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ABSTRACT
An important criterium for social choice methods is their re-
sistance against various types of strategic behavior. Seminal
results in the social choice literature indicate that absolute
resistance is in many cases impossible. For this reason, it has
often been argued that computational intractability could
be used as an obstruction for strategic behavior for different
procedures.

In this paper, we study the computational complexity of
strategic behavior for the Kemeny procedure in the setting
of judgment aggregation. In particular, we investigate prob-
lems related to (1) strategic manipulation, (2) bribery, and
(3) control (by adding or deleting issues). We show that these
problems are complete for the second level of the Polynomial
Hierarchy. Our results hold for two different judgment aggre-
gation frameworks and for different notions of preference over
judgment sets. The hardness results that we establish hold
up even under various restrictions, such as unidimensional
alignment of the profile.

CCS Concepts
•Theory of computation→Problems, reductions and
completeness; •Computing methodologies → Artifi-
cial intelligence;

Keywords
Judgment aggregation, computational complexity, computa-
tional social choice, strategic behavior, manipulation, bribery,
control

1. INTRODUCTION
An important topic in the research field of computational

social choice is the (im)possibility of strategic behavior in col-
lective decision making. This is epitomized by the eminence
of results such as the Gibbard-Satterthwaite Theorem [20,
30], that identifies various conditions under which strategic
voting (or manipulation) is—in principle—unavoidable. Ma-
nipulation in voting is a typical example of strategic behavior,
and involves individuals reporting insincere preferences with
the aim of obtaining a group outcome that is preferable for
them.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Since strategic behavior in collective decision making is
generally considered to be (socially) undesirable, a lot of
research effort has been invested in diagnosing what social
choice procedures are resistant to strategic behavior, and un-
der what conditions. An important research direction along
these lines investigates how computational complexity can
be used to establish that various social choice procedures are
(in many cases) practically immune to strategic behavior [2,
10]. For example, in many cases, it is in principle possible to
manipulate voting rules (by reporting insincere preferences),
but determining what insincere preference leads to a better
outcome is computationally so demanding that it prevents
manipulative behavior from being a useful policy.

In this paper, we investigate the computational complex-
ity of several types of strategic behavior in the setting of
judgment aggregation. Judgment aggregation studies col-
lective decision making on a set of issues that are logically
related [16]—in this setting, individuals report their judg-
ments on the issues, and an aggregation procedure is applied
to combine these individual opinions into a single collective
opinion. One judgment aggregation that is often considered
in the literature, and on which we focus in this paper, is the
(generalized) Kemeny procedure1 (see, e.g., [16]).

The types of strategic behavior that we study in this paper
are manipulation, bribery and control. Manipulation involves
an individual reporting an insincere judgment with the aim
to get a group outcome that is better for this individual.
Bribery involves an external party achieving some desired
collective outcome by persuading a number of individuals
to report insincere judgments. Control involves an external
party attaining some desired collective outcome by changing
the set of issues in the judgment aggregation scenario—some
issues are removed or added.

Contributions.
We show that the problem of deciding whether a desired

outcome can be achieved by means of these three types of
strategic behavior for the Kemeny judgment aggregation pro-
cedure is Σp

2-complete (Theorems 2, 5 and 8). These results
hold for two different judgment aggregation frameworks, and
for several notions of preference relations over judgments.
Moreover, we show that this result extends to the setting of
group manipulation, where a coalition of individuals reports
insincere judgments to obtain a better collective outcome.
These results are a good starting point for more detailed com-

1This procedure is also known as the Prototype-Hamming
procedure [26], the distance-based procedure [18], the median
rule [27], MWA [23], and the simple scoring rule [11].
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plexity investigations, e.g., using parameterized complexity
or approximation methods.

Our Σp
2-completeness result for manipulation of the Ke-

meny judgment aggregation procedure, in particular, answers
an open question from the literature [29, p. 382].

Related Work.
For the Kemeny judgment aggregation procedure, the com-

plexity of computing collective judgments has been investi-
gated in the literature [18, 19, 23], also from a parameterized
complexity point of view [22]. Moreover, the computational
complexity of several problems related to strategic behav-
ior in judgment aggregation—manipulation, bribery and
control—has been considered for a class of judgment aggre-
gation procedures known as uniform premise-based quota
rules [3, 4, 5, 6, 7, 8, 18]. Our results are complementary to
previous work from the literature. All the contributions that
are mentioned above either studied different problems for the
same judgment aggregation procedure, or studied the same
problems for different judgment aggregation procedures.

Roadmap.
We begin in Section 2 with revisiting relevant notions

from judgment aggregation and computational complexity.
Then, in Section 3, we discuss the different kinds of strategic
behavior that we consider, and we specify the problems that
we investigate. In Section 4, we present the computational
complexity results that we establish. Finally, in Section 5,
we conclude and discuss directions for future research.

2. PRELIMINARIES
We begin by reviewing several relevant concepts from

judgment aggregation and computational complexity theory.

2.1 Judgment Aggregation
We discuss the two formal judgment aggregation frame-

works that we use in this paper: formula-based judgment
aggregation (as used in, e.g., [13, 18, 23]) and constraint-
based judgment aggregation (as used in, e.g., [17, 21]). The
former we present in detail, whereas for the latter, we only
discuss the main features of the framework—the reason for
this is that the proofs that we present in detail in this paper
are for the formula-based judgment aggregation framework.
Moreover, we describe the concept of unidimensional align-
ment of profiles in judgment aggregation.

2.1.1 Formula-Based Judgment Aggregation
We begin with the framework of formula-based judgment

aggregation. An agenda is a finite, non-empty set Φ of
formulas that does not contain any doubly-negated formu-
las and that is closed under complementation. Moreover,
if Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} is an agenda, then we
let [Φ] = {ϕ1, . . . , ϕn} denote the pre-agenda associated to
the agenda Φ. For every propositional formula ϕ, we let ∼ϕ
denote the complement of ϕ. We denote the bitsize of the
agenda Φ by size(Φ) =

∑
ϕ∈Φ |ϕ|. A judgment set J for an

agenda Φ is a subset J ⊆ Φ. We call a judgment set J
complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ Φ; and we call
it consistent if there exists an assignment that makes all
formulas in J true. Intuitively, the consistent and complete
judgment sets are the opinions that individuals and the group
can have.

We associate with each agenda Φ an integrity constraint Γ,
that can be used to further restrict the set of feasible opinions.
Such an integrity constraint consists of a single propositional
formula. We say that a judgment set J is Γ-consistent if
there exists a truth assignment that simultaneously makes
all formulas in J and Γ true. Let J (Φ,Γ) denote the set
of all complete and Γ-consistent subsets of Φ. We say that
finite sequences J ∈ J (Φ,Γ)+ of complete and Γ-consistent
judgment sets are profiles, and where convenient we equate
a profile J = (J1, . . . , Jp) with the (multi)set {J1, . . . , Jp}.
Moreover, for i ∈ [p] = {1, . . . , p}, we let J−i denote the
profile (J1, . . . , Ji−1, Ji+1, . . . , Jp).

A judgment aggregation procedure (or rule) for the
agenda Φ and the integrity constraint Γ is a function F that
takes as input a profile J ∈ J (Φ,Γ)+, and that produces a
non-empty set of non-empty judgment sets. We call a judg-
ment aggregation procedure F resolute if for any profile J
it returns a singleton, i.e., |F (J)| = 1; otherwise, we call F
irresolute. We call a judgment aggregation procedure F
complete and Γ-consistent, if J is complete and Γ-consistent,
respectively, for every J ∈ J (Φ,Γ)+ and every J ∈ F (J).

The Kemeny aggregation procedure is based on the Ham-
ming distance d(J, J ′) = |{ϕ ∈ [Φ] : ϕ ∈ (J\J ′)∪(J ′\J) }| be-
tween two complete judgment sets J, J ′. Intuitively, the Ham-
ming distance d(J, J ′) counts the number of issues on which
two judgment sets disagree. Let J be a single Γ-consistent and
complete judgment set, and let (J1, . . . , Jp) = J ∈ J (Φ,Γ)+

be a profile. We define the distance between J and J
to be d(J,J) =

∑
i∈[p] d(J, Ji). Then, we let the out-

come KemenyΦ,Γ(J) of the Kemeny rule be the set of
those J∗ ∈ J (Φ,Γ) for which there is no J ∈ J (Φ,Γ) such
that d(J,J) < d(J∗,J). (If Φ and Γ are clear from the con-
text, we often write Kemeny(J) to denote KemenyΦ,Γ(J).)
Intuitively, the Kemeny rule selects those complete and Γ-
consistent judgment sets that minimize the cumulative Ham-
ming distance to the judgment sets in the profile. The
Kemeny rule is irresolute, complete and Γ-consistent.

2.1.2 Constraint-Based Judgment Aggregation
We continue with a brief description of the framework of

constraint-based judgment aggregation, and focus on the dif-
ference with the formula-based judgment aggregation frame-
work. Instead of using an agenda Φ to model the issues, a
finite set I = {x1, . . . , xn} of propositional variables is used.
Accordingly, truth assignments α : I → B to these vari-
ables are used instead of complete judgment sets to represent
opinions—we use B to denote the set {0, 1} of truth values.
The logical relation between the issues is modelled using
an integrity constraint Γ, which is a propositional formula
containing only variables I. This means that no additional
variables (beyond those in I) can be used to specify the logi-
cal relation between issues—in contrast, in the formula-based
framework, one is free to introduce additional variables.

The notions of Γ-consistent opinions, profiles, and judg-
ment aggregation procedures are then defined entirely simi-
larly to the case of formula-based judgment aggregation. In
particular, the Kemeny judgment aggregation procedure is
defined similarly as for the case of formula-based judgment
aggregation. For more details, we refer to papers in the liter-
ature that feature the constraint-based judgment aggregation
framework (e.g., [17, 21]).
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2.1.3 Unidimensional Alignment
A property of judgment aggregation scenarios (more specif-

ically, of profiles) that is of use for computing the outcome of
various judgment aggregation procedures more efficiently is
that of unidimensional alignment [24]. We describe this prop-
erty for the setting of formula-based judgment aggregation.
For the setting of constraint-based judgment aggregation, it
is defined entirely similarly.

A profile J = (J1, . . . , Jp) over an agenda Φ is unidimen-
sionally aligned if there exists a bijection π : {J1, . . . , Jp} →
[p] such that for each ϕ ∈ [Φ] it holds that there are
no J ′1, J

′
2, J
′
3 ∈ J such that both π(J ′1) < π(J ′2) < π(J ′3) and

either (1) ϕ ∈ J ′1, ¬ϕ ∈ J ′2 and ϕ ∈ J ′3 or (2) ¬ϕ ∈ J ′1, ϕ ∈ J ′2
and ¬ϕ ∈ J ′3. In other words, when ordering the judgment
sets in J according to the permutation π, all judgment sets
containing ϕ appear either to the left or to the right of all
judgment sets containing ¬ϕ.

For any profile J (containing an odd number of judgment
sets) that is unidimensionally aligned, the majority outcome
is consistent. Namely, the majority outcome is identical to
the median judgment set according to the bijection π that
witnesses the unidimension alignment of J . Therefore, in
such cases, computing the outcome of the Kemeny judgment
aggregation procedure, for instance, is easy, because it co-
incides with the majority outcome in those cases where the
majority outcome is consistent.

2.2 Computational Complexity
Next, we review some notions from computational complex-

ity. We assume the reader to be familiar with basic concepts.
For more details, we refer to textbooks (see, e.g., [1]).

We briefly review the classes of the Polynomial Hierarchy
(PH) [25, 28, 31, 32]. In order to do so, we consider quantified
Boolean formulas. A quantified Boolean formula (in prenex
form) is a formula of the form Q1x1Q2x2 . . . Qnxn.ψ, where
all xi are propositional variables, each Qi is either an exis-
tential or a universal quantifier, and ψ is a (quantifier-free)
propositional formula over the variables x1, . . . , xn. Truth
for such formulas is defined in the usual way.

To consider the complexity classes of the PH, we restrict
the number of quantifier alternations occurring in quantified
Boolean formulas, i.e., the number of times where Qi 6= Qi+1.
We consider the complexity classes Σp

k, for each k ≥ 1.
Let k ≥ 1 be an arbitrary, fixed constant. The complexity
class Σp

k consists of all decision problems for which there
exists a polynomial-time reduction to the problem QSatk,
that is defined as follows. Instances of the problem QSatk are
quantified Boolean formulas of the form ∃x1 . . .∃x`1∀x`1+1

. . . ∀x`2 . . . Qkx`k−1+1 . . . Qkx`k . ψ, where Qk = ∃ if k is odd
and Qk = ∀ if k is even, where 1 ≤ `1 ≤ · · · ≤ `k, and
where ψ is quantifier-free. The problem is to decide if the
quantified Boolean formula is true.

Alternatively, one can characterize the class Σp
2 using non-

deterministic polynomial-time algorithms with access to an
oracle for an NP-complete problem. Let O be a decision
problem. A Turing machine M with access to an O ora-
cle is a Turing machine with a dedicated oracle tape and
dedicated states qquery, qyes and qno. Whenever M is in the
state qquery, it does not proceed according to the transition
relation, but instead it transitions into the state qyes if the
oracle tape contains a string x that is a yes-instance for
the problem O, i.e., if x ∈ O, and it transitions into the
state qno if x 6∈ O. Intuitively, the oracle solves arbitrary

instances of O in a single time step. The class Σp
2 consists of

all decision problems that can be solved in polynomial time
by a nondeterministic Turing machine that has access to an
O-oracle, for some O ∈ NP.

3. MANIPULATION, BRIBERY AND CON-
TROL IN JUDGMENT AGGREGATION

In this section, we describe the different strategic behavior
scenarios that we investigate—manipulation, bribery and
control. Moreover, we formally define the decision problems
that we use to model the different kinds of strategic behavior.
(We consider decision problems because they are technically
more convenient to analyze than search problems. The hard-
ness results that we obtain for the decision problems imply
that no efficient algorithm exists to solve search variants of
the decision problems that we consider.)

In order to precisely state what we mean with the different
kinds of strategic behavior, we need to specify a notion of
preference over judgments. We consider two different notions
of preference: subset-based preferences and preferences based
on (weighted) Hamming distances—we focus on the former
in our presentation of the problems and the results.

3.1 Preferences over Judgment Sets
The different types of strategic behavior that we will con-

sider all involve the incentive to obtain a “better” outcome.
Therefore, in order to study strategic behavior in judgment
aggregation, it is essential to define a notion of preference over
opinions—i.e., when is one opinion preferred over another.

In the worst case, the number of possible opinions that
play a role is exponential in the number of issues—e.g., for m
issues there could be up to 2m possible opinions. As a result,
it is unreasonable to expect agents to explicitly specify a
preference relation over all (feasible) opinions. Instead it
makes more sense to use a compact specification language to
represent a preference relation. Various preference relations
over opinions have been studied [6, 12, 14].

In this paper, we consider two types of compactly specified
preferences over opinions (or judgment sets). We describe
these below, after which we briefly discuss other notions of
preferences over opinions that have been considered in the
judgment aggregation literature. (In this section, we consider
the case of formula-based judgment aggregation; the case of
constraint-based judgment aggregation is entirely similar.)

3.1.1 Subset-based Preferences
The first compact method of specifying preferences that

we consider is that of subset-based preferences. For this
preference relation over judgments, an agent with sincere
judgment J ∈ J (Φ,Γ) specifies a subset L ⊆ J of important
issues. Then for judgment sets J1, J2 ∈ J (Φ,Γ), judgment
set J1 is preferred over judgment set J2 if L ⊆ J1 and L 6⊆
J2. In other words, every judgment set that includes L is
preferred over every judgment set that does not include L.
(Judgment sets that both include L are equally preferable;
similarly for judgment sets that both do not include L.)

3.1.2 (Weighted) Hamming Distance Preferences
Another type of preferences that we consider is the class of

preferences based on a weighted Hamming distance. An agent
can specify their preference relation over complete and Γ-
consistent judgment sets J ∈ J (Φ,Γ) by providing a weight
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function w : [Φ]→ N that produces a weight w(ϕ) for each
formula ϕ ∈ [Φ]. Intuitively, for each ϕ ∈ [Φ], the weight w(ϕ)
indicates how important it is for the agent that the outcome
agrees with their truthful opinion on the issue ϕ. (Alterna-
tively, one could consider weight functions that produce ratio-
nal or real weights.) Then, for two complete judgment sets J1

and J2 the weighted Hamming distance d(J1, J2, w) is defined
by letting d(J1, J2, w) =

∑{w(ϕ) : ϕ ∈ (J1 \ J2)∪ (J2 \ J1) }.
That is, for each formula ϕ ∈ [Φ] that J and J ′ disagree on,
the weighted Hamming distance is increased by w(ϕ).

Using this notion of weighted Hamming distance, we can
define a preference relation for an agent. Suppose that
the agent’s truthful opinion is given by a complete and
Γ-consistent judgment set J . Moreover, suppose that the
agent’s view on the relative importance of the separate issues
is given by a weight function w : [Φ]→ N. Then the prefer-
ence relation ≤w,J for this agent is defined as follows. For
any two complete and Γ-consistent judgment sets J1, J2, it
holds that J1 ≥w,J J2 if and only if d(J, J1, w) ≤ d(J, J2, w).
Correspondingly, a judgment set J1 is (strictly) preferred
over another judgment set J2 if and only if the weighted
Hamming distance from J1 to J is (strictly) smaller than the
weighted Hamming distance from J2 to J .

A particular case of the weighted Hamming distance
is the unweighted Hamming distance. That is, the case
where w(ϕ) = 1 for all ϕ ∈ [Φ]. Whenever the weight func-
tion w is the constant function that always returns 1, we
drop the “w” from the notation—that is, the unweighted
Hamming distance between two judgment sets J1 and J2 is
denoted by d(J1, J2).

Subset-based preferences for some L ⊆ J with |L| = 1
can also be seen as a particular case of weighted Hamming
distances: namely, take w(ϕL) = 1 for the unique ϕL ∈ [Φ]
with {ϕL,∼ϕL} ∩ L 6= ∅, and w(ϕ) = 0 for all other ϕ ∈ [Φ].

3.1.3 Other preference relations
In the literature, there have been various proposals for

notions of preference over opinions. For example, the phe-
nomenon of manipulation in judgment aggregation has been
studied in the settings (1) where one judgment set is preferred
over another if it agrees with a fixed optimal judgment set on
at least one issue where the other judgment set disagrees [14],
and (2) where one judgment set is preferred over a second
judgment set if it agrees with a fixed optimal judgment set
on at least one issue where the second judgment set disagrees,
and for all issues it holds that if the second judgment set
agrees with the optimal judgment set then the first judg-
ment set also agrees with the optimal [14]. Other preference
relations that have been investigated are top-respecting pref-
erences and closeness-respecting preferences. The class of
top-respecting preferences contains all preferences that prefer
a single most preferred judgment set over all other judgment
sets (and the preference between the other judgment sets
is arbitrary) [6, 12]. The class of closeness-respecting pref-
erences contains preferences that additionally satisfy the
condition of closeness: if one judgment set agrees with the
most preferred judgment on a superset of issues compared
to another judgment set, then the one judgment is preferred
over the other [6, 12].

3.2 Manipulation
The first form of strategic behavior in judgment aggre-

gation that we consider is manipulation. This involves an

individual aiming to influence the outcome of the aggregation
procedure in their favor by reporting an insincere judgment.
We model this using the following decision problem.

Manipulation(Kemeny)
Instance: An agenda Φ with an integrity con-
straint Γ, a profile (J1, . . . , Jp) = J ∈ J (Φ,Γ)+,
and a subset L ⊆ J1.
Question: Is there a complete and consistent judg-
ment set J ′ ∈ J (Φ,Γ) such that for all J∗new ∈
Kemeny(J−1, J

′) it holds that L ⊆ J∗new?

3.3 Bribery
Another form of strategic behavior in judgment aggrega-

tion is bribery. In this setting, an external agent wishes to
influence the outcome of a judgment aggregation scenario by
bribing a number of individuals.

The briber has a set L ⊆ Φ of desired conclusions that
they want to attain in the collective opinion. Additionally,
the briber has a budget that suffices to bribe at most k
individuals. For all bribed individuals, the briber can specify
an arbitrary (complete and Γ-consistent) judgment set. The
question is to determine whether the briber can pick up to k
individuals and specify judgment sets for these individuals so
that the outcome of the judgment aggregation procedure is
better (with respect to L) than without bribing. We model
this using the following decision problem.

Bribery(Kemeny)
Instance: An agenda Φ with an integrity con-
straint Γ, a profile J ∈ J (Φ,Γ)+, a set L ⊆ Φ,
and an integer k ∈ N.
Question: Is it possible to change up to k individual
judgment sets in J , resulting in a new profile J ′,
so that for all J∗new ∈ Kemeny(J ′) it holds that
L ⊆ J∗new?

3.4 Control by Adding or Removing Issues
A third form of strategic behavior in judgment aggrega-

tion is control. In this setting, an external agent wishes to
influence the outcome of by influencing the conditions of a
judgment aggregation scenario. Here, we consider control by
(1) adding or (2) deleting issues.

We begin with the scenario of (1) control by adding issues.
A number of individuals each have an opinion for an agenda Φ
in the presence of an integrity constraint Γ. That is, we
are considering a profile J ∈ J (Φ,Γ)+. However, they
are performing judgment aggregation only on a selection of
issues, specified by an agenda Φ′ ⊆ Φ. (For any Ψ ⊆ Φ,
we let the profile J |Ψ consist of the judgment sets J |Ψ for
each J ∈ J , where J |Ψ = J ∩ Ψ—that is, J |Ψ = {J ∩
Ψ : J ∈ J }. Intuitively, J |Ψ is the restriction of J to the
formulas in Ψ.) The external agent wishes to ensure that
the outcome of the judgment aggregation procedure includes
a set L ⊆ Φ of desired conclusions, and they want to do so
by enlarging the set of issues that the individuals perform
judgment aggregation on. Formally, the external agent wants
to select an agenda Φ′′ with Φ′ ⊆ Φ′′ ⊆ Φ such that L ⊆ J∗
for all J∗ ∈ Kemeny(J |Φ′′). (Obviously, if the external agent
wishes to succeed, they need to choose some Φ′′ with L ⊆ Φ′′.)
We model this using the following decision problem.
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Control-by-Adding-Issues(Kemeny)
Instance: An agenda Φ with an integrity con-
straint Γ, an agenda Φ′ ⊆ Φ, a set L ⊆ Φ and
a profile J ∈ J (Φ,Γ)+.
Question: Is there an agenda Φ′′ with Φ′ ⊆ Φ′′ ⊆
Φ such that for all J∗ ∈ Kemeny(J |Φ′′) it holds
that L ⊆ J∗?

We continue with the scenario of (2) control by deleting
issues. In this scenario, the external agent wishes to ensure
that the outcome of the judgment aggregation procedure
includes a set L ⊆ Φ of desired conclusions, and they want
to do so by restricting the set of issues that the individuals
perform judgment aggregation on. Formally, the external
agent wants to select an agenda Φ′′ ⊆ Φ such that L ⊆ J∗
for each J∗ ∈ Kemeny(J |Φ′′). (Again, if the external agent
wishes to succeed, they need to choose some Φ′′ with L ⊆ Φ′′.)
We model this using the following decision problem.

Control-by-Removing-Issues(Kemeny)
Instance: An agenda Φ with an integrity con-
straint Γ, a set L ⊆ Φ and a profile J ∈ J (Φ,Γ)+.
Question: Is there an agenda Φ′′ ⊆ Φ such that for
all J∗ ∈ Kemeny(J |Φ′′) it holds that L ⊆ J∗?

3.5 Problem Variants
In the discussion of the different types of strategic behavior,

in Sections 3.2–3.4, we focused on the formula-based judg-
ment aggregation framework and subset-based preferences.
In this section, we briefly describe the decision problems that
we consider for the other settings that we consider.

For the setting of manipulation in the presence of weighted
and unweighted Hamming distance preferences, the deci-
sion problems Manipulation(Kemeny; W-Ham) and Mani-
pulation(Kemeny; Ham) that we consider are similar to the
problem Manipulation(Kemeny). However, the input for
these problems does not contain a set L ⊆ J1. For the prob-
lem Manipulation(Kemeny; W-Ham), the input contains
a weight function w : [Φ] → N instead. The question is
whether each set J∗new ∈ Kemeny(J−1, J

′) is preferred over
each set J∗old ∈ Kemeny(J)—according to the (weighted)
Hamming distance preferences.

For the setting of bribery, we consider the problems
Bribery(Kemeny; W-Ham), Bribery(Kemeny; Ham) that
are defined analogously. In addition, for these problems,
the input contains a reference judgment set J0 ∈ J (Φ,Γ)
that underlies the (weighted) Hamming distance preferences
for the external agent. For the setting of control, we con-
sider similar decision problems—e.g., Control-by-Adding-
Issues(Kemeny; W-Ham).

For all of these decision problems, we also consider variants
for the constraint-based judgment aggregation framework,
where the input contains the corresponding elements in the
constraint-based framework. For these variants we do not
introduce additional notation.

4. COMPLEXITY RESULTS
We now turn to presenting the complexity results that

we establish in this paper for the problems of manipulation,
bribery and control. We present detailed proofs for the respec-
tive problems for the formula-based judgment aggregation
framework and for subset-based preferences over judgment

sets. We briefly indicate how these results can be extended
to work also for other settings—i.e., for the constraint-based
judgment aggregation framework and for preferences based
on (weighted) Hamming distances. In addition, we indicate
how these results can be extended to the setting where the
judgment aggregation scenario is manipulated by a group of
individuals, rather than a single individual. (The proposi-
tions for which we do not give detailed proofs we indicate
with a ?.)

4.1 Manipulation
We begin with showing Σp

2-completeness for the problem of
manipulation. The Σp

2-hardness result that we obtain works
even for unidimensionally aligned profiles—that is, for cases
where the input contains a unidimensionally aligned profile;
the profile that arises from the act of manipulation does not
need to be unidimensionally aligned.

Lemma 1. Manipulation(Kemeny) is in Σp
2 .

Proof. We describe a nondeterministic polynomial-time
algorithm with access to an NP oracle that solves the prob-
lem. Let (Φ,Γ,J , L) specify an instance of Manipulation-
(Kemeny). The algorithm proceeds in several steps.

Firstly, (1) the algorithm guesses a complete judgment
set J ′1 together with a truth assignment α : Var(Φ,Γ)→ B,
and it checks whether α satisfies both J ′1 and Γ. This can
be done in nondeterministic polynomial time.

Then, (2) the algorithm determines the minimum Ham-
ming distance dwin from (J ′1,J−1) to any judgment set J∗ ∈
J (Φ,Γ). That is, dwin is the Hamming distance from
the judgment sets in (J ′1,J−1) to the judgment sets J∗ ∈
Kemeny(J ′1,J−1). This can be done in (deterministic) poly-
nomial time using O(logn+ log p) queries to an NP oracle.

Finally, (3) the algorithm determines by using a single
query to an NP oracle whether there exists some com-
plete and Γ-consistent judgment set J∗new ∈ J (Φ,Γ) such
that d(J∗new, (J−1, J

′
1)) = dwin and L 6⊆ J∗new. If this is the

case, the algorithm rejects; otherwise, the algorithm accepts.
It is straightforward to verify that the algorithm runs in

nondeterministic polynomial time. Moreover, the algorithm
accepts the input (for some sequence of nondeterministic
choices) if and only if there is some complete and consistent
judgment set J ′1 such that for all J∗ ∈ Kemeny(J−1, J

′
1) it

holds that L ⊆ J∗.

Theorem 2. Manipulation(Kemeny) is Σp
2-complete.

Moreover, hardness holds even when the input is restricted
to unidimensionally aligned profiles (for 3 individuals) and
where |L| = 1.

Proof. Membership in Σp
2 is shown in Lemma 1. We show

Σp
2-hardness by reducing from QSat2. Let ϕ = ∃X.∀Y.ψ

be an instance of QSat2. We construct an instance of
Manipulation(Kemeny) as follows. We introduce auxil-
iary variables x′ for each x ∈ X, that is, we introduce the
set X ′ = {x′ : x ∈ X } of variables. We define Φ by let-
ting [Φ] = X ∪X ′ ∪{w, z}. Moreover, we define the integrity
constraint Γ as follows:

Γ =

(
¬w ∧ ∧

x∈X
(x ∧ x′)

)
∨
(
¬w ∧ ∧

x∈X
(¬x ∧ ¬x′)

)
∨

(
(ψ → (w ∧ z)) ∧ (

∧
x∈X

(x⊕ x′)
)
.
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As a result, each complete judgment set J is Γ-consistent if
and only if it satisfies one of the following three conditions:
(1) J contains all variables x ∈ X and all variables x′ ∈ X ′,
and J does not contain w; (2) J contains no variables x ∈ X
and no variables x′ ∈ X ′, and J does not contain w; or
(3) for each x ∈ X, J contains exactly one of x and x′, and J
satisfies the formula (ψ → (w∧ z)). (The variable w plays no
role in the current reduction; we only include this variable in
the construction so that we can use the same construction
for the proof of Theorem 5 below.)

Next, we define the profile J = (J1, J2, J3) as shown in Fig-
ure 1. The profile J is unidimensionally aligned—this is wit-

J J1 J2 J3

x 0 0 1
x′ 0 0 1
w 0 0 0
z 1 0 0

Figure 1: The profile J in the proof of Theorem 2.
Here x ranges over X, and x′ ranges over X ′.

nessed by the bijection π : {J1, J2, J3} → [3] where π(Ji) = i.
Finally, we let L = {z}.

We show that there is some complete and Γ-consistent
judgment set J ′1 such that for all J∗ ∈ Kemeny(J ′1,J−1) it
holds that L ⊆ J∗ if and only if ϕ ∈ QSat2.

(⇒) Suppose that there is a successful manipulation J ′1
such that for all J∗ ∈ Kemeny(J ′1,J−1) it holds that L ⊆
J∗. Since both J2 and J3 contain ¬z, we know that
each J∗ ∈ Kemeny(J ′1,J−1) must satisfy condition (3). Oth-
erwise, there would also be some J∗ ∈ Kemeny(J ′1,J−1)
with L 6⊆ J∗. From this, we know that J ′1 must satisfy con-
dition (3), because if J ′1 would satisfy condition (1) or (2),
the majority outcome would be consistent, and would also
satisfy condition (1) or (2). Thus, in this situation, it would
not be possible that each J∗ ∈ Kemeny(J ′1,J−1) satisfies
condition (3).

Now construct the truth assignment α : X → {0, 1}
by letting α(x) = 1 if and only if x ∈ J ′1. We
show that ∀Y.ψ[α] is true. In order to do so, con-
sider the majority outcome Majority(J ′1,J−1). We know
that Majority(J ′1,J−1) agrees with J ′1 on all variables w ∈
X ∪ X ′. Moreover, we know that Majority(J ′1,J−1) con-
tains ¬z. If Majority(J ′1,J−1) were Γ-consistent, it would be
selected by the Kemeny rule, and thus it would not be the case
that for each J∗ ∈ Kemeny(J ′1,J−1) it holds that L ⊆ J∗.
Thus, Majority(J ′1,J−1) is inconsistent with Γ. By construc-
tion of Γ, this can only be the case if Majority(J ′1,J−1) |= ψ.
Then also J ′1 |= ψ, and thus ∀Y.ψ[α] is true.

(⇐) Conversely, suppose that ϕ ∈ QSat2. That is, there
is some truth assignment α : X → {0, 1} such that ∀Y.ψ[α]
is true. We construct the judgment set J ′1 as follows. For
each x ∈ X we let x ∈ J ′1 if and only if α(x) = 1 (and we
let ¬x ∈ J ′1 otherwise). For each x′ ∈ X ′ we let x′ ∈ J ′1 if
and only if α(x) = 0 (and we let ¬x′ ∈ J ′1 otherwise). Finally,
we let w ∈ J ′1 and z ∈ J ′1.

We show that for each J∗ ∈ Kemeny(J ′1,J−1) it holds
that L ⊆ J∗, that is, that z ∈ J∗. We know that each J∗ ∈
Kemeny(J ′1,J−1) satisfies one of the conditions (1), (2) or (3).
It is straightforward to verify that condition (3) can be
satisfied by differing on as few issues as possible with the
profile (J ′1,J−1). Thus, each J∗ ∈ Kemeny(J ′1,J−1) agrees
with J ′1 on the issues x ∈ X and x′ ∈ X ′. Then, since

each J∗ satisfies condition (3), we know that J∗ |= (ψ → z).
By construction of J ′1, we know that J ′1 |= ψ. Therefore,
for each J∗ it holds that J∗ |= ψ (because J∗ and J ′1 agree
on X), and thus that z ∈ J∗.

4.1.1 (Weighted) Hamming Distance Preferences
The above Σp

2-completeness result can be extended to the
case of (weighted) Hamming distance preferences.

Proposition? 3. Manipulation(Kemeny; W-Ham)
and Manipulation(Kemeny; Ham) are Σp

2-complete.

Proof idea. Membership can be shown by straightfor-
wardly extending the algorithm in Lemma 1 to work also
for preferences based on weighted Hamming distances. Σp

2-
hardness for Manipulation(Kemeny; W-Ham) follows di-
rectly from the proof of Theorem 2, since preferences based
on a subset L of size 1 can be seen as a special case of
weighted Hamming distance preferences. Σp

2-hardness can
be shown for Manipulation(Kemeny; Ham) by a (tedious
and lengthy) reduction from QSat2 that is based on the
same principles as the hardness proof that we gave for Theo-
rem 2.

4.1.2 Constraint-Based Judgment Aggregation
The Σp

2-completeness results of Theorem 2 and Proposi-
tion 3 can also straightforwardly be extended to the setting
of constraint-based judgment aggregation. The nondetermin-
istic algorithms with access to an NP oracle, used to show
membership in Σp

2 , can be applied also in the constraint-
based judgment aggregation framework. Moreover, one can
modify the Σp

2-hardness proof that we gave for Theorem 2
in such a way that all variables occuring in the agenda Φ
and in the integrity constraint Γ occur as separate formulas
in the agenda. In this case, we can transform the agenda,
the integrity constraint and the profile in polynomial time to
the constraint-based framework [17]. Thus, this allows us to
show Σp

2-hardness also for the constraint-based framework.

4.1.3 Group Manipulation
Another question that has been investigated in the judg-

ment aggregation literature is in what cases a judgment
aggregation scenario can be manipulated by a group of in-
dividuals, rather than by a single individual [9]. In such
group manipulation situations, a group of individuals co-
ordinates to express insincere judgments with the aim of
obtaining an outcome that is preferred by each of the indi-
viduals over the outcome when all individuals report their
sincere judgments. The Σp

2-completeness results that we
described above all carry over straightforwardly to the set-
ting of group manipulation—the membership results can be
modified easily, and the hardness results carry over since an
individual forms a group of size 1.

When considering group manipulation, the question arises
whether no individual in the manipulating coalition can
obtain a further improvement by (unilaterally) deviating
from the manipulation strategy. The Σp

2-hardness results
that we obtained also extend to the problem of stable group
manipulation [9], where such unilateral deviations obstruct
successful manipulation strategies.

4.2 Bribery
We continue with showing Σp

2-completeness for the prob-
lem of bribery. The Σp

2-hardness result that we obtain works
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even for unidimensionally aligned profiles—again, this does
not mean that the manipulated profile needs to be unidimen-
sionally aligned, only the profile given in the input.

Lemma 4. Bribery(Kemeny) is in Σp
2 .

Proof. We describe a nondeterministic polynomial-time
algorithm with access to an NP oracle that solves the problem.
The algorithm that we describe is similar to the algorithm
used in the proof of Lemma 1. Let (Φ,Γ,J , L, k) specify an
instance of Bribery(Kemeny), where J = (J1, . . . , Jp). The
algorithm proceeds in several steps.

Firstly, (1) the algorithm guesses k indices `1, . . . , `k ∈
[p] and k complete judgment sets J ′1, . . . , J

′
k together with

truth assignments α1, . . . , αk : Var(Φ,Γ)→ B, and it checks
whether αj satisfies both J ′j and Γ, for each j ∈ [k]. This can
be done in nondeterministic polynomial time. Let J ′ denote
the profile obtained from J by replacing each J`j by J ′j .

Then, (2) the algorithm determines the minimum Ham-
ming distance dwin from J ′ to any complete and consistent
judgment set J∗ ∈ J (Φ,Γ). That is, dwin is the Ham-
ming distance from the judgments in J ′ to the judgment
sets J∗ ∈ Kemeny(J ′). This can be done in (deterministic)
polynomial time using O(logn) queries to an NP oracle.

Finally, (3) the algorithm determines by using a single
query to an NP oracle whether there exists some com-
plete and Γ-consistent judgment set J∗new ∈ J (Φ,Γ) such
that d(J∗new,J

′) = dwin and L 6⊆ J∗new. If this is the case, the
algorithm rejects; otherwise, the algorithm accepts.

It is straightforward to verify that the algorithm is correct
and that it runs in nondeterministic polynomial time.

Theorem 5. Bribery(Kemeny) is Σp
2-complete. More-

over, hardness holds even when the input is restricted to
unidimensionally aligned profiles and where |L| = 1.

Proof. We show Σp
2-hardness by reducing from QSat2.

Let ϕ = ∃X.∀Y.ψ be an instance of QSat2. We construct
an instance of Bribery(Kemeny) as follows. Our construc-
tion is very similar to the construction used in the proof
of Theorem 2. In fact, we let Φ, Γ and J = (J1, J2, J3) be
exactly as defined in the proof of Theorem 2. In particular,
this means that J is unidimensionally aligned. Moreover, we
let L = {w}. Finally, we let k = 1—i.e., we give the bribing
party the option of changing only a single judgment set.

We show that there is some complete and Γ-consistent
judgment set J ′ and a profile J ′ obtained from J by replacing
a single judgment set by J ′ such that for all J∗ ∈ Kemeny(J ′)
it holds that L ⊆ J∗ if and only if ϕ ∈ QSat2.

(⇒) Suppose that there is some complete and Γ-consistent
judgment set J ′ and a profile J ′ obtained from J by replacing
a single judgment set by J ′ such that for all J∗ ∈ Kemeny(J ′)
it holds that L ⊆ J∗, i.e., w ∈ J∗. By construction of Γ, we
know that if w ∈ J∗ then J∗ satisfies condition (3). Therefore,
the only way that the bribing party can enforce w ∈ J∗ is
to change J1 or J2; otherwise, each J∗ ∈ Kemeny(J ′) would
satisfy condition (2). Suppose that J1 is changed by the
bribing party (the case for J2 is entirely similar).

The only way to ensure that the sets J∗ ∈ Kemeny(J ′)
satisfy condition (3) is to change J1 to J ′1 in such a way
that for each x ∈ X it contains exactly one of x and x′.
Moreover, to ensure that for each J∗ ∈ Kemeny(J ′) it holds
that w ∈ J∗, by construction of Γ, the judgment set J ′1 needs
to be chosen in such a way that J ′1 |= ψ. Now consider the
truth assignment α : X → B defined by letting α(x) = 1 if

and only if x ∈ J ′1 for each x ∈ X. Since J ′1 |= ψ, we know
that ∀Y.ψ[α] is true. Thus, ϕ ∈ QSat2.

(⇐) Conversely, suppose that ϕ ∈ QSat2. That is, there
is some truth assignment α : X → {0, 1} such that ∀Y.ψ[α]
is true. We construct a judgment set J ′1 as follows, and we
show that for the profile J ′ obtained from J by replacing J1

by J ′1 it holds that for each J∗ ∈ Kemeny(J ′) we have
that w ∈ J∗. For each x ∈ X, we let x ∈ J ′1 if and only
if α(x) = 1 (and we let ¬x ∈ X otherwise). For each x′ ∈ X ′,
we let x′ ∈ J ′1 if and only if α(x) = 0 (and we let ¬x′ ∈ X
otherwise). Moreover, we let ¬w ∈ J ′1 and ¬z ∈ J ′1. Let J ′

denote the profile obtained from J by replacing J1 by J ′1,
i.e., J ′ = (J ′1, J2, J3). It is straightforward to verify that
each J∗ ∈ Kemeny(J ′) satisfies condition (3). Moreover, for
each J∗ ∈ Kemeny(J ′) it holds that J∗ agrees with J ′1 on
each x ∈ X and each x′ ∈ X ′, and thus J∗ |= ψ. Then, by
construction of Γ we know that for each J∗ ∈ Kemeny(J ′)
it holds that w ∈ J∗.

4.2.1 (Weighted) Hamming Distance Preferences &
Constraint-Based Judgment Aggregation

Similarly to the case for manipulation, the above Σp
2-

completeness result can be extended to the case of (weighted)
Hamming distance preferences.

Proposition? 6. Bribery(Kemeny; W-Ham) and
Bribery(Kemeny; Ham) are Σp

2-complete.

Proof idea. Membership can be shown by straightfor-
wardly extending the algorithm in Lemma 4. Σp

2-hardness for
Bribery(Kemeny; W-Ham) follows directly from the proof
of Theorem 5. Σp

2-hardness can be shown for Bribery-
(Kemeny; Ham) by a (tedious and lengthy) reduction from
QSat2 that is based on the same principles as the hardness
proof that we gave for Theorem 5.

The Σp
2-completeness results of Theorem 5 and Proposi-

tion 6 can also straightforwardly be extended to the setting of
constraint-based judgment aggregation. Similarly to the case
of manipulation, the algorithm we gave to show membership
can be applied also in the constraint-based framework, and
the hardness proofs can be modified to work also for the
constraint-based judgment aggregation framework.

4.3 Control
Finally, we show Σp

2-completeness for the two control prob-
lems that we consider.

Lemma 7. Control-by-Adding-Issues(Kemeny) and
Control-by-Removing-Issues(Kemeny) are in Σp

2 .

Proof. We describe a nondeterministic polynomial-time
algorithm with access to an NP oracle that solves the prob-
lem. Let (Φ,Γ,Φ′, L,J) specify an instance of Control-
by-Adding-Issues(Kemeny). The algorithm guesses an
agenda Φ′′ such that Φ′ ⊆ Φ′′ ⊆ Φ. Then, the algorithm
computes the minimum Hamming distance dwin from the
profile J |Φ′′ to any judgment set that is Γ-consistent and
complete for Φ′′. This can be done in polynomial time us-
ing an NP oracle. Finally, the algorithm uses one more
query to the NP oracle to decide if there exists a judgment
set J∗ that is Γ-consistent and complete for Φ′′ that has
Hamming distance dwin to the profile J |Φ′′ and that satis-
fies that L 6⊆ J∗. The algorithm accepts if and only if no
such judgment set J∗ exists. It is straightforward to verify
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that the algorithm runs in nondeterministic polynomial time.
Moreover, the algorithm accepts the input (for some sequence
of nondeterministic choices) if and only if there exists an
agenda Φ′ ⊆ Φ′′ ⊆ Φ such that for all J∗ ∈ Kemeny(J |Φ′′)
it holds that L ⊆ J∗.

The algorithm described above can straightforwardly
be modified to work also for the case of Control-by-
Removing-Issues(Kemeny).

Theorem 8. Control-by-Adding-Issues(Kemeny)
and Control-by-Removing-Issues(Kemeny) are Σp

2-
complete.

Proof. Membership in Σp
2 is shown in Lemma 7. We show

Σp
2-hardness by reducing from QSat2. Let ϕ = ∃X.∀Y.ψ

be an instance of QSat2. Without loss of generality, we
may assume that there is a truth assignment α : X → B
such that ∀Y.ψ[α] is not true, i.e., that ∃X.∃Y.¬ψ is true.
We construct an instance of Control-by-Adding-Issues-
(Kemeny) as follows. We define Φ′ by letting [Φ′] =
{wi,j : i ∈ [2], j ∈ [3] } ∪ {z}, and we define Φ by let-
ting [Φ] = [Φ′] ∪ {x, x′ : x ∈ X }. Then, we define the
integrity constraint Γ as follows:

Γ =

(
∧

x∈X
(x ∧ x′) ∧ ∧

i∈[2]

∨
j∈[3]

wi,j

)
∨

( ∧
x∈X

(x⊕ x′) ∧ (ψ → z)

)
.

As a consequence, a complete judgment set J is Γ-consistent
if and only if J is compatible with one of the following two
conditions: (1) the variables x and x′ are true for each x ∈ X,
and at least one wi,j is true for each i ∈ [2]; or (2) for
each x ∈ X, exactly one of x and x′ are true, and the
formula (ψ → z) is true. Then, we let L = {z}, and we
define the profile J = (J1, J2, J3) as shown in Figure 2.

We show that there is an agenda Φ′′ with Φ′ ⊆ Φ′′ ⊆ Φ
such that for all J∗ ∈ Kemeny(J |Φ′′) it holds that L ⊆ J∗ if
and only if ϕ ∈ QSat2.

(⇒) Suppose that there is an agenda Φ′′ with Φ′ ⊆ Φ′′ ⊆ Φ
such that for all J∗ ∈ Kemeny(J |Φ′′) it holds that L ⊆ J∗.
Then these J∗ ∈ Kemeny(J |Φ′′) do not satisfy condition (1);
if this were the case, we could get a judgment set that is
closer to the profile by negating z in J∗, which contradicts our
assumption that L ⊆ J∗ for all J∗ ∈ Kemeny(J |Φ′′). Thus,
each J∗ ∈ Kemeny(J |Φ′′) is compatible with condition (2).

We show that Φ′′ must contain either x or x′ for at least
one x ∈ X. To derive a contradiction, suppose that Φ′′ con-
tains neither x nor x′ for any x ∈ X. Then condition (2) can
be satisfied by the judgment sets J∗ ∈ Kemeny(J |Φ′′) with-
out including z (since ∃X.∃Y.¬ψ is true), which contradicts
our assumption that each J∗ contains z.

J J1 J2 J3

x 1 1 1
x′ 1 1 1
wi,1 1 0 0
wi,2 0 1 0
wi,3 0 0 1
z 0 0 1

Figure 2: The profile J in the proof of Theorem 8.
Here x ranges over X, x′ ranges over {x′ : x ∈ X },
and i ranges over [2].

Next, we show that Φ′′ cannot contain both x and x′ for
any x ∈ X. To derive a contradiction, suppose that x, x′ ∈ Φ′′

for some x ∈ X. Then the Hamming distance from J |Φ′′ to
any complete and Γ-consistent judgment set compatible with
condition (1) is smaller than to any complete and Γ-consistent
judgment sets that is compatible with condition (2)—even
if Φ′′ contains wi,j for each i ∈ [2] and each j ∈ [3]. This
would mean that z 6∈ J∗ for each J∗ ∈ Kemeny(J |Φ′′), which
contradicts our assumption.

Now define the (partial) truth assignment α : X → B by
letting α(x) = 1 if x ∈ Φ′′, letting α(x) = 0 if x′ ∈ Φ′′,
and letting α(x) be undefined otherwise. We claim that
there for every complete truth assignment α′ : X → B
that extends α it holds that ∀Y.ψ[α′] is true. To derive
a contradiction, suppose that this is not the case. Then
each J∗ ∈ Kemeny(J |Φ′′) can satisfy Γ without including z,
which contradicts our assumption. Therefore, ϕ ∈ QSat2.

(⇐) Conversely, suppose that ϕ ∈ QSat2. That is, there
is some truth assignment α : X → B such that ∀Y.ψ[α] is
true. We construct an agenda Φ′′ with Φ′ ⊆ Φ′′ ⊆ Φ as
follows. We let [Φ′′] = [Φ′] ∪ {x : x ∈ X,α(x) = 1 } ∪
{x′ : x ∈ X,α(x) = 0 }. It is straightforward to verify that
for each J∗ ∈ Kemeny(J |Φ′′) it holds that z ∈ J∗, because
each such J∗ is compatible (only) with condition (1) and
agrees with α, and thus J∗ |= ψ.

The above reduction can also be used as a reduction from
QSat2 to Control-by-Removing-Issues(Kemeny).

4.3.1 Constraint-Based Judgment Aggregation
Similarly to the cases for manipulation and bribery, the

Σp
2-completeness result of Theorem 8 can be extended to the

constraint-based judgment aggregation framework. Just as in
the other cases, the algorithm we gave to show membership
can be applied also in the constraint-based framework, and
the hardness proofs can be modified to work also for the
constraint-based judgment aggregation framework.

5. CONCLUSIONS
In this paper, we investigated the computational complex-

ity of several problems related to several types of strategic
behavior in judgment aggregation—namely, manipulation,
bribery and control—for the Kemeny judgment aggregation
procedure. We showed that deciding whether a successful
strategic behavior policy exists is Σp

2-complete. These results
hold for all types of strategic behavior that we consider, for
two formal judgment aggregation frameworks that are com-
monly considered in the literature, and for several types of
preference relations over judgment sets.

These intractability results can be interpreted as a compu-
tational barrier against (undesirable) strategic behavior for
the Kemeny procedure in judgment aggregation. However,
as such worst-case complexity results can be overly nega-
tive, it is an important topic for future research to further
investigate the computational complexity of these problems
for restricted fragments and using more sensitive methods,
such as parameterized complexity. Another direction for
future research is to analyze the complexity of the different
types of strategic behavior for other judgment aggregation
procedures.
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