∈I Ci(x̄),

where I is a nonempty finite set and the Cis are first-order clauses (disjunctions of atoms and negated atoms) whose
atoms have the form Rȳ or f ȳ=z or y=z for some relation symbol R, function symbol f and variables ȳ, y, z.

Example 2.6. The least number principle asserts a pre-order without minimal elements. It is formulated using a unary
function symbol f and a binary relation symbol <:

lnp := ∀xyz
(¬x<x ∧ (¬x<y ∨ ¬y<z ∨ x<z) ∧ (¬ f x=y ∨ y<x)

)
.

Example 2.7. The weak functional pigeonhole principle asserts that n2 pigeons fly injectively into n holes. This is
formulated using a binary function symbol f :

wphp := ∀xx′yy′z
(
(¬ f xx′=z ∨ ¬ f yy′=z ∨ x=y) ∧ (¬ f xx′=z ∨ ¬ f yy′=z ∨ x′=y′)

)
.

5

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Following Paris and Wilkie (cf. [38], see also [43]) we define for every natural n > 0 a set 〈ϕ〉n of clauses that is
satisfied exactly by those assignments that describe a model of ϕ with universe

[n] := {0, 1 . . . , n − 1}.

Let ϕ be a τ-sentence ready for translation. We use the expressions Rb̄ and f b̄=c as propositional variables where
r ∈ N, b̄ ∈ [n]r, c ∈ [n], R is an r-ary relation symbol in τ and f is an r-ary function symbol in τ. A truth assignment of
these variables describes τ-structures with universe [n] provided it satisfies the functionality clauses {{ f b̄=c} | c ∈ [n]}
and {{¬ f b̄=c}, {¬ f b̄=c′}} for f ∈ τ an r-ary function symbol, b̄ ∈ [n]r and distinct c, c′ ∈ [n].

The set 〈ϕ〉n contains these functionality clauses and further clauses 〈Ci(ā)〉 for all i ∈ I and ā ∈ [n]|x̄|. To define
〈Ci(ā)〉, substitute ā for x̄ in Ci(x̄); this transforms every literal into a propositional literal or into an expression of the
form a=a′ or ¬a=a′ where a, a′ are components of ā; the propositional clause 〈Ci(ā)〉 is {1} if one of these expressions
is “true” in the obvious sense; otherwise 〈Ci(ā)〉 is the clause whose terms are the singletons of the propositional literals
(of the form (¬)Rb̄, (¬) f b̄=c) obtained by the substitution.

Remark 2.8. Refuting 〈ϕ〉n needs width, in fact so-called Poizat-width, nΩ(1) in any strongly sound refutation system
whatsoever [3]. However, this does not imply lower bounds on size or space using the mentioned results of [8, 2]
because 〈ϕ〉n contains clauses of width at least n and at least n2 many variables. This follows from the fact that every
infinity axiom ϕ that is ready for translation contains at least one function symbol of positive arity (see Remark 6.2).

3. Width notions for DAGs

3.1. Treewidth and pathwidth

Let G be graph. A tree decomposition of G is a pair (T, χ) where T is a tree and χ is a function from V(T) into the
powerset of V(G) such that:

(a) every vertex of G belongs to χ(t) for some t ∈ V(T);
(b) for every edge (v,w) ∈ E(G) there is t ∈ V(T) such that v,w ∈ χ(t);
(c) for every v ∈ V(G) the set {t ∈ V(T) | v ∈ χ(t)} is connected in T .

Recall, T is the graph underlying T . The width of a tree decomposition (T, χ) is the maximum |χ(t)| − 1 over all
t ∈ V(T). The treewidth tw(G) of G is the minimum width over all its tree decompositions. A path decomposition is a
tree decomposition (T, χ) where T is a (directed) path. The pathwidth pw(G) of a graph G is the minimum width over
all its path decompositions.

Let (T, χ) be a tree decomposition of a graph G. We say that a vertex v ∈ V(G) is introduced at t ∈ V(T) if v ∈ χ(t)
but v < χ(t′) for all predecessors t′ of t. Similarly, we say that v is forgotten at t ∈ V(T) if v ∈ χ(t) and either t = rT or
v < χ(t′) for the successor t′ of t. Note that every vertex v ∈ V(G) is introduced at least one tree node (by condition (a))
and forgotten at exactly one tree node (by condition (c)). In a path decomposition every vertex is introduced at exactly
one tree node.

The same definitions apply literally to digraphs, so we can also speak of tree and path decompositions of digraphs.
Consequently, the treewidth and pathwidth of a digraph equal the treewidth and pathwidth of the digraph’s underlying
graph, respectively. Thus the direction of edges is completely irrelevant for the treewidth or pathwidth of a digraph. For
some considerations, however, one needs the direction of edges to be reflected in the decomposition and the associated
width measure. For example [23] introduces the notion of directed treewidth, and it is known that every DAG has
directed treewidth 1. We introduce new width measures that can distinguish between DAGs.

3.2. Ordered treewidth and ordered pathwidth

Although we shall be mainly interested in DAGs, we give the definitions and some first observations generally for
digraphs.

Definition 3.1. A tree decomposition (T, χ) of a digraph D is ordered if the following condition holds:

(d) for every directed edge (u, v) ∈ E(D) and every t ∈ V(T) where v is introduced, u ∈ χ(t).
6

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

As above, we define the ordered treewidth otw(D) of D as the minimum width over all ordered tree decompositions
of D, and the ordered pathwidth opw(D) of D as the minimum width over all ordered path decompositions of D.

We say that a class C of digraphs has bounded ordered pathwidth if there is a constant w ∈ N such that every
digraph in C has ordered pathwidth at most w; we say C has unbounded ordered pathwidth if it does not have bounded
ordered pathwidth. We use a similar mode of speech for the other width notions.

Remark 3.2. For every digraph D, otw(D) is at least the in-degree of D.

Examples 3.3.

1. The ordered treewidth of a tree (with edges directed towards the root) is its in-degree.
2. A directed path with at least one edge has ordered pathwidth 1.
3. The class of perfect binary trees (with edges directed towards the root) has unbounded ordered pathwidth and

bounded ordered treewidth.
4. The class of perfect binary trees with all edges reversed (edges directed away from the root) has unbounded

ordered treewidth and bounded treewidth.

Proof of (1)–(3). (1) and (2). A tree (path) T has the ordered (path) tree decomposition (T, χ) where χ maps t ∈ V(T)
to the set containing t and its predecessors. It has minimal width by Remark 3.2.

(3). Recall Bh denotes the the perfect binary tree of height h (see Section 2.1). By (1) otw(Bh) is 2 for h > 0 and 0
for h = 0. It is well-known that pw(Bh) ≥ dh/2e (see, e.g., [10, Theorem 67]). This implies (3) noting opw ≥ pw.

We prove (4) after Lemma 3.11 below.

The following two lemmas show that ordered treewidth or pathwidth is not increased by taking “minors” in a
certain sense (more restrictive than the one in [23, Section 5]).

Lemma 3.4. Let D be a digraph, (T, χ) an ordered tree decomposition of D and X ⊆ V(D) be nonempty. Then (T, χ′)
is an ordered tree decomposition of D[X] where χ′ maps t ∈ V(T) to χ(t) ∩ X.

We omit the straightforward proof.

Lemma 3.5. Let D be a DAG and (T, χ) an ordered tree decomposition of D. Assume v ∈ V(D) has in-degree 1 and
predecessor u and let D′ be obtained by contracting the edge (u, v), i.e., by deleting v and adding edges from u to the
successors of v. Then (T, χ′) is an ordered tree decomposition of D′, where for t ∈ V(T)

χ′(t) :=

χ(t) if v < χ(t);
(χ(t) \ {v}) ∪ {u} otherwise.

Proof. Evidently (T, χ′) satisfies conditions (a) and (b) of a tree decomposition. To verify condition (c), we need
to show that the set U = { t ∈ V(T) | u ∈ χ′(t) } is connected in T . By construction, U is the union of the sets
{ t ∈ V(T) | u ∈ χ(t) } and { t ∈ V(T) | v ∈ χ(t) } which are both connected in T since (T, χ) is a tree decomposition. The
sets share a node t with u, v ∈ χ(t), hence U is connected in T .

It remains to verify condition (d). For edges (w, x) ∈ E(D′) with x , u the condition clearly holds since (T, χ)
is ordered. Hence consider an edge e = (w, u) ∈ E(D′) and let t ∈ V(T) such that u is introduced in (T, χ′) at t. We
observe that u ∈ χ(t), since otherwise v would be introduced at t in (T, χ) without u being in χ(t), contradicting that
(T, χ) is ordered. Hence u is introduced at t also in (T, χ), and thus w ∈ χ(t) and w ∈ χ′(t) as required.

In the previous lemma, the assumption that v has in-degree 1 can not be omitted:

Example 3.6. A star with n vertices and all edges directed towards the center can be obtained from Bh by contracting
edges provided h is sufficiently large. Then otw(Bh) = 2 while the star has ordered treewidth n − 1.

Definition 3.7. A subtree T ′ of a tree T is fully in T if for every node of T ′ either all or none of its predecessors in T
are in V(T ′).

Lemma 3.8. Let (T, χ) be an ordered tree decomposition of a digraph D, let T ′ be a subtree of T and set χ′ := χ � V(T ′).
Assume that

⋃
t′∈V(T ′) χ(t′) , ∅ and set D′ := D[

⋃
t′∈V(T ′) χ(t′)]. Then

7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

1. (T ′, χ′) is an ordered tree decomposition of D′;
2. if T ′ is fully in T , then there exists for every edge (u, v) ∈ E(D) with u < V(D′) and v ∈ V(D′) a leaf t of T ′ which

is not a leaf of T such that v ∈ χ(t).

Proof. (1). That (T ′, χ′) satisfies conditions (a) and (c) is easy to see. To verify (b), let (u, v) ∈ E(D′) and choose
tu, tv ∈ V(T ′) such that u ∈ χ(tu) and v ∈ χ(tv). By condition (b) for (T, χ) we find tuv ∈ V(T) such that u, v ∈ χ(tuv).
Choose ` minimal such that there is a path t1 · · · t` in T with t1 = tuv and t` ∈ V(T ′). Then every path in T from tuv to
some node in V(T ′) contains t`. In particular, this holds for all paths in T connecting tu and tuv. Then u ∈ χ(t`) since
(T, χ) satisfies condition (c). Similarly v ∈ χ(t`), and (b) for (T ′, χ′) follows. Thus (T ′, χ′) is a tree decomposition
of D′.

We verify condition (d), i.e., that (T ′, χ′) is ordered. Let (u, v) ∈ E(D′) and assume v is introduced at t1 in (T ′, χ′).
We have to show u ∈ χ(t1). In (T, χ), the vertex v must be introduced at some ancestor t2 of t1, that is, at some
t2 ∈ V(Tt1). Since (T, χ) is ordered, u ∈ χ(t2). We already verified (b) for (T ′, χ′), so there must be a node t3 ∈ V(T ′)
with u, v ∈ χ′(t3). If t3 = t1 we are done, so assume t3 , t1. Then t3 cannot be an ancestor of t1 since (T ′, χ′) satisfies (c)
and v is introduced at t1 in (T ′, χ′). Hence t3 ∈ V(T) \ V(Tt1). Then the path between t2 and t3 in T contains t1. By
condition (c) for (T, χ) then u ∈ χ(t1).

(2). Assume T ′ is fully in T and let (u, v) ∈ E(D) with u < V(D′) and v ∈ V(D′). Choose t′ ∈ V(T ′) such that
v ∈ χ(t′). In (T, χ), v is introduced at some ancestor t of t′. Then u ∈ χ(t) because (T, χ) is ordered. Since u < V(D′),
we have t < V(T ′). In (T, χ), v is contained in every bag on the directed path from t < V(T ′) to t′ ∈ V(T ′), and in
particular, in the bag of the first node t′′ ∈ V(T ′) that we reach on this path. Then t′′ is not a leaf of T (since t′′ has
ancestor t , t′′). It also has some predecessor outside V(T ′), namely its predecessor on the mentioned path. Since T ′ is
fully in T , all predecessors of t′′ are outside V(T ′), i.e. t′′ is a leaf of T ′.

Definition 3.9. A tree decomposition (T, χ) is succinct if every node forgets some vertex.

Lemma 3.10. A succinct ordered tree decomposition of a digraph D has at most |V(D)| many nodes.

Proof. Let (T, χ) be an ordered tree decomposition of D. As already mentioned, every vertex of D is forgotten at
exactly one node of T . This defines a function from V(D) into V(T). Succinctness of (T, χ) means that this function is
surjective.

Lemma 3.11. Every digraph D has a succinct ordered tree decomposition of width otw(D), and a succinct ordered
path decomposition of width opw(D).

Proof. We only prove the first statement. Let (T, χ) be a width otw(D) ordered tree decomposition of D with the
smallest number of nodes. We claim (T, χ) is succinct. Assume there is a node s ∈ V(T) that does not forget some
vertex. It suffices to construct a new tree decomposition (T ′, χ′) with χ′ := χ � V(T ′) where V(T ′) = V(T) \ {s}. If
s = rT , then χ(rT) = ∅. In this case, rT has predecessors t1, . . . , tr for some r > 0. We define T ′ by (declaring t1 to be
the new root and) adding edges (ti, t1) for 1 < i ≤ r. If s , rT , then s has a successor t in T with χ(s) ⊆ χ(t). In this
case we define T ′ by adding all edges (t′, t) for (t′, s) ∈ E(T).

Proof of Examples 3.3 (4). Write B−1
h for Bh with all edges reversed. Clearly, tw(B−1

h) is 1 for h > 0 and 0 for h = 0.
For h > 0 we show that

otw(B−1
h) ≥ 1

2 log h. (1)

By Lemma 3.11 there exists a succinct ordered tree decomposition (T, χ) of B−1
h of minimal width w := otw(B−1

h).

Claim 1. T has at most 2w+1 − 1 many leaves.

Proof of Claim 1. For every leaf t of T let Nt ⊆ χ(t) be the set of vertices forgotten at t; this set is nonempty by
succinctness. Consider a leaf t of T and a vertex v ∈ Nt. Because t is a leaf and the decomposition is ordered, χ(t)
contains all ancestors of v in B−1

h . Since |χ(t)| ≤ w + 1, it follows that v has at most w + 1 ancestors in B−1
h , hence v is of

distance at most w from the root rBh of Bh. Now, B−1
h has exactly 2w+1 − 1 vertices that are of distance at most w from

the root. Since each such vertex can occur in at most one set Nt for a leaf t, the claim follows. a
Claim 2. pw(B−1

h) < (2w+1 − 1)(w + 1).

8

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Proof of Claim 2. Let P be a longest branch in T , and let t1, . . . , tm = rT be its nodes in order. For i ∈ [m] let χ′(ti) be
the union of all sets χ(s) where s ∈ V(T) is a node in T of distance exactly m − i from the root tm = rT . By Claim 1
there are at most 2w+1 − 1 such nodes s. Then (P, χ′) is a path decomposition (in fact, even an ordered one) of B−1

h and
has width at most (2w+1 − 1)(w + 1) − 1. a

As mentioned in Examples 3.3 (3), pw(B−1
h) = pw(Bh) ≥ dh/2e, so we have h < 2(2w+1 − 1)(w + 1) < 22w+2 by

Claim 2. This implies (1).

Lemma 3.12. For every digraph D there exists an ordered tree decomposition (T, χ) of width otw(D) where T has
in-degree at most 2 and |V(T)| < 2|V(D)|.
Proof. By Lemmas 3.11 and 3.10, any DAG D has a an ordered tree decomposition (T, χ) of width otw(D) and
|V(T)| ≤ |V(D)|. As long as there are bad nodes of in-degree at least 3 repeat the following. Choose a bad node t and
two of its predecessors t0, t1; delete edges (t0, t), (t1, t), add a new node s and add edges (s, t), (t0, s), (t1, s); give s the
bag χ(t) ∩ (χ(t0) ∪ χ(t1)).

The result is again a tree decomposition of D. To see it is ordered note that the new node s does not introduce any
vertices, and the set of vertices introduced at t does not change.

The procedure terminates because each repetition decreases by 1 the sum of in-degrees of bad nodes. The procedure
adds at most one new node per edge of T , so the final tree decomposition has at most |V(D)| + (|V(T)| − 1) < 2|V(D)|
many nodes.

Proposition 3.13. Let w, ` ≥ 1 and (T, χ) a width w ordered tree decomposition of a digraph D such that T has
height `. Then opw(D) < (w + 1) · (` + 1).

Proof. By adding if necessary some nodes with empty bags we can assume that all branches of T have the same
length, say, `. If we order V(T) in an arbitrary way, then every branch naturally corresponds to a tuple from [d]` where
d is the in-degree of T . Then branches are ordered via the lexicographical order on [d]`. Use the path of branches
according to this order as the path underlying a path decomposition. The bag at the ith path node is the union of the
` + 1 many bags χ(t) for t ranging over the ith branch in T . It is straightforward to verify that this defines an ordered
path decomposition of D. The size of bags is bounded by (w + 1) · (` + 1).

3.3. Vertex separation numbers

A linear layout (or linear arrangement) of a graph G with n vertices is a bijection φ : V(G)→ [n]. For every i ∈ [n]
we define four sets of vertices:

LG(i, φ) := {u ∈ V(G) | φ(u) ≤ i},
RG(i, φ) := {u ∈ V(G) | φ(u) > i},
L∗G(i, φ) := {u ∈ LG(i, φ) | ∃v ∈ RG(i, φ) : (u, v) ∈ E(G)},
R∗G(i, φ) := {v ∈ RG(i, φ) | ∃u ∈ LG(i, φ) : (u, v) ∈ E(G)}.

The in-degree and the out-degree of φ is defined as maxi∈[n−1] |R∗G(i, φ)| and respectively maxi∈[n−1] |L∗G(i, φ)|. The vertex
separation number vsn(G) of G is defined as the smallest out-degree over all linear layouts of G (which equals the
smallest in-degree over all linear layouts of G).

Proposition 3.14 ([24]). pw(G) = vsn(G) for every graph G.

Note that the definition of in-degree and out-degree of a linear layout makes sense for digraphs. Recalling that a
digraph is a DAG if and only if there exist linear layouts such that all (directed) edges run from left to right, it is natural
to consider the following variant of the vertex separation number (for DAGs):

Definition 3.15. A linear layout φ of a DAG D is ordered if for every (u, v) ∈ E(D) we have φ(u) < φ(v). The ordered
vertex separation number ovsn(D) of a DAG D is the smallest out-degree over all ordered linear layouts of D.

We note that this definition is not symmetric in the sense that, in general, if we replace “smallest out-degree” by
“smallest in-degree” we get a different number.

9

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Example 3.16. Let D be a star with n vertices and all edges directed towards the center v. Then every ordered linear
layout φ satisfies φ(v) = n, has in-degree 1 and out-degree n − 1.

We prove an analogue of Proposition 3.14.

Proposition 3.17. opw(D) = ovsn(D) for every DAG D.

Proof. Let D be a DAG with n vertices. First we show that opw(D) ≥ ovsn(D). Let (T, χ) be an ordered path
decomposition of D of width w. Let t1, . . . , tm be the vertices of T given in the ordering as we visit them when traversing
T from the leaf to the root. Recall that every vertex of D is introduced at exactly one node in T . Let ψ : V(D)→ [m] be
the function such that a vertex v of D is introduced at node tψ(v). We define the inverse φ−1 of a linear layout φ of D
recursively as follows. To determine φ−1(j), let r be minimal such that Nr := χ(tr) \ {φ−1(i) | i < j} , ∅; choose a source
v (say, the smallest according to some fixed order of V(G)) of the DAG D[Nr] induced on Nr, and set φ−1(j) := v.

To see that the linear layout φ is ordered, consider a directed edge (u, v) ∈ E(D). Let φ(v) = j and ψ(v) = r. We
have u ∈ χ(tψ(v)) since (T, χ) is ordered, so ψ(u) ≤ ψ(v). If ψ(u) < ψ(v), then clearly φ(u) < φ(v). If ψ(u) = ψ(v), then in
the above process we assign φ(u) before we assign φ(v), hence φ(u) < φ(v) as well.

To see that the out-degree of φ is at most w, consider L∗D(i, φ) for some i ∈ [n − 1]. Let v = φ−1(i + 1) and
consider a vertex u ∈ L∗D(i, φ). By definition, u has a successor u′ ∈ RD(φ, i), and clearly φ(u) ≤ φ(v) ≤ φ(u′).
This implies ψ(u) ≤ ψ(v) ≤ ψ(u′). Since φ is ordered and (u, u′) ∈ E(D) it follows that u ∈ χ(tψ(u′)), and by
definition, u ∈ χ(tψ(u)). By condition (c) for (T, χ), it follows that u ∈ χ(t j) for all ψ(u) ≤ j ≤ ψ(u′), and in particular
u ∈ χ(tψ(v)). Thus L∗D(i, φ) ⊆ χ(tψ(v)). Moreover, we have v ∈ χ(tψ(v)) \ L∗D(i, φ). Thus L∗D(i, φ) ⊆ χ(tψ(v)) \ {v}, and hence
|L∗D(i, φ)| ≤ |χ(tψ(v)) \ {v}| ≤ w.

Next we show that opw(D) ≤ ovsn(D). Let φ : V(D) → [n] be an ordered layout of D with out-degree w.
We define a path decomposition (T, χ) letting T be the directed path ([n], {(i, i + 1) | i ∈ [n − 1]}) and setting
χ(i) := L∗D(i − 1, φ)∪ {φ−1(i)} for i ∈ [n]; here, we understand L∗D(i − 1, φ) = ∅ for i = 0. It is easy to verify that (T, χ) is
a path decomposition of D and each bag has size at most w + 1. To see it is ordered, let (u, v) ∈ E(D) and note that v is
introduced at node φ(v). We claim u ∈ χ(φ(v)). But since φ is ordered, φ(u) < φ(v) and in particular φ(v) , 0. Then
u ∈ L∗D(φ(v) − 1, φ) ⊆ χ(φ(v)) as claimed.

4. Resolution proofs of minimal width

Recall, the ordered treewidth of a proof containing an application of the cut rule is at least 2 (Remark 3.2). Clearly,
when talking about the ordered pathwidth or ordered treewidth of a proof we mean the ordered pathwidth or ordered
treewidth of its underlying DAG.

4.1. Minimal ordered pathwidth
A Resolution refutation of Γ is in Input Resolution if it contains only applications of the cut rule and each such

application has at least one premiss (i.e., label of a predecessor) in Γ (see, e.g., [26]).

Theorem 4.1. Let ` be a natural and Γ a set of clauses. There is a Resolution refutation of Γ of ordered pathwidth at
most 2 and length at most ` if and only if there is an Input Resolution refutation of Γ of length at most `.

This allows us to think of ordered pathwidth as a measure of how far a Resolution refutation is from being in Input
Resolution.

To prove this we need some preparations. A digraph is triangle-free if so is its underlying graph. A clause is
tautological if it contains (as terms) a variable and its negation.

Lemma 4.2. Let w ∈ N and (D, (Fv)v∈V(D)) be a Resolution refutation of a set Γ of clauses such that D has a width w
ordered tree decomposition with underlying tree T . Then there is a Resolution refutation (D′, (F′v)v∈V(D′)) of Γ such that

1. V(D′) ⊆ V(D) contains the sink of D;
2. D′ has an ordered tree decomposition with underlying tree T of width at most w;
3. no vertex in V(D′) has in-degree 1 in D′;
4. no v ∈ V(D′) has a tautological label F′v;
5. D′ is triangle-free.

10

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Proof. Let Γ be a set of clauses, (D, (Fv)v∈V(D)) a Resolution refutation of Γ, and (T, χ) an ordered tree decomposition of
D of width at most w. Let v∗ denote the sink of D. In a first step we transform (D, (Fv)v∈V(D)) into a Resolution refutation
(D1, (Fv)v∈V(D1)) where no Fv for v ∈ V(D1) is tautological, and where D1 is a sub-DAG of D with unique sink v∗. If
there is some v ∈ V(D) with tautological Fv, then there is such a v having a successor w with non-tautological Fw (the
sink label is not tautological). Clearly Fw must be obtained by a cut from Fv and Fw′ , where w′ is the other predecessor
of w. Then Fw is a weakening of Fw′ and we delete the edge (v,w). The deletion of (v,w) may have caused that v has
become a sink. Then we repeatedly delete sinks different from v∗. Iterating this leads to a refutation (D1, (Fv)v∈V(D1)) as
desired. In a second step we transform (D1, (Fv)v∈V(D)) into a Resolution refutation (D2, (F′v)v∈V(D2)) such that F′v ⊆ Fv

for all v ∈ V(D2) and all weakenings are improper in the sense that if F′v is obtained from F′u by weakening, then
F′v = F′u. Let φ : V(D1) → [|V(D1)|] be a linear layout of D1 and write vi = φ−1(i). Define F′vi

recursively for each
i ∈ [|V(D1)|] as follows. If vi is a source in D1, we set F′vi

:= Fvi (in particular this is the case for i = 0). If Fvi is
obtained by weakening from Fv j for j < i, we set F′vi

:= F′v j
. If Fvi is obtained by a cut from Fv j and Fvk for j, k < i,

then

– either Fvi is a weakening of F′v j
or of F′vk

and we set F′vi
:= F′v j

resp. F′vi
:= F′vk

;
– or otherwise Fvi is a weakening of a clause F obtainable by cut on F′v j

and F′vk
and we set F′vi

:= F.

The digraph D′2 is obtained from D1 by deleting edges (v j, vi) resp. (vk, vi) in the first case above. Then D2 is the
digraph induced in D′2 on the ancestors of the sink v∗.

Finally, in a third step we obtain a DAG D′ from D2 by contracting all edges (u, v) such that F′v is obtained by
weakening from F′u. As weakenings are improper, such contractions preserve the property of being a refutation. In
fact, (D′, (F′v)v∈V(D′)) is as desired: (1), (3) and (4) are easy to see and (2) follows from Lemmas 3.4 and 3.5. We verify
(5). For contradiction, assume D′ contains a triangle. As D′ is a acyclic, this means there are u,w, v ∈ V(D′) such
that (u, v), (w, v), (u,w) ∈ E(D). Choose literals `, `′ from Fu such that Fv is obtained cutting Fu with Fw on ` and Fw

is obtained cutting Fu with Fw′ on `′, where w′ is the second predecessor of w. In particular, ¬`′ is in Fw′ (formally,
{¬`′} ∈ Fw′) and ¬` in Fw. First note that ¬`′ is not in Fw as it is cut from Fw′ , so would have to appear in Fu and
then Fu would be tautological. That Fu is not tautological, clearly implies ` , ¬`′. Further ` , `′ because otherwise
¬`′ = ¬` would be in Fw. Hence, ` and `′ are literals over distinct variables. But then ` comes into Fw from the
premiss Fu. As ¬` is in Fw, this clause is tautological, a contradiction.

Proof of Theorem 4.1. To see the backward direction, let (D, (Fv)v∈V(D)) be an Input Resolution refutation of Γ. We can
assume that the digraph D has vertices V(D) = {vi | i ≤ n}∪{v′i | i < n} and edges E(D) = {(vi, vi+1), (v′i , vi+1) | i < n} for
some natural n. Then we have an ordered path decomposition (P, χ) of D where V(P) := [n], E(P) := {(i, i + 1) | i < n}
and χ(i) := {vi, v′i , vi+1} for i ∈ [n].

To verify the forward direction, let (D, (Fv)v∈V(D)) be a refutation of Γ and let (T, χ) be a path decomposition of D
of width at most 2. By Lemma 4.2 we can assume that D satisfies (3) and (5). We claim that every non-source has at
least one source as a predecessor.

Assume otherwise, say v ∈ V(D) has predecessors u1, u2 in D which are not sources of D. By Proposition 3.17
there exists an ordered linear layout φ of D of out-degree 2. As the layout is ordered φ(u1), φ(u2) < φ(v). Assume
φ(u1) < φ(u2) (the case φ(u2) < φ(u1) is symmetrical) and consider the predecessors w1,w2 of u2 in D′. We can assume
φ(w1) < φ(w2) < φ(u2). Further we have that w1,w2, u1 are pairwise distinct because otherwise u1, u2, v would form a
triangle in D. Hence φ(w2) < φ(u1) or φ(w2) > φ(u1). In the first case, w1,w2, u1 ∈ L∗D(φ(u1), φ), so |L∗D(φ(u1), φ)| > 2,
a contradiction. In the second case, φ(w2) > φ(u1) and w1,w2, u1 ∈ L∗D(φ(w2), φ), again a contradiction.

4.2. Minimal ordered treewidth

Recall that treelike refutations have ordered treewidth 2 (Example 3.3 (1)). We prove a weak converse to this
observation. This allows us to think of ordered treewidth as a measure of how far a Resolution refutation is from being
treelike.

Theorem 4.3. Let ` be a natural and Γ a set of clauses. If there is a Resolution refutation of Γ of ordered treewidth at
most 2 and length at most `, then there is a treelike Resolution refutation of Γ of length < 2`.

11

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Proof. Let (D, (Fv)v∈V(D)) be a refutation of Γ with otw(D) = 2. By Lemma 4.2 we can assume that D satisfies (3)
and (5). Let (T, χ) be a width 2 ordered tree decomposition of D. We claim that D is almost treelike in the sense that all
its vertices of out-degree ≥ 2 are sources.

This implies the theorem: for each source v with r ≥ 2 successors w1, . . . ,wr replace the edges (v,w2), . . . , (v,wr)
by edges (v2,w2), . . . , (vr,wr) for r − 1 new vertices v2, . . . , vr; label the new vertices by Fv. This gives a treelike
refutation, say with underlying DAG D′. Note |E(D)| = |E(D′)| by construction and |V(D′)| = |E(D′)| + 1 since D′

is a tree. Further, |E(D)| ≤ 2(|V(D)| − 1) because D has in-degree at most 2 and there is at least one source. Hence
|V(D′)| ≤ 2(|V(D)| − 1) + 1 < 2|V(D)| as claimed.

To prove our claim, we show that Dv is almost treelike for every v ∈ V(D); here, Dv is the sub-DAG of D induced
on the ancestors of v in D.

This is clear for sources v. If v is not a source, but has predecessors u1, u2 we assume that both Du1 and Du2 are
almost treelike, and show that also Dv is almost treelike.

Assume u ∈ V(Dv) has out-degree ≥ 2 in Dv. We have to show that u is a source.

Claim 1. u ∈ V(Du1) ∩ V(Du2).

Proof of Claim 1. Since V(Dv) = V(Du1) ∪ V(Du2) ∪ {v} and u , v we can assume that u is in V(Du1). For the sake
of contradiction assume u < V(Du2). As Du2 is closed under predecessors, no successor of u is in V(Du2). But u has
at least two successors w,w′ and these cannot be both in V(Du1) because Du1 is almost treelike. Hence one of them,
say w, equals v, and w′ ∈ V(Du1). Then u is a predecessor of v outside V(Du2), so u = u1. It follows that w′ is both a
successor and an ancestor of u and this contradicts acyclicity. a

If one of u1, u2 is a source, say u1, then V(Du1) = {u1}. By Claim 1 then u = u1 and we are done. Hence, assume
that none of u1, u2 is a source. Choose t ∈ V(T) where v is introduced. Then u1, u2 ∈ χ(t) so we find ancestors t1, t2 of t
in T where u1, u2 are introduced respectively.

Claim 2. t1, t2 are incomparable in the sense that none is an ancestor of the other.

Proof of Claim 2. Assume otherwise, say, t2 is an ancestor of t1. Then t1 lies on the path in T from t2 to t and hence
u2 ∈ χ(t1). As u1 is not a source and introduced at t1, the bag χ(t1) also contains the two predecessors w1,w2 of u1.
Then u1, u2,w1,w2 ∈ χ(t1) so these vertices cannot be pairwise distinct. Then u2 ∈ {w1,w2}. It follows that {u1, u2, v}
induces a triangle in D, a contradiction. a

So we know t1, t2 are incomparable, say with t0 as least upper bound, i.e., t0 has both t1, t2 as ancestors but no
predecessor of t0 has this property. This t0 lies on the paths in T from t1 and t2 to t, so u1, u2 ∈ χ(t0).

It is not hard to show that all ancestors of u1 in D are introduced at an ancestor of t1 in T ; similarly for u2 and t2. In
particular u is introduced at ancestors s1, s2 of t1, t2 respectively. The path in T from s1 to s2 contains the path from t1
to t2, and hence contains t0. We finally show that u is a source. Otherwise its two predecessors are different from u1
and from u2. As they are in χ(s1) and well as in χ(s2), it follows they are in χ(t0). As χ(t0) also contains u1, u2 it has
cardinality at least 4, a contradiction.

5. Proof space

Let k,w, ` > 0 be naturals, F a k-DNF and Γ a set of k-DNFs.

5.1. Ordered pathwidth is proof space

In the Introduction we informally explained a bounded space proof by a sequence of blackboards. Formally, we
follow [18] and define a space w R(k)-proof of F from Γ to be a finite sequence (B0, . . . ,B`−1) of sets Bi of k-DNFs,
called blackboards, each of cardinality at most w such that B0 = ∅ and F ∈ B`−1 and for all 0 < i < ` there is a
formula G such that

(B1) Bi = Bi−1 ∪ {G} and G ∈ Γ, or
(B2) Bi = Bi−1 ∪ {G} and G is derived from at most two formulas in Bi−1 by one application of some

inference rule of R(k), or
(B3) Bi = Bi−1 \ {G}.

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

The space measure above is known as “formula space” or, in case k = 1, as “clause space.” In the Introduction we
also mentioned an alternative definition of proof space (used e.g. in [5]) as a number associated with a proof written as
a sequence of formulas. This definition reads like the out-degree of a linear layout. In view of Proposition 3.17 the
following observation just spells out in what sense the two definitions are equivalent. Combining with Theorem 4.1 this
allows to think of the space of a Resolution refutation as a measure of how far it is from being in Input Resolution.

Proposition 5.1.

1. If there is a space w R(k)-proof of F from Γ of length `, then there is an R(k)-proof of F from Γ of length < ` and
ordered pathwidth < w.

2. If there is an R(k)-proof of F from Γ of length ` and ordered pathwidth w, then there is a space (w + 1) R(k)-proof
of F from Γ of length at most 2`.

Proof. (1). Let (B0, . . . ,B`−1) be a space w R(k)-proof of F from Γ. We assume F appears first in B`−1 and consecutive
blackboards are distinct. Say there are `′ ≤ ` − 1 many (B1) or (B2) inferences, and say, the vth of them derives
blackboard Biv adding the formula Fv. For a (B2) inference choose maximal indices u, u′ < v such that Fv is derived
from Fu, Fu′ . These pairs (u, v), (u′, v) are the edges of a DAG D with V(D) = [`′] and the labeling (Gv)v∈[`′] makes it
an R(k)-proof of F = F`′ from Γ; the identity φ on [`′] is an ordered linear layout. By Proposition 3.17 it suffices to
show |L∗D(j, φ)| < w for all j ∈ [`′]. But the formulas Fu for u ∈ L∗D(j, φ) are pairwise distinct and distinct from F j+1
and appear in Bi j+1 . Hence |L∗D(j, φ)| ≤ |Bi j+1 \ {F j+1}| < w.

(2). Assume there is an R(k)-proof of F from Γ of length ` and ordered pathwidth w. By Lemmas 3.11 and 3.10,
we find a width w ordered path decomposition with underlying path with ≤ ` nodes. Consider the sequence of bags
as they appear along the path up to the bag where the sink (labelled F) is introduced. Replace each bag by the size
≤ w + 1 blackboard containing the labels of its vertices. If necessary, add a starting blackboard ∅ and some blackboards
in between to make this a space w + 1 proof. This proof has a (B1) or (B2) inference whenever a vertex is introduced
and a (B3) inference whenever a vertex outside the last bag is forgotten. As each vertex is forgotten and introduced
exactly once, this gives ≤ ` (B1) or (B2) inferences, and ≤ ` − 1 (B3) inferences.

5.2. Ordered treewidth as interactive proof space
The conversation of a teacher with her student described informally in the Introduction is described more formally

by a game Πk
w(Γ, F) between two players called Student and Teacher on the following game graph.

Its vertices are partitioned into Student positions and Teacher positions, the former are R(k)-proofs of length at most
w and the latter are k-DNFs. Its directed edges run from each k-DNF to all length ≤ w proofs of it, and from each proof
to all labels of its sources that are outside of Γ. In particular, precisely the proofs from Γ are sinks. The initial position
is the Teacher position F. A play of length 0 < n ∈ N ∪ {∞} is a sequence (vi)i<n of positions with edges from vi to vi+1
and v0 being the initial position. A strategy for Teacher (in Πk

w(Γ, F)) is a function that maps finite plays ending in a
Teacher position to a successor of this position; it is positional in case this value depends only on the Teacher position
reached by the play. A play conforms with the strategy if every Student position in it is the value of the strategy on the
initial segment of the play up to it. The strategy is winning if all plays conforming with it are finite, and `-winning if all
plays conforming with it have length at most 2` − 1, i.e., Teacher wins making at most ` moves.

Remark 5.2. The game Πk
w(Γ, F) can be seen as a parity game, so it is memory-less determined; in particular, if a

winning strategy for Teacher exists, then so does a positional one [34].

By a standard argument we get the following result.

Proposition 5.3. If there is an `-winning strategy for Teacher in Πk
w(Γ, F), then there is also a positional one.

Proof. Assume there is an `-winning strategy for Teacher in Πk
w(Γ, F). Let Wi be the set of Teacher positions G such

that an i-winning strategy for teacher in Πk
w(Γ,G) exists. Then W1 is the set of predecessors of sinks, i.e., formulas that

have length ≤ w R(k)-proofs from Γ. Recursively, Wi+1 equals Wi plus those G that have an i-good successor, namely
one all of whose successors are in Wi; in other words, Wi+1 is the set of formulas with length ≤ w R(k)-proofs from
Wi ∪ Γ.

An “attractor strategy” maps plays ending in some G ∈ W1 to a sink and plays ending in some G ∈ Wi+1 \Wi to an
i-good successor of it. Such a strategy is positional and `-winning in Πk

w(Γ, F); note F ∈ W` by assumption.
13

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Theorem 5.4. There is an `-winning strategy for Teacher in Πk
w(Γ, F) if and only if there is an R(k)-proof of F from Γ

with an ordered tree-decomposition of width < w and height < `.

Proof. Assume there is an `-winning strategy for Teacher in Πk
w(Γ, F). By the previous proposition, we can assume the

strategy is positional. Consider the following tree T with nodes t labeled with Student positions π(t). The label of the
root is the value the winning strategy gives the initial position. Every node t has exactly one predecessor (in T) for each
of the at most w many successors of π(t) in the game graph; the label of such a node is the value given by the strategy
to the corresponding successor. Note that, the leafs of T are labeled with sinks in the game graph, i.e., with length ≤ w
proofs from Γ. The labels on branches of this tree correspond to the sequence of Student positions in a play conforming
with the strategy. Since the strategy is `-winning, T has height at most ` − 1.

We can assume that the sets of vertices of (the DAGs underlying) the proofs π(t), for t ∈ V(T), are pairwise
disjoint. For each t with successor t′ in T identify the sink of π(t), say labeled G, and all sources of π(t′) with label G.
This ensures that the union of the π(t), t ∈ V(T), is an R(k)-proof. Letting χ(t) denote the vertices of π(t), then (T, χ)
witnesses that this proof has ordered treewidth at most w − 1.

Conversely, let (D, (Fv)v∈V(D)) be an R(k)-proof of F from Γ and (T, χ) an ordered tree decomposition of D of height
< ` and width < w. We can assume that χ(t) , ∅ for all t ∈ V(T). For t ∈ V(T) and v ∈ χ(t) let π(t, v) be the proof
induced on the ancestors of v in D[χ(t)]. We informally describe a winning strategy for Teacher.

On the initial position F, Teacher chooses v1 ∈ V(D) and t1 ∈ V(T) such that Fv1 = F and v1 is introduced at t1,
and moves to π(t1, v1). If Student moves to source label G, Teacher chooses a source v2 of π(t1, v1) such that G = Fv2 ,
chooses an ancestor t2 of t1 where v2 is introduced and answers π(t2, v2). And so on. Note that a strategy implementing
such moves is not positional. Namely, for her ith move Teacher remembers a vertex vi ∈ V(D) and a node ti ∈ V(T) and
these satisfy

(a) Fvi is a Teacher position in the play,
(b) vi is introduced at ti,
(c) vi+1 is a source in π(ti, vi),
(d) ti+1 is an ancestor of ti.

Note, no Teacher position in the play is a formula in Γ (here we assume F < Γ; otherwise there is a 1-winning strategy).
In particular, Fvi+1 < Γ (by (a)), so vi+1 has predecessors in D. These are not in π(ti, vi) (by (c)) and, by definition
of π(ti, vi), also not in χ(ti). As the tree-decomposition is ordered, vi+1 is not introduced at ti. As vi+1 is introduced
at ti+1 (by (b)) we have ti+1 , ti. By (d) then the sequence t1, t2, . . . has length ≤ `. This implies that the strategy is
`-winning.

Remark 5.5. Assume Γ is a set of clauses. If Teacher wins Πk
w(Γ, 0), then Γ is contradictory and hence has a treelike

Resolution refutation. This refutation has ordered treewidth at most 2, so by Theorem 5.4 Teacher wins Π1
3(Γ, 0). It

follows that for w ≥ 3, Teacher wins Πk
w(Γ, 0) if and only if Teacher wins Π1

3(Γ, 0). Thus, the parameters k and w only
matter when taking into account how fast Teacher can win, that is, when considering `-winning strategies.

As a side remark we observe that if the teacher knows how to convince visiting students very quickly then she also
does not need a large blackboard in class.

Corollary 5.6. If Teacher has an `-winning strategy in Πk
w(Γ, F), then there is a space `w R(k)-proof of F from Γ.

Proof. Assume Teacher has an `-winning strategy in Πk
w(Γ, F). By the previous result there is an R(k)-proof of F from

Γ with an ordered tree decomposition (T, χ) of width ≤ w − 1 and height ≤ ` − 1. By Proposition 3.13 this proof has
ordered pathwidth < w · `. Now apply Theorem 5.1 (2).

Remark 5.7. It is well-known and easy to see that every contradictory set of clauses Γ has a treelike Resolution
refutation of height at most the number n of variables in Γ. By the previous remark this gives an n-winning strategy
of Teacher in Π1

3(Γ, 0) and the last corollary thus shows that Γ has a Resolution refutation in space 3n. Even n + 1 is
known and proved in [18, Theorem 12].

14

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

6. Lower bounds

Recall Definition 2.5.

Theorem 6.1. Let ϕ be a first-order τ-sentence ready for translation that has an infinite model. Let r be the maximal
arity of some function symbol in τ and assume r ≥ 1.

Then there exists a real cϕ > 0 such that for every natural n ≥ 1 and every natural k ≥ 1, every strongly sound
k-DNF refutation (D, (Fv)v∈V(D)) of 〈ϕ〉n satisfies

k · otw(D) · log |V(D)| > cϕ · n1/r.

Remark 6.2. The assumption that r ≥ 1 does not exclude interesting cases. If r = 0, all function symbols of τ are
constants. In an infinite model of ϕ every nonempty set containing their interpretations carries a submodel which too is
a model of ϕ (being universal). Hence, the spectrum of ϕ is co-finite, so all but finitely many 〈ϕ〉n are satisfiable and
have no sound refutations at all.

Proof. The proof carries out the sketch given in Section 1.5. Let a τ-sentence ϕ and a natural r accord the assumption
of the theorem, and let M be an infinite model of ϕ. Write ϕ = ∀x̄

∧
i∈I Ci(x̄) according Definition 2.5. Let m0, . . . ,m`−1

list without repetition the interpretations of constants of τ in M. It suffices to find cϕ > 0 satisfying our claim for every
positive n ≥ `.

So let n ≥ ` and k be positive naturals, and let (D, (Fv)v∈V(D)) be a strongly sound k-DNF refutation of 〈ϕ〉n. Write
w := otw(D). By Lemma 3.12, D has an ordered tree decomposition of width w with a tree of in-degree at most 2 and
at most 2|V(D)| many nodes. We can assume that all its bags are nonempty. Add the sink of D to all bags on nodes on
the path from the node where it is forgotten to the root. The resulting tree decomposition (T0, χ) has width at most
w + 1 with the sink of D contained in χ(rT0), the bag at the root.

For X ⊆ V(T0) we write
χ(X) :=

⋃
t∈X χ(t).

Conditions. For N ⊆ M let ∂N :=
⋃

f im(f M � N), where f ranges over the function symbols of τ, i.e., ∂N contains
the values which M’s functions take on N. Note m0, . . . ,m`−1 ∈ ∂N for every N ⊆ M and

|∂N | ≤ |τ| ·max{|N |, 1}r. (2)

We define a condition to be a pair (κ, λ) of partial bijections from [n] to M such that κ ⊆ λ and im(λ) = im(κ)∪∂im(κ).
We say a condition (κ∗, λ∗) extends another (κ, λ) if κ ⊆ κ∗ and λ ⊆ λ∗. With a condition (κ, λ) we associate the restriction
ρ(κ, λ) which is defined on a propositional atom of the form Rā or f ā = b if and only if κ is defined on all components
of ā; in this case it maps

– Rā to 1 if κ(ā) ∈ RM , and to 0 otherwise;
– f ā=b to 1 if λ−1(f M(κ(ā))) = b, and to 0 otherwise;

note that λ−1 is defined on f M(κ(ā)) ∈ ∂im(κ). Here, for a tuple ā = a1 · · · as, we write κ(ā) for the tuple κ(a1) · · · κ(as).
Observe that, if (κ∗, λ∗) extends (κ, λ) in the sense above, then ρ(κ∗, λ∗) extends ρ(κ, λ) as a partial function. The

rank of (κ, λ) is |dom(κ)|. For example, (∅, λ0) is a condition of rank 0, where λ0 is the function that maps i < ` to mi.

Claim 1. If (κ, λ) is a condition and C a clause in 〈ϕ〉n, then C � ρ(κ, λ) , 0.

Proof of Claim 1. We assume ρ(κ, λ) is defined on all variables appearing in C (otherwise there is nothing to show).
If C is a functionality clause, either

∨
b f ā=b or ¬ f ā=b ∨ ¬ f ā=b′, then ρ(κ, λ) is defined on all variables of the form

f ā=c for c ∈ [n]. By definition it evaluates exactly one of them, namely the one for c := λ−1(f M(κ(ā))), to 1 and all
others to 0. This implies C � ρ(κ, λ) = 1.

Suppose C is 〈Ci(ā)〉 and choose an injection λ′ : [n] → M extending λ (we only need it to be defined on all
components of ā). If 〈Ci(ā)〉 = 1, there is nothing to show. Otherwise all equality literals in Ci(x̄) become “false” under
the substitution of ā for x̄. Since λ′ is injective, the tuple λ′(ā) falsifies all these literals in M. But since M is a model
of ϕ, the tuple λ′(ā) satisfies Ci(x̄) in M, so satisfies some literal mentioning a symbol from τ. Writing x̄ = x0 · · · xs−1
and ā = a0 · · · as−1 we can write our literal as (¬) f xi0 · · · xir−1=xir or (¬)Rxi0 · · · xir−1 where f ,R ∈ τ are r-ary symbols

15

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

for some r ∈ N and i0, . . . , ir ∈ [s]. Assume our literal is f xi0 · · · xir−1=xir , the other cases are treated analogously. Then
f M(λ′(ai0), . . . , λ′(air−1)) = λ′(air) and f ai0 · · · air−1=air is a propositional literal in 〈Ci(ā)〉. Since we assumed ρ(κ, λ)
to be defined on all atoms in 〈Ci(ā)〉, we have that ai0 , . . . , air−1 ∈ dom(κ) and f M(κ(ai0), . . . , κ(air−1)) = λ′(air). Hence
λ′(air) ∈ im(λ), and as λ′ ⊇ λ is an injection, λ−1(λ′(air)) = air . By definition then the restriction ρ(κ, λ) evaluates
f ai0 · · · air−1=air to 1 and C � ρ(κ, λ) = 1 follows. a
Claim 2. Let B ⊆ [n] and assume (κ, λ) is a condition of rank at most d. If

n ≥ 3|τ| · (d + |B|)r, (3)

then there exists a condition (κ′, λ′) extending (κ, λ) such that B ⊆ dom(κ′).

Proof of Claim 2. We can assume that B , ∅. Let d̃ := max{d, 1}. By (2) we have

|dom(λ)| ≤ |∂im(κ)| + |dom(κ)| ≤ |τ| · d̃r + d.

Choose some minimal injective extension κ′ of κ which is compatible with λ (i.e. κ′ ∪ λ is a function) and such
that B ⊆ dom(κ′). This is possible if n − dom(λ) ≥ |B| and hence if n ≥ (|τ| · d̃r + d) + |B|. This follows from (3) (note
|τ| > 0 as r ≥ 1).

Then choose a minimal injective extension λ′ of κ′ ∪ λ such that im(λ′) ⊇ ∂im(κ′). By (2) we have |∂im(κ′)| ≤
|τ|·(|B|+d)r. Hence, the choice of λ′ is possible if n−|dom(κ′)∪dom(λ)| is at least |τ|·(|B|+d)r. Since |dom(κ′)∪dom(λ)| ≤
|B| + |dom(λ)|, the choice of λ′ is possible if n ≥ |τ| · (d + |B|)r + |B| + (|τ| · d̃r + d). This is also implied by (3). a

Adversary positions. An adversary position is a tuple (T, L, κ, λ) such that

(A1) T is a subtree of T0 which is fully in T0 (cf. Definition 3.7);
(A2) L ⊆ V(T0) contains every leaf of T which is not a leaf of T0;
(A3) (κ, λ) is a condition such that

(A3a) Fv � ρ(κ, λ) = 1 for all v ∈ χ(L), and
(A3b) for every condition (κ∗, λ∗) such that (κ∗, λ∗) extends (κ, λ) there exists v ∈ χ(rT) such that Fv � ρ(κ∗, λ∗) , 1.

Adversary positions exist: for example, (T0, ∅, ∅, λ0) is one; property (A3b) holds because χ(rT0) contains the sink v
of D and Fv = 0.

Claim 3. Suppose (T, L, κ, λ) is an adversary position and v ∈ χ(rT). Let

ΓT := {Fu | u ∈ χ(V(T)) is a source in D}.
Then there exists a strongly sound k-DNF proof of Fv from ΓT ∪ {Fu | u ∈ χ(L)}.
Proof of Claim 3. Let D′ := D[χ(V(T))]. Observe V(T) , ∅ as T is a subtree, so χ(V(T)) , ∅ as bags are nonempty. It
suffices to show that for every v ∈ V(D′) either all predecessors of v in D are in V(D′) or v ∈ χ(L). But if (u, v) ∈ E(D)
and u < V(D′), then Lemma 3.8 (2) and (A1) imply that v ∈ χ(t) for some leaf t of T which is not a leaf in T0; by (A2)
then v ∈ χ(L). a

Recall that Tt denotes the subtree of a tree T rooted at t. An adversary position (T, L, κ, λ) has as successor any
tuple (T ′, L′, κ′, λ′) that can be obtained as follows.

Choose t ∈ V(T) such that both V(Tt) and V(T) \ (V(Tt) \ {t}) have cardinality at most b2|V(T)|/3c + 1.
Such a t exists because T has in-degree at most 2 (as a subtree of T0).

Case 1. Property (A3b) holds for t, i.e. for every extension (κ∗, λ∗) of (κ, λ) there exists v ∈ χ(t) such that
Fv � ρ(κ∗, λ∗) , 1.

Set T ′ := Tt, L′ := L, κ′ := κ and λ′ := λ.

Case 2. Otherwise, choose an extension (κ∗, λ∗) of (κ, λ) of minimal rank among those satisfying Fv �
ρ(κ∗, λ∗) = 1 for all v ∈ χ(t).

Set T ′ := T − (V(Tt) \ {t}), L′ := L ∪ {t}, κ′ := κ∗ and λ′ := λ∗.
16

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Trivially, every adversary position has successors.

Claim 4. If (T, L, κ, λ) is an adversary position with successor (T ′, L′, κ′, λ′), then (T ′, L′, κ′, λ′) too is an adversary
position. The rank of (κ′, λ′) is at most (w + 2) · k · rϕ bigger than the rank of (κ, λ) where rϕ denotes the maximal arity
of some symbol in τ.

For the proof, we use a mode of speech from [16] and say that the propositional variables Rā and f ā = b mention
an element a ∈ [n] if a is a component of ā; in particular f ā = b does not necessarily mention b. A formula mentions
an element if so does some variable appearing in it.

Proof of Claim 4. Let t ∈ V(T) be the node chosen to compute (T ′, L′, κ′, λ′) from (T, L, κ, λ). Both subtrees Tt and
T − (V(Tt) \ {t}) are fully in T . Since T is fully in T0, so is T ′ and (T ′, L′, κ′, λ′) satisfies (A1). Properties (A2) and
(A3a) are clear. Property (A3b) follows in Case 1 because rT ′ = t, and in Case 2 because rT ′ = rT , (κ′, λ′) extends (κ, λ)
and (T, L, κ, λ) satisfies (A3b).

To see the second statement, assume (T ′, L′, κ′, λ′) is obtained according to Case 2 (in Case 1 there is nothing to
show). Choose a condition (κ̃, λ̃) extending (κ, λ) such that Fv � ρ(κ̃, λ̃) = 1 for every v ∈ χ(t). For v ∈ χ(t) choose a
k-term tv in the k-DNF Fv such that tv � ρ(κ̃, λ̃) = 1. Any restriction ρ that agrees with ρ(κ̃, λ̃) on the atoms appearing in
these k-terms is such that Fv � ρ = 1 for every v ∈ χ(t). In particular, this is the case for ρ(κ̃ � (A∪ dom(κ)), λ̃′) where A
is the set of elements mentioned by

∧
v∈χ(t) tv and λ̃′ is a suitable restriction of λ̃ such that (κ̃ � (A ∪ dom(κ)), λ̃′) is a

condition. Every k-term tv mentions at most k · rϕ many elements, and there are at most |χ(t)| ≤ w + 2 many terms tv.
Thus, the rank of (κ̃ � (A∪ dom(κ)), λ̃′) and hence of (κ′, λ′) is at most |A| ≤ (w + 2) · k · rϕ bigger than the rank of (κ, λ).
a

Wrapping up. Let ((Ti, Li, κi, λi))i∈N be a sequence such that (Ti+1, Li+1, κi+1, λi+1) is a successor of (Ti, Li, κi, λi) for
all i ∈ N, and (T0, L0, κ0, λ0) is (T0, ∅, ∅, λ0); we already noted that this is an adversary position. By Claim 4 all tuples
(Ti, Li, κi, λi) are adversary positions. Further, |V(Ti+1)| ≤ b2|V(Ti)|/3c + 1, so |V(Tm)| ≤ 3 for m := dlog3/2 |V(T0)|e.
Recalling that |V(T0)| ≤ 2|V(D)| the theorem follows once we show

n < 3|τ| · (m · (w + 2) · k · rϕ + 3(w + 2) · wϕ · rϕ)r, (4)

where wϕ is the maximal number of literals in some first order clause Ci(x̄) of ϕ. Note functionality clauses mention at
most r ≤ rϕ many elements of [n], hence every clause in 〈ϕ〉n mentions at most wϕ · rϕ many elements of [n].

We now verify (4). Since (κ0, λ0) has rank 0, Claim 4 implies that (κm, λm) has rank at most

dm := m · (w + 2) · k · rϕ.

Recall the notation ΓTm from Claim 3 and let B ⊆ [n] denote the set of elements mentioned by formulas in ΓTm . Note
ΓTm ⊆ 〈ϕ〉n. Since |V(Tm)| ≤ 3 we have |ΓTm | ≤ 3(w + 2) and hence

|B| ≤ 3(w + 2) · wϕ · rϕ.

Assume for contradiction that (4) fails. Then n ≥ 3|τ| · (dm + |B|)r. By Claim 2 there exists a condition (κ, λ)
extending (κm, λm) such that B ⊆ dom(κ). By (A3b) there exists vm ∈ χ(rTm) such that Fvm � ρ(κ, λ) , 1. By Claim 3
there is a strongly sound k-DNF proof of Fvm from ΓTm ∪ {Fu | u ∈ χ(Lm)}. For every clause C ∈ ΓTm ⊆ 〈ϕ〉n, we have
that dom(κ) contains all elements mentioned by C. Hence ρ(κ, λ) evaluates every atom in C, so C � ρ(κ, λ) ∈ {0, 1}, and
hence C � ρ(κ, λ) = 1 by Claim 1. Further we have Fu � ρ(κ, λ) = 1 for every u ∈ χ(Lm) since ρ(κ, λ) extends ρ(κm, λm)
and (A3a). In summary, Fvm does not restrict to 1 under ρ(κ, λ) and there is a strongly sound k-DNF proof of Fvm from
formulas that do restrict to 1 under ρ(κ, λ). This contradicts Lemma 2.3.

This proof has the following corollary.

Corollary 6.3. Let ϕ and r be as in Theorem 6.1. Then there exists a real cϕ > 0 such that for every natural n ≥ 1 and
every natural k ≥ 1, every strongly sound k-DNF refutation (D, (Fv)v∈V(D)) of 〈ϕ〉n satisfies

k · opw(D) > cϕ · n1/r.

17

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Proof. Let (D, (Fv)v∈V(D)) be a strongly sound k-DNF refutation of 〈ϕ〉n with path decomposition (T, χ) of width
w := opw(D). Assume the nodes of the path T are 0, 1, 2 . . . , ` in order. We can assume that for each i there is vi such
that χ(i) \ {vi} = χ(i + 1) or χ(i) ∪ {vi} = χ(i + 1). Furthermore we assume χ(0) = ∅.

Call a condition (κ, λ) good for i if for every v ∈ χ(i)

(a) if Fv is a clause from 〈ϕ〉n, then dom(κ) contains all elements mentioned by Fv;
(b) otherwise there is a term tv of Fv such that dom(κ) contains all elements mentioned by tv and tv � ρ(κ, λ) = 1.

Recall the constants rϕ,wϕ from the previous proof.

Claim 5. Let i ≤ `. If there is a condition good for i, then there is one of rank at most

(w + 1) · k · wϕ · rϕ.

Proof of Claim 5. Let (κ, λ) be good for i. For v ∈ χ(i) let Bv ⊆ [n] be the set of elements mentioned by Fv if Fv ∈ 〈ϕ〉n,
and otherwise the set of elements mentioned by tv (chosen according (b) above). In the first case |Bv| ≤ wϕ · rϕ
and in the second |Bv| ≤ k · rϕ. Set B :=

⋃
v∈χ(i) Bv and note |B| ≤ (w + 1) · k · rϕ · wϕ. Define κ′ := κ � B and

λ′ := λ � (im(κ′) ∪ ∂im(κ′)). Then (κ′, λ′) is good for i and has rank at most |B|. a
Observe that if (κ, λ) is good for i, then Fv � ρ(κ, λ) = 1 for all v ∈ χ(i) (in case (a) this follows from Claim 1). In

particular, there is a condition good for 0 (namely (∅, λ0) from the previous proof) but there is no condition good for i∗

where i∗ ≤ ` is the node where the sink of D is introduced. Hence there exists i∗ < i∗ such that there exists a condition
(κ∗, λ∗) good for i∗ and such that there does not exist a condition good for i∗ + 1 ≤ `. In particular, (κ∗, λ∗) is not good
for i∗ + 1. It follows that χ(i∗ + 1) = χ(i∗) ∪ {vi∗ } and vi∗ is introduced at i∗ + 1.

By Claim 5 we can assume that (κ∗, λ∗) has rank at most d∗ := (w + 1) · k · wϕ · rϕ.

Claim 6. vi∗ is a source of D.

Proof of Claim 6. Otherwise, because (T, χ) is ordered, the predecessors u,w of vi∗ in D are present in χ(i∗ + 1) =

χ(i∗) ∪ {vi∗ }, so u,w ∈ χ(vi∗). Since (κ∗, λ∗) is good for i∗ we have Fu � ρ(κ∗, λ∗) = Fw � ρ(κ∗, λ∗) = 1. By strong
soundness Fvi∗ � ρ(κ∗, λ∗) = 1, so (b) is satisfied for vi∗ . Hence, (κ∗, λ∗) is good for i∗ + 1, a contradiction. a

By Claim 6, Fvi∗ is a clause from 〈ϕ〉n. Let B∗ denote the set of elements mentioned by Fvi∗ . Any condition (κ, λ)
extending (κ∗, λ∗) with B∗ ⊆ dom(κ) would satisfy Fvi∗ � ρ(κ∗, λ∗) = 1 by Claim 1 and would thus be good for i∗ + 1.
That such a condition does not exist, implies by Claim 2 that n < 3|τ| · (d∗ + |B∗|)r. Noting |B∗| ≤ wϕ · rϕ, the corollary
follows.

Remark 6.4. It is well-known that Input Resolution is not refutation-complete (cf. [26]). Indeed, if ϕ is as above,
then for sufficiently large n there is no Input Resolution refutation of 〈ϕ〉n. This follows from the above corollary
and Theorem 4.1.

The above corollary generalizes bounds on space (recall Proposition 5.1) known for particular infinity axioms (cf.
Introduction). Concerning the more peculiar notion of space from Section 5.2 we find it worthwhile to explicitly note
the following rather direct corollary.

Corollary 6.5. Let ϕ, r and cϕ be as in Corollary 6.3 and n, k,w, ` > 0 be naturals. If there exists an `-winning strategy
for Teacher in Πk

w(〈ϕ〉n), then
k · w · ` > cϕ · n1/r.

Proof. Assume there exists an `-winning strategy for Teacher in Πk
w(〈ϕ〉n). By Corollary 5.6 there exists a space ` · w

R(k)-refutation of 〈ϕ〉n. By Proposition 5.1 (1) there exists an R(k)-refutation of 〈ϕ〉n of ordered pathwidth < ` · w.
Corollary 6.3 implies that k · w · ` > cϕ · n1/r.

To finish we take up some of the issues mentioned in the Introduction spelling out some further direct consequences
of Theorem 6.1.

We note that short DAG-like refutations of translations of infinity axioms need to use a large degree of parallelism
in the sense that they require large ordered treewidth. This is the first statement in the corollary below. The second can
be seen as a generalization of known lower bounds for treelike R(log) [29].

18

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

Corollary 6.6. Let ϕ be as in Theorem 6.1.

1. R(log)-refutations of 〈ϕ〉n of length at most 2no(1)
have ordered treewidth at least nΩ(1).

2. R(log)-refutations of 〈ϕ〉n of ordered treewidth at most no(1) have length at least 2nΩ(1)
.

As mentioned in the Introduction, the infinity axiom lnp from Example 2.6 has polynomial length Resolution
refutations [47]. The infinity axiom wphp from Example 2.7 has quasipolynomial length R(log)-refutations [32].
Specifically for these examples we can say the following.

Corollary 6.7.

1. Polynomial length R(100)-refutations of 〈lnp〉n have ordered treewidth Ω(n/ log n).
2. Quasipolynomial length R(log)-refutations of 〈wphp〉n have ordered treewidth Ω(n0.4).

Finally, we state a trade-off for length and parallelism.

Corollary 6.8. Let ε > 0.

1. There are Resolution refutations of 〈lnp〉n of ordered treewidth O(n) and length nO(1).
2. There are Resolution refutations of 〈lnp〉n of ordered treewidth 2.
3. R(log)-refutations of 〈lnp〉n with ordered treewidth O(n1−ε) have length 2nΩ(1)

.

Proof. (2) follows since treelike refutations have ordered treewidth 2, and (3) follows from Theorem 6.1. For (1) we
give length nO(1) space O(n) Resolution refutations of 〈lnp〉n (Proposition 5.1 (1)). This follows familiar lines, see e.g.
[11, Theorem 3.1]. Consider the clauses

Ca
k :=

∨
b∈[k] b<a.

for k ∈ [n] and a ∈ [k]. We derive blackboards Bn,Bn−1, . . . ,B1 where

Bk := {C0
k , . . . ,C

k−1
k }.

Then B1 contains C0
1 and a cut with axiom ¬0<0 yields the empty clause. By an axiom we mean a clause in 〈lnp〉n. The

length bound will be clear, we pay attention to space.
To derive Bn in space O(n), note each Ca

n is derivable in space O(1): cut the functionality axiom
∨

b∈[n] f a=b
with the axioms ¬ f a=b ∨ b<a for all b ∈ [n]. To derive Bk from Bk+1 in space O(n), derive each Ca

k for a ∈ [k] in
space O(n) from Ca

k+1 and Ck
k+1: first derive clauses Ca

k ∨ ¬b<k for each b ∈ [k] cutting Ca
k+1 on k<a with axiom

¬b<k ∨ ¬k<a ∨ b<a; then cut all these clauses with Ck
k+1 to get Ca

k ∨ k<k; then cut with axiom ¬k<k.

Acknowledgements

The referees helped to significantly improve the presentation of this work. The restrictions used in the proof of
Theorem 6.1 come from unpublished work of Albert Atserias, Sergi Oliva and the first author. The second author
thanks the ERC (European Research Council) for its support through Project COMPLEX REASON 239962.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson. Space complexity in propositional calculus. SIAM Journal on Computing
31(4):1184–1211, 2002.

[2] A. Atserias and V. Dalmau. A combinatorial characterization of resolution width. Journal of Computer and System Sciences 74(3):323–334,
2008.

[3] A. Atserias and M. Müller. Partially definable forcing and bounded arithmetic. Archive for Mathematical Logic 54(1):1–33, 2015.
[4] J. Bang-Jensen and G. Gutin. Digraphs. Springer Monographs in Mathematics. Springer London Ltd., London, second edition, 2009.
[5] P. Beame, C. Beck and R. Impagliazzo. Time space tradeoffs in resolution: Superpolynomial lower bounds for superlinear space. 44th

Symposium on Theory of Computing, pages 213–232, 2012.
[6] E. Ben-Sasson. Size-space tradeoffs for resolution. SIAM Journal on Computing 38(6):2511–2525, 2009.
[7] E. Ben-Sasson and J. Nordström. Understanding space in proof complexity: Separations and trade-offs via substitutions. 2nd Symposium on

Innovations in Computer Science, pages 401–416, 2011.
[8] E. Ben-Sasson, A. Wigderson. Short proofs are narrow - resolution made simple. Journal of the ACM 48(2):149–169, 2001.

19

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

[9] A. Beckmann, P. Pudlák and N. Thapen. Parity games and propositional proofs. ACM Transactions on Computational Logic 15(2): article 17,
2014.

[10] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2):1–45, 1998.
[11] M. L. Bonet, N. Galesi. Optimality of size-width tradeoffs for resolution. Computational Complexity 10(4):261–276, 2001.
[12] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44(1):36–50, Mar. 1979.
[13] S. A. Cook and P. Nguyen. Logical Foundations of Proof Complexity, Cambridge University Press, 2010.
[14] S. Dantchev and B. Martin. The limits of tractability in Resolution-based propositional proof systems. Annals of Pure and Applied Logic

163(6):656–668, 2012.
[15] S. Dantchev and B. Martin. Relativization makes contradictions harder for Resolution. Annals of Pure and Applied Logic 165(3): 837–857,

2014.
[16] S. Dantchev and S. Riis. On relativisation and complexity gap for resolution-based proof systems. 17th Computer Science Logic, Lecture

Notes in Computer Science 2803, pages 142–154. Springer, 2003.
[17] J. L. Esteban, N. Galesi, and J. Messner. On the complexity of resolution with bounded conjunctions. Theoretical Computer Science

321(2-3):347–370, 2004.
[18] J. L. Esteban and J. Torán. Space bounds for resolution. Information and Computation 171(1):84–97, 2001.
[19] Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals. From small space to small width in resolution. ACM Transactions on

Computational Logic 16(4): Article 28, 2015.
[20] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[21] R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek and P. Rossmanith. On digraph width measures in parameterized algorithmics. 4th

International Workshop on Parameterized and Exact Computation. Lecture Notes in Computer Science 5917, pages 185-197, 2009.
[22] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM 54(1): Article

No. 1, 2007.
[23] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal of Combinatorial Theory Series B 82(1):138–154,

2001.
[24] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Information Processing Letters 42(6):345–350, 1992.
[25] M. Kirousis and C. H. Papadimitriou. Searching and Pebbling. Theoretical Computer Science 47:205–218, 1986.
[26] H. Kleine Büning and T. Lettman. Propositional logic: deduction and algorithms. Cambridge University Press, Cambridge, 1999.
[27] J. Krajı́ček. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic 59(1):73–86, 1994.
[28] J. Krajı́ček. On the weak pigeonhole principle. Fundamenta Mathematicae 170(1-3):123–140, 2001.
[29] J. Krajı́ček. Combinatorics of first order structures and propositional proof systems. Archive for Mathematical Logic 43(4):427–441, 2004.
[30] S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonicity in digraph searching. Theoretical Computer Science 412(35):4688–

4703, 2011.
[31] Y. Li, A. A. Razborov and B. Rossman. On the AC0 Complexity of Subgraph Isomorphism. 55th IEEE Symposium on Foundations of

Computer Science, pages 344–353, 2014.
[32] A. Maciel, T. Pitassi, and A. R. Woods. A new proof of the weak pigeonhole principle. Journal of Computer and System Sciences 64(4):843–872,

2002.
[33] D. Marx. Can you beat treewidth? Theory of Computing 6(1):85–112, 2010.
[34] R. Mazala. Infinite games. In E. Grädel and W. Thomas, editors, Automata, Logics, and Infinite Games, Lecture Notes in Computer Science

2500, chapter 2. Springer, 2002.
[35] M. Müller and S. Szeider. Revisiting space in proof complexity: treewidth and pathwidth. 38th Mathematical Foundations of Computer Science,

Lecture Notes in Computer Science 8087, pages 704–716, Springer, 2013.
[36] J. Nordström. Narrow proofs may be spacious: separating space and width in resolution. SIAM Journal on Computing 39(1):59–121, 2009.
[37] J. Nordström. On the interplay between proof complexity and SAT solving. ACM SIGLOG News 2(3):19–44, 2015.
[38] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. Methods in mathematical logic (Caracas, 1983), Lecture Notes in

Mathematics 1130, pages 317–340. Springer, 1985.
[39] A. A. Razborov. Proof complexity of pigeonhole principles. 5th Developments in Language Theory, Lecture Notes in Computer Science 2295,

pages 100–116, 2002.
[40] A. A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle. Theoretical Computer Science 303(1):233–243, 2003.
[41] A. A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial calculus. Annals of Mathematics 181:415–472, 2015.
[42] A. A. Razborov. A new kind of trade-offs in propositional proof complexity. ECCC TR15-033, 2015. Journal of the ACM, to appear.
[43] S. Riis. A complexity gap for tree resolution. Computational Complexity 10(3):179–209, 2001.
[44] N. Segerlind. Exponential separation between Res(k) and Res(k + 1) for k ≤ ε log n. Information Processing Letters 93(4): 185–190. 2005.
[45] N. Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic 13(4):417–481, 2007.
[46] N. Segerlind, S. Buss, and R. Impagliazzo. A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal on

Computing 33(5):1171–1200, 2004.
[47] G. Stålmarck. Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33(3):277–280, 1996.

20

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
01
0

