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Abstract

Today’s propositional satisfiability (SAT) solvers are extremely powerful and can be used as an efficient
back-end for solving NP-complete problems. However, many fundamental problems in logic, in knowledge
representation and reasoning, and in artificial intelligence are located at the second level of the Polynomial
Hierarchy or even higher, and hence for these problems polynomial-time transformations to SAT are not
possible, unless the hierarchy collapses. Recent research shows that in certain cases one can break through
these complexity barriers by fixed-parameter tractable (fpt) reductions to SAT which exploit structural
aspects of problem instances in terms of problem parameters. These reductions are more powerful because
their running times can grow superpolynomially in the problem parameters. In this paper we develop a
general theoretical framework that supports the classification of parameterized problems on whether they
admit such an fpt-reduction to SAT or not.
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1 Introduction

Over the last two decades, propositional satisfiability (SAT) has become one of the most successful and widely
applied techniques for the solution of NP-complete problems. Today’s SAT solvers are extremely efficient and
robust. Instances with hundreds of thousands of variables and clauses can be solved routinely. In fact, due
to the success of SAT, NP-complete problems have lost their scariness, as in many cases one can efficiently
encode NP-complete problems to SAT and solve them by means of a SAT solver [6, 24, 39, 41, 47]. However,
many important computational problems in artificial intelligence and knowledge representation and reasoning
are located above the first level of the Polynomial Hierarchy (PH) and thus considered “harder” than SAT.
Hence we cannot hope for polynomial-time reductions from these problems to SAT, as such transformations
would cause the (unexpected) collapse of the PH.

Realistic problem instances are not random and often contain some kind of “hidden structure.” Recent
research succeeded in exploiting such hidden structure to break the complexity barriers between levels of the
PH for problems that arise in disjunctive answer set programming [17] and abductive reasoning [46]. The idea
is to exploit problem structure in terms of a problem parameter, and to develop reductions to SAT that can
be computed efficiently as long as the problem parameter is reasonably small. The theory of parameterized
complexity [8, 10, 11, 19, 44] provides exactly the right type of reduction suitable for this purpose, called
fixed-parameter tractable reductions, or fpt-reductions for short. Now, for a suitable choice of the parameter,
one can aim at developing fpt-reductions from the hard problem under consideration to SAT.

Such positive results go significantly beyond the state-of-the-art of current research in parameterized
complexity. By shifting the scope from fixed-parameter tractability to fpt-reducibility (to SAT), positive
results can be obtained with less restrictive parameters and hence such positive results apply to larger classes
of inputs. In fact, there are some known reductions that, in retrospect, can be seen as fpt-reductions to
SAT. A prominent example is the technique of bounded model checking [5], which can be employed as an
fpt-reduction to SAT from the PSPACE-complete problem of model checking linear temporal logic (LTL)
formulas on symbolically represented Kripke structures, where the parameter is the size of the logic formula
[35, 38]. Bounded model checking is widely used for hardware and software verification at industrial scale [4].

When studying a problem, together with a choice of the parameter, one can readily use known concepts
and techniques from parameterized complexity theory to devise fpt-reductions to SAT. However, evidently,
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not in all cases one can establish an fpt-reduction to SAT. In order to adequately analyze, for concrete
problems, what choices of the parameter admit fpt-reductions to SAT, one also needs methods to show that in
certain cases fpt-reductions to SAT are not possible. Such tools are lacking in the parameterized complexity
literature.

Contributions The aim of this paper is to establish a general theoretical framework that supports the
classification of parameterized variants of problems at higher levels of the PH on whether they admit an
fpt-reduction to SAT or not.

• We develop a new hardness theory that can be used to provide evidence that certain parameterized
problems do not admit an fpt-reduction to SAT.

The notion of hardness offered by this new theory is similar to the concepts of NP-hardness which provides
evidence against polynomial-time solvability [20] and W[1]-hardness which provides evidence against fixed-
parameter tractability [10].

At the center of our theory are two hierarchies of parameterized complexity classes: the ∗-k hierarchy and
the k-∗ hierarchy. (These hierarchies contain different levels that are similar to the levels of the W-hierarchy.)
We define the complexity classes in terms of weighted variants of the quantified Boolean satisfiability problem
with one quantifier alternation, which is canonical for the second level of the PH. For the classes in the k-∗
hierarchy, the (Hamming) weight of the assignment to the variables in the first quantifier block is bounded
by the parameter k, the weight of the second quantifier block is unrestricted (“∗”). For the classes in
the ∗-k hierarchy it is the other way around, the weight of assignments to the second block is restricted
by k and the first block is unrestricted. Both hierarchies span various degrees of hardness between the
classes para-NP and para-co-NP at the bottom and the classes para-ΣP

2 and para-ΠP
2 at the top—para-K

contains all parameterized problems that, after fpt-time preprocessing, belong to the complexity class K [18].
We show that the parameterized complexity classes of the k-∗ hierarchy in fact collapse into a single class
Σp

2 [k∗], whereas the ∗-k hierarchy seems to be a proper hierarchy Σp
2 [∗k, t] ⊆ Σp

2 [∗k, t+ 1], for each t (similarly
to the W-hierarchy). We use the notation Σp

2 [k∗] and Σp
2 [∗k, t] to reflect the way in which these classes are

based on weighted variants of canonical problems for the class ΣP
2 .1

We begin by providing several basic structural results that help to enable the use of the new classes for a
parameterized complexity analysis of concrete problems.

• We show that the parameterized complexity classes of the k-∗ hierarchy collapse into a single class
Σp

2 [k∗].

• We provide normalization results for the classes Σp
2 [∗k, 1] and Σp

2 [∗k,P], that show that the canonical
problems for these classes are hard even when restricted to instances that are in a normal form—for
Σp

2 [∗k, 1], the normal form consists of 2DNF formulas, and for Σp
2 [∗k,P], the normal form consists of

circuits in negation normal form where the universally quantified variables occur only positively.

Moreover, we illustrate how these normalization results are helpful by pointing out several cases where these
results are used to establish hardness for the newly developed parameterized complexity classes.

Then, we demonstrate the robustness of the new theory by showing that the new parameterized complexity
classes can be characterized in terms of several other fundamental concepts from the domain of theoretical
computer science.

• We show that the class Σp
2 [k∗] can be characterized as those parameterized problems that are fpt-

reducible to a natural parameterized variant of first-order logic model checking.

• We show that the class Σp
2 [k∗] can also be characterized in several ways using alternating Turing machines

(ATMs) with appropriate bounds on the number of alternations and the number of nondeterministic
steps.

1In previous work [14, 15, 16, 27, 28, 30, 31, 32, 33, 34] the class Σp
2 [k∗] appeared under the names ∃k∀ and ∃k∀∗. Similarly,

the classes Σp
2 [∗k, t] appeared under the names ∃∀k-W[t] and ∃∗∀k-W[t].
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We give evidence that the parameterized complexity classes that we introduce are different from classes
that are known from the literature, and that they are distinct from each other. We establish separation
results that are based on various complexity-theoretic assumptions.

• Assuming that NP 6= co-NP, we show that Σp
2 [k∗] is different from para-NP, para-ΣP

2 and para-ΠP
2 ,

and that the classes Σp
2 [∗k, t] are different from para-co-NP, para-ΣP

2 and para-ΠP
2 .

• We show that Σp
2 [k∗] is different from para-co-NP and that the classes Σp

2 [∗k, t] are different from
para-NP, unless there is a subexponential-time reduction from the ΣP

2 -complete problem QSat2(3DNF)
to SAT or UNSAT.

• Using a combination of these complexity-theoretic assumptions, we show that the class Σp
2 [k∗] (and its

co-class Πp
2 [k∗]), on the one hand, and the classes Σp

2 [∗k, t] (and their co-classes Πp
2 [∗k, t]), on the other

hand, are distinct.

Finally, we substantiate the usefulness of the new theory by indicating how the parameterized complexity
classes that we introduced can be employed in the computational complexity analysis of many natural
parameterized problems.

• We illustrate the crucial role of the classes Σp
2 [k∗] and Σp

2 [∗k, t] in the parameterized complexity analysis
of problems at higher levels of the PH by conducting a case study.

• We present completeness results for parameterized problems from a wide range of areas for the various
parameterized complexity classes that we developed.

The Potential of Fpt-Reductions to SAT Due to the spectacular performance of modern SAT solvers
in practice, fixed-parameter tractable reductions to SAT offer the possibility of algorithmic methods that
could perform well in many cases in practice. Because of this, one could optimistically view fpt-reductions to
SAT as “tractability” results, especially for problems whose complexity lies at the second level of the PH
or higher. However, it should be pointed out that the notion of fixed-parameter tractability offers much
stronger promises for the efficiency of algorithms than fpt-reductions to SAT. In particular, fixed-parameter
tractability offers worst-case running time guarantees, whereas algorithms based on fpt-reductions to SAT
rely on the performance of SAT solvers (for which we have no good worst-case running time guarantees).

Instead of considering fpt-reductions to SAT as unreserved tractability results, one should regard them as
promising results that could serve as a theoretical starting point for engineering efforts that might lead to
productive algorithmic methods that are based on the combination of fixed-parameter tractable algorithms
and optimized SAT solving methodology. Such theoretical results have particular potential in cases where
the parameters that have small values in the application domain at hand are too restrictive to lead to
fixed-parameter tractability results. In other words, fpt-reductions to SAT are best viewed as a type of
positive results that is complementary to the traditional notion of fixed-parameter tractability.

Similar arguments as the ones we discussed above could be put forward to argue for the merits of
fpt-reductions to problems at higher levels of the PH or even to PSPACE-complete problems. In fact, there
are off-the-shelf solvers available also for such problems. For example, for the PSPACE-complete problem of
QBF satisfiability there are many solving algorithms available, that work reasonably well in many settings.
For problems that are beyond PSPACE (e.g., EXPTIME-hard problems) it does make sense to consider the
possibility of fpt-reductions to problems in PSPACE. However, available algorithms for problems at higher
levels of the PH or PSPACE-complete problems do not perform nearly as spectacularly well in practice as
SAT solvers. As a result, fpt-reductions to the former type of problems are much less promising for the
development of practically efficient algorithmic methods. For this reason, in this paper, we focus our attention
on the development of theoretical tools that are beneficial for the analysis of parameterized problems on
whether they admit fpt-reductions to SAT.
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Roadmap We begin in Section 2 by reviewing basic notions from complexity theory and parameterized
complexity theory. In Section 3, we define the parameterized complexity classes of the k-∗ and ∗-k hierarchies,
and we establish basic structural results for these classes. Then, in Section 4, we show how the new
parameterized complexity classes can be characterized using first-order logic model checking and alternating
Turing machines. In Section 5, we provide evidence that the new classes are different from each other and
from other parameterized complexity classes known from the literature. In Section 6, we illustrate how the
parameterized complexity classes of the k-∗ and ∗-k hierarchies are useful for the complexity analysis of
parameterized variants of problems at higher levels of the PH, and we present completeness results for the
new classes for a wide range of natural problems. Finally, in Section 7, we conclude and suggest directions for
future research.

2 Preliminaries

In this section, we review some notions from complexity theory and parameterized complexity theory. We
expect the reader to be familiar with the basics of computational complexity theory (such as the notion of
decision problems, the complexity classes P and NP, and the concept of NP-completeness). For more details,
we refer to textbooks on the topic [3, 22, 23, 45, 51]. We firstly survey the definition of and some foundational
results related to the Polynomial Hierarchy. Secondly, we consider some concepts and definitions from the
theory of parameterized complexity that we use in the remainder of the paper.

2.1 The Polynomial Hierarchy (PH)

The Polynomial Hierarchy (PH) [42, 45, 52, 55] contains a hierarchy of complexity classes ΣP
i ⊆ ΣP

i+1, for
all i ≥ 0. We give a characterization of these classes based on the satisfiability problem of various classes of
quantified Boolean formulas. A quantified Boolean formula is a formula of the form Q1X1Q2X2 . . . QmXm.ψ,
where each Qi is either ∀ or ∃, the Xi are disjoint sets of propositional variables, and ψ is a Boolean formula
over the variables in

⋃m
i=1Xi. The quantifier-free part of such formulas is called the matrix of the formula.

Truth of such formulas is defined in the usual way. Let γ = {x1 7→ d1, . . . , xn 7→ dn} be a function that
maps some variables x1, . . . , xn of a formula ϕ to other variables or to truth values. We let ϕ[γ] denote the
application of such a substitution γ to the formula ϕ. We also write ϕ[x1 7→ d1, . . . , xn 7→ dn] to denote ϕ[γ].
For each i ≥ 1 we define the following decision problem.

QSati
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXi.ψ, where Qi is a universal
quantifier if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

Input formulas to the problem QSati are called ΣP
i -formulas. For each nonnegative integer i ≤ 0,

the complexity class ΣP
i can be characterized as the closure of the problem QSati under polynomial-time

reductions [52, 55]. The ΣP
i -hardness of QSati holds already when the matrix of the input formula is

restricted to 3CNF for odd i, and restricted to 3DNF for even i. Note that the class ΣP
0 coincides with P,

and the class ΣP
1 coincides with NP. For each i ≥ 1, the class ΠP

i is defined as co-ΣP
i .

The classes ΣP
i and ΠP

i can also be defined by means of nondeterministic Turing machines with an oracle.
For any complexity class C, we let NPC be the set of decision problems that is decidable in polynomial time
by a nondeterministic Turing machine with an oracle for a problem that is complete for the class C. Then, the

classes ΣP
i and ΠP

i , for i ≥ 0, can be equivalently defined by letting ΣP
0 = ΠP

0 = P, and letting ΣP
i = NPΣP

i−1

and ΠP
i = co-NPΣP

i−1 for each i ≥ 1.

Alternating Turing Machines The classes of the PH can also be characterized using alternating Turing
machines. We use the same notation as Flum and Grohe [19, Appendix A.1].
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Let m ≥ 1 be a positive integer. An alternating Turing machine (ATM) with m tapes is a 6-tuple M =
(S∃, S∀,Σ,∆, s0, F ), where:

• S∃ and S∀ are disjoint sets;

• S = S∃ ∪ S∀ is the finite, non-empty set of states;

• Σ is the finite, non-empty alphabet ;

• s0 ∈ S is the initial state;

• F ⊆ S is the set of accepting states;

• ∆ ⊆ S × (Σ ∪ {$,�})m × S × (Σ ∪ {$})m × {L,R,S}m is the transition relation. The elements of ∆
are the transitions.

• $,� 6∈ Σ are special symbols. “$” marks the left end of each tape. It cannot be overwritten and only
allows R-transitions. “�” is the blank symbol.

Intuitively, the tapes of our machine are bounded to the left and unbounded to the right. The leftmost
cell, the 0-th cell, of each tape carries a “$”, and initially, all other tape cells carry the blank symbol. The
input is written on the first tape, starting with the first cell, the cell immediately to the right of the “$”.

A configuration is a tuple C = (s, x1, p1, . . . , xm, pm), where s ∈ S, xi ∈ Σ∗, and 0 ≤ pi ≤ |xi| + 1 for
each 1 ≤ i ≤ m. Intuitively, $xi�� . . . is the sequence of symbols in the cells of tape i, and the head of
tape i scans the pi-th cell. The initial configuration for an input x ∈ Σ∗ is C0(x) = (s0, x, 1, ε, 1, . . . , ε, 1),
where ε denotes the empty word.

A computation step of M is a pair (C,C ′) of configurations such that there is a transition transformating C
into C ′. Intuitively, a tuple (s, (a1, . . . , am), s′, (d1, . . . , dm)) ∈ ∆ encodes that it is possible to go from one
configuration with state s where the head of tape i scans symbol ai, for each 1 ≤ i ≤ m, into another
configuration that differs only from the first configuration in that (1) the new configuration has state s′

and (2) the head of each tape i moves according to di ∈ {L,R,S}—here L represent a move of one cell
to the left, R represents a move of one cell to the right, and S represents the head staying at the same
location. We omit the formal details. We write C → C ′ to denote that (C,C ′) is a computation step of M.
If C → C ′, we call C ′ a successor configuration of C. A halting configuration is a configuration that has no
successor configuration. A halting configuration is accepting if its state is in F . A configuration is called
existential if it is not a halting configuration and its state is in S∃, and universal if it is not a halting
configuration and its state is in S∀. A step C → C ′ is nondeterministic if there is a configuration C ′′ 6= C ′

such that C → C ′′, and is existential if C is an existential configuration. A state s ∈ S is called deterministic
if for any a1, . . . , am ∈ Σ ∪ {$,�}, there is at most one (s, (a1, . . . , am), s′, (a′1, . . . , a

′
m), (d1, . . . , dm)) ∈ ∆.

Similarly, we call a non-halting configuration deterministic if its state is deterministic, and nondeterministic
otherwise.

Intuitively, in an existential configuration, there must be one possible run that leads to acceptance, whereas
in a universal configuration, all runs must lead to acceptance. Formally, a run of an ATM M is a directed
tree where each node is labeled with a configuration of M such that:

• The root is labeled with an initial configuration.

• If a vertex is labeled with an existential configuration C, then the vertex has precisely one child that is
labeled with a successor configuration of C.

• If a vertex is labeled with a universal configuration C, then for every successor configuration C ′ of C
the vertex has a child that is labeled with C ′.

We often identify nodes of the tree with the configurations with which they are labeled. The run is finite if the
tree is finite, and infinite otherwise. The length of the run is the height of the tree. The run is accepting if it
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is finite and every leaf is labeled with an accepting configuration. If the root of a run ρ is labeled with C0(x),
then ρ is a run with input x. Any path from the root of a run ρ to a leaf of ρ is called a computation path.

The language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such that there is an accepting run
of M with initial configuration C0(x). M runs in time t : N→ N if for every x ∈ Σ∗ the length of every run
of M with input x is at most t(|x|).

A step C → C ′ is an alternation if either C is existential and C ′ is universal, or vice versa. A run ρ
of M is `-alternating for an ` ∈ N, if on every path in the tree associated with ρ, there are less than `
alternations between existential and universal configurations. The machine M is `-alternating if every run
of M is `-alternating.

The classes ΣP
i can be characterized using ATMs as follows. Let i ≥ 1. The class ΣP

i consists of all problems
that are decidable by an i-alternating polynomial-time ATM M = (S∃, S∀,Σ,∆, s0, F ) such that s0 ∈ S∃.

2.2 Parameterized Complexity Theory

We introduce some core notions from parameterized complexity theory. For an in-depth treatment we refer to
textbooks [8, 10, 11, 19, 44]. A parameterized problem L is a subset of Σ∗×N for some finite alphabet Σ. For
an instance (x, k) ∈ Σ∗ ×N, we call x the main part and k the parameter. For each positive integer k ≥ 1, we
define the k-th slice of L as the unparameterized problem Lk = {x : (x, k) ∈ L }. The following generalization
of polynomial time computability is commonly regarded as the tractability notion of parameterized complexity
theory. A parameterized problem L is fixed-parameter tractable if there exists a computable function f and a
constant c such that there exists an algorithm that decides whether (x, k) ∈ L in time f(k)|x|c, where |x|
denotes the size of x. Such an algorithm is called an fpt-algorithm, and this amount of time is called fpt-time.
FPT is the class of all fixed-parameter tractable decision problems. If the parameter is constant, then
fpt-algorithms run in polynomial time where the order of the polynomial is independent of the parameter.
This provides a good scalability in the parameter, in contrast to running times of the form |x|k, which are
also polynomial for fixed k, but can already be impractical for, say, k > 3. The class of all parameterized
problems that can be solved in time O(|x|f(k)), for some computable function f , is denoted by XP.

Parameterized Intractability Parameterized complexity also offers a hardness theory, similar to the
theory of NP-hardness, which allows researchers to give strong theoretical evidence that some parameterized
problems are not fixed-parameter tractable. Central to this hardness theory is the W-hierarchy of complexity
classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ XP, where all inclusions are believed to be strict.
The classes of the W-hierarchy are considered to be parameterized intractability classes.

For this hardness theory, the following notion of reductions is used. Let L ⊆ Σ∗ × N and L′ ⊆ Σ∗ × N
be two parameterized problems. An fpt-reduction (or fixed-parameter tractable reduction) from L to L′

is a mapping R : Σ∗ × N → Σ∗ × N from instances of L to instances of L′ such that there exist some
computable function g : N → N such that for all (x, k) ∈ Σ∗ × N: (i) (x, k) is a yes-instance of L if and
only if (x′, k′) = R(x, k) is a yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is computable in fpt-time, i.e.,
in time f(k)|x|c for some computable function f and some constant c. We write L ≤fpt L

′ if there is an
fpt-reduction from L to L′. Similarly, we call reductions that satisfy properties (i) and (ii) but that are
computable in time O(|x|f(k)), for some fixed computable function f , xp-reductions.

The parameterized complexity classes W[t], t ≥ 1, W[SAT] and W[P] are based on the satisfiability
problems of Boolean circuits and formulas. We consider Boolean circuits with a single output gate. Boolean
circuits are directed acyclic graphs, where each node with no ingoing edges is called an input node (or a
variable), and where all other nodes are labelled with a Boolean operator (and are called gates). If there is
an edge from a node r to a node r′, we say that r is an input (or a parent) of r′. Gates that are labelled
with a negation have exactly one input, and gates that are labelled with conjunction or negation can have
more inputs. The number of inputs of a gate is called the fan-in of that gate. Similarly, the fan-out of a
gate is the number of gates that have that gate as input. We distinguish between small gates, with fan-in at
most 2, and large gates, with fan-in greater than 2. The depth of a circuit is the length of a longest path from
any variable to the output gate. The weft of a circuit is the largest number of large gates on any path from
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a variable to the output gate. We let Nodes(C) denote the set of all nodes of a circuit C. We say that a
circuit C is in negation normal form if all negation nodes in C have variables as inputs. A Boolean formula
can be considered as a Boolean circuit where all gates have fan-out at most 1. We adopt the usual notions of
truth assignments and satisfiability of a Boolean circuit. We say that a truth assignment for a Boolean circuit
has weight k if it sets exactly k of the variables of the circuit to true. We denote the class of Boolean circuits
with depth u and weft t by circt,u. We denote the class of all Boolean circuits by circ, and the class of
all Boolean formulas by form. For any class C of Boolean circuits, we define the following parameterized
problem.

WSat[C]
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

We denote closure under fpt-reductions by [ · ]fpt—that is, for any parameterized problem Q, [ Q ]fpt

denotes the class of parameterized problems that are fpt-reducible to Q. The classes W[t] are defined by
letting W[t] = [ {WSat[circt,u] : u ≥ 1 } ]fpt, for each t ≥ 1. The classes W[SAT] and W[P] are defined by
letting W[SAT] = [ WSat[form] ]fpt and W[P] = [ WSat[circ] ]fpt.

In addition, the completeness theory of parameterized complexity contains the A-hierarchy [19], containing
the intractability classes A[t], for t ≥ 1. (We give a formal definition of these parameterized complexity
classes below, after defining the basic concepts of first-order logic.) The class A[1] coincides with W[1], and
for each t ≥ 2 it holds that W[t] ⊆ A[t] ⊆ A[t+ 1] ⊆ · · · ⊆ XP. It is very unlikely that any parameterized
problem that is hard for any of these parameterized intractability classes is fixed-parameter tractable, as
this would violate commonly-believed assumptions in complexity theory, such as the Exponential Time
Hypothesis [19, 37] (i.e., fixed-parameter tractability of any W[1]-hard problem would imply the existence of
a 2o(n) algorithm for n-variable 3SAT).

First-Order Logic Model Checking We define the basic concepts of first-order logic. A (relational)
vocabulary τ is a finite set of relation symbols. Each relation symbol R has an arity arity(R) ∈ N. A
structure A of vocabulary τ , or τ -structure (or simply structure), consists of a set A called the domain (or
universe) and an interpretation RA ⊆ Aarity(R) for each relation symbol R ∈ τ . In first-order logic, formulas
are built from a countably infinite set {x1, x2, . . .} of variables, relation symbols, existential and universal
quantification, and the Boolean operators ¬,∧, and ∨. That is, if R ∈ τ is a relation symbol of arity a,
and x1, . . . , xa are variables, then R(x1, . . . , xa) is a formula. Moreover, if ϕ1 and ϕ2 are formulas and x is
a variable, then ∃x.ϕ1, ∀x.ϕ1, ¬ϕ1, (ϕ1 ∧ ϕ2), and (ϕ1 ∨ ϕ2) are also formulas. We use (ϕ1 → ϕ2) as an
abbreviation for (¬ϕ1 ∨ ϕ2), and we use (ϕ1 ↔ ϕ2) as an abbreviation for ((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)). For
a formula ϕ, we call the variables occurring in ϕ that are not bound by any quantifier the free variables
of ϕ, and we write Free(ϕ) to denote the set of free variables in a formula ϕ. Formally, Free(ϕ) is defined
inductively as follows:

Free(R(x1, . . . , xa)) = {x1, . . . , xa},
Free(¬ϕ) = Free(ϕ),

Free(ϕ1 ∧ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),

Free(ϕ1 ∨ ϕ2) = Free(ϕ1) ∪ Free(ϕ2),

Free(∃x.ϕ) = Free(ϕ)\{x}, and

Free(∀x.ϕ) = Free(ϕ)\{x}.

Truth of first-order formulas given a structure and an assignment to the free variables of the formula is
defined in the usual way. Let A be a τ -structure with universe A, let ϕ be a first-order formula over the
vocabulary τ , and let α : Free(ϕ) → A be an assignment. We often consider the assignment α as a set of
mappings, i.e., α = {x 7→ α(x) : x ∈ Free(ϕ) }. Then the following conditions define when ϕ is true in A
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given α, written A, α |= ϕ.

A, α |= R(x1, . . . , xa) if and only if (x1, . . . , xa) ∈ RA,
A, α |= ¬ϕ if and only if A, α 6|= ϕ,

A, α |= (ϕ1 ∧ ϕ2) if and only if A, α |= ϕ1 and A, α |= ϕ2,

A, α |= (ϕ1 ∨ ϕ2) if and only if A, α |= ϕ1 or A, α |= ϕ2,

A, α |= ∃x.ϕ if and only if A, α ∪ {x 7→ a} |= ϕ for some a ∈ A, and

A, α |= ∀x.ϕ if and only if A, α ∪ {x 7→ a} |= ϕ for each a ∈ A.

For more details, we refer to textbooks (see, e.g., [19, Section 4.2]). A first-order logic sentence is a first-order
logic formula that contains no free variables, i.e., a formula ϕ such that Free(ϕ) = ∅. For sentences ϕ, we
write A |= ϕ to denote A, ∅ |= ϕ.

The parameterized complexity class A[2] is defined on the basis of a first-order logic model checking
problem [19]. In particular, we consider the problem A[2]-MC. Instances of this problem consist of a first-order
structure A (over a signature τ), and a first-order logic sentence of the form ϕ = ∃x1, . . . , xk1

∀y1, . . . , yk2
.ψ

(over the same signature τ), where ψ is quantifier-free. The parameter is |ϕ|, and the question is to decide
whether A |= ϕ. The parameterized complexity class A[2] consists of all parameterized problems that
are fpt-reducible to A[2]-MC. Consequently, the problem A[2]-MC is A[2]-complete by definition. The
parameterized complexity classes A[t], for t ≥ 3, are defined in a similar way, using the variants A[t]-MC of
A[2]-MC, where t quantifier alternations are allowed in the first-order logic sentence ϕ, rather than just 2.2

Parameterized Analogues of Classical Complexity Classes The following parameterized complexity
classes are analogues of classical complexity classes. Let K be a classical complexity class, e.g., NP. The
parameterized complexity class para-K is then defined as the class of all parameterized problems L ⊆ Σ∗×N for
which there exist a computable function f : N→ Σ∗ and a problem L′ ∈ K and for all instances (x, k) ∈ Σ∗×N
of L we have that (x, k) ∈ L if and only if (x, f(k)) ∈ L′—here we suppose that the pair (x, f(k)) is encoded as
a string in Σ∗. Intuitively, the class para-K consists of all problems that are in K after a precomputation that
only involves the parameter. The class para-NP can also be characterized as the class of all parameterized
problems that are solvable by a nondeterministic fpt-algorithm [18].

Besides the analogues para-NP and para-co-NP of the classical complexity classes NP and co-NP, we
consider another parameterized analogue of these classes. Remember that XP is the class of parameterized
problems P for which there exists a computable function f and an algorithm A that decides whether (x, k) ∈ P
in time |x|f(k). Similarly, we define XNP to be the class of parameterized problems that are decidable in
nondeterministic time |x|f(k). Its co-class we denote by Xco-NP.3

Fpt-Reductions to SAT Another way to look at the parameterized complexity classes para-NP and
para-co-NP is as the class of all parameterized problems that are fpt-reducible to SAT or UNSAT. Formally,
we consider SAT as the decision problem {ϕ : ϕ is a satisfiable propositional formula } and UNSAT as
the decision problem {ϕ : ϕ is an unsatisfiable propositional formula }. By a slight abuse of notation, we
will often also use SAT to refer to the (trivial) parameterized variant of the problem where the parameter
value k = 1 is a fixed constant for all instances, i.e., to refer to the language { (ϕ, 1) : ϕ is a satisfiable
propositional formula }. We use a similar convention for the problem UNSAT. In all cases, it is clear from
the context whether the parameterized or the non-parameterized variant is meant.

The parameterized problem SAT is para-NP-complete, and the parameterized problem UNSAT is
para-co-NP-complete [18, Proposition 14]. This means that para-NP consists of all parameterized problems
that can be fpt-reduced to SAT, and that para-co-NP consists of all parameterized problems that can be
fpt-reduced to UNSAT. Similarly, we can view XNP as the class of parameterized problems for which there

2The problems A[t]-MC are known in the literature under the name MC(Σt) (see, e.g., [19]). We use the name A[t]-MC in
this paper to avoid confusion with the problem Σp

2 [k∗]-MC, that we will define in Section 4.1.
3Alternatively, one could denote this class by co-XNP.
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exists an xp-reduction to SAT and Xco-NP as the class of parameterized problems for which there exists an
xp-reduction to UNSAT—this can be proven with an analogous argument.

The parameterized complexity class para-NP can equivalently be characterized as the class of all parame-
terized problems that are fpt-reducible to any NP-complete problem.4 The polynomial-time reductions from
one NP-complete problem to another can be composed with fpt-reductions. Therefore, the existence of an
fpt-reduction to any NP-complete problem implies the existence of an fpt-reduction to any other NP-complete
problem. Consequently, it makes no difference whether we consider fpt-reductions to the satisfiability problem
for propositional formulas, to the satisfiability problem for Boolean circuits, or to the satisfiability problem of
propositional formulas in conjunctive normal form (CNF), as these problems are all NP-complete.

3 The Hierarchies and Basic Results

As we have seen in the previous section, a parameterized problem is fpt-reducible to SAT if and only if
it is contained in the class para-NP (and similarly, it is fpt-reducible to UNSAT if and only if it is in
para-co-NP). On the other hand, one can use hardness for the classes para-ΣP

2 or para-ΠP
2 to give evidence

that a parameterized problem is not fpt-reducible to SAT—for instance, a para-ΣP
2 -hard problem is not

in para-NP, unless the PH collapses. However, it turns out that there are many natural parameterized
problems that seem to be neither in para-NP or para-co-NP, nor hard for para-ΣP

2 or para-ΠP
2 . That is, the

computational complexity of these problems lies at an intermediate level. In order to adequately characterize
the parameterized complexity of these problems, we need new parameterized complexity classes beyond
para-NP and para-co-NP, on the one hand, and below para-ΣP

2 and para-ΠP
2 , on the other hand.

In this section, we define two hierarchies of parameterized complexity classes: the k-∗ and the ∗-k
hierarchies, consisting of the parameterized complexity classes Σp

2 [k∗, t] and Σp
2 [∗k, t], respectively. Moreover,

we provide basic structural results for these parameterized complexity classes.
The classes Σp

2 [k∗, t] and Σp
2 [∗k, t] are based on weighted variants of QSat2, the satisfiability problem for

quantified Boolean formulas with an ∃∀ quantifier prefix. That is, an instance of the problem QSat2 has
both an existential quantifier and a universal quantifier block. Therefore, there are several ways of restricting
the weight of assignments. Restricting the weight of assignments to the existential quantifier block results in
the k-∗ hierarchy, and restricting the weight of assignments to the universal quantifier block results in the ∗-k
hierarchy. Incidentally, restricting the weight of assignments to both quantifier blocks simultaneously results
in a hierarchy of classes (dubbed “k-k”) that are closely related to the classes of the A-hierarchy.

After defining the classes Σp
2 [k∗, t] and Σp

2 [∗k, t], we show that the k-∗ hierarchy in fact collapses to a single
class Σp

2 [k∗]—that is, Σp
2 [k∗, 1] = Σp

2 [k∗, 2] = · · · = Σp
2 [k∗,P] = Σp

2 [k∗]. Moreover, we give normalization
results for the classes Σp

2 [∗k, 1] and Σp
2 [∗k,P]. Concretely, we show that hardness of the canonical problem

for Σp
2 [∗k, 1] already holds when the problem is restricted to quantified Boolean formulas whose matrix is in

2DNF, and we show that hardness of the canonical problem for Σp
2 [∗k,P] already holds when the problem is

restricted to quantified Boolean circuits that are monotone in the universally quantified variables.
A graphical overview of the relation of the parameterized complexity classes Σp

2 [k∗] and Σp
2 [∗k, t] (and

their co-classes Πp
2 [k∗] and Πp

2 [∗k, t]) is provided in Figure 1.

Example: a natural Σp
2 [k∗]-complete problem Before we dive into the technical details of defining and

developing the parameterized complexity classes Σp
2 [k∗] and Σp

2 [∗k, t], we briefly discuss an example of a
natural parameterized problem whose complexity lies beyond para-NP and para-co-NP, on the one hand, and
below para-ΣP

2 and para-ΠP
2 , on the other hand. One aim of considering this example is to give the reader

some intuition about the kind of parameterized problems that motivate the development of the classes Σp
2 [k∗]

and Σp
2 [∗k, t]. Another aim of this example is to help convey the message that the parameterized complexity

classes that we develop are not just the result of a theoretical exercise, but that they capture the level of
computational complexity of natural problems that occur in various settings. To further pursue this latter

4To put it more precisely, para-NP can be characterized as the class of all parameterized problems that are fpt-reducible
to any problem Qc, where Q is an NP-complete problem, c ∈ N is an arbitrary constant, and Qc = { (x, c) : x ∈ Q } is the
parameterized variant of Q where the parameter value is the constant c.
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para-ΣP
2 para-ΠP

2

Σp
2 [∗k,P]

Σp
2 [∗k, 2]

Σp
2 [∗k, 1]

para-NP

W[1]
W[2]

W[P]

Πp
2 [∗k,P]

Πp
2 [∗k, 2]

Πp
2 [∗k, 1]

para-co-NP

co-W[P]

co-W[1]
co-W[2]

Σp
2 [k∗] Πp

2 [k∗]

FPT

XP

XNP Xco-NP

A[2] co-A[2]

Figure 1: The parameterized complexity classes Σp
2 [k∗], Πp

2 [k∗], Σp
2 [∗k, t], and Πp

2 [∗k, t], and their relation to
parameterized complexity classes known from the literature.
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goal, in Section 6 we provide a list of natural parameterized problems from many domains that are complete
for the classes that we develop.

The example problem that we consider here is related to the task of minimizing DNF formulas. In
this problem, one is given a DNF formula ϕ and a positive integer k. The problem is to decide if there
is a DNF formula ϕ′ that is equivalent to ϕ and that can be obtained from ϕ by deleting k literals. This
problem is ΣP

2 -complete in general [54]. We consider the parameterized variant of this problem where the
parameter is the number k of literals that is to be deleted. This parameterized problem is Σp

2 [k∗]-complete
[31, Proposition 3]. The structure of this problem nicely corresponds to the intuition behind the class Σp

2 [k∗]:
the question is whether there is a set of k literals (among the n literals occuring in the formula) that can
be deleted—a choice between

(
n
k

)
= O(nk) possible sets—so that all 2O(n) truth assignments yield the same

value. Problems complete for Σp
2 [k∗] are generally of this shape. Similarly, problems complete for the classes

Σp
2 [∗k, t] typically involve finding a solution among one of 2n candidate solutions, and for each such candidate,

checking whether it is indeed a solution corresponds to verifying a property for all sets of k objects.

3.1 The k-∗ and ∗-k Hierarchies

We now turn to formally defining the k-∗ and ∗-k hierarchies, consisting of parameterized complexity classes
Σp

2 [k∗, t] and Σp
2 [∗k, t], respectively. These classes are based on the following two parameterized decision

problems. Let C be a class of Boolean circuits. The problem Σp
2 [k∗]-WSat(C) provides the foundation for

the k-∗ hierarchy.

Σp
2 [k∗]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and a positive
integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for all truth assign-
ments β to Y the assignment α ∪ β satisfies C?

Similarly, the problem Σp
2 [∗k]-WSat(C) provides the foundation for the ∗-k hierarchy.

Σp
2 [∗k]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and a positive
integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth assignments β to Y
of weight k the assignment α ∪ β satisfies C?

For the sake of convenience, instances to these two problems consisting of a circuit C over sets X and Y of
variables and a positive integer k, we will denote by (∃X.∀Y.C, k).

We will now define the following parameterized complexity classes, that together form the k-∗ hierarchy.
Remember that the notation [ · ]fpt denotes the class of all parameterized problems that are fpt-reducible to
the referenced (set of) problem(s). Remember also that circt,u denotes the class of all Boolean circuits of
weft t and depth u, that form denotes the class of all Booelan circuits that represent a propositional formula,
and that circ denotes the class of all Boolean circuits. The classes of the k-∗ hierarchy are defined as follows:

Σp
2 [k∗, t] = [ {Σp

2 [k∗]-WSat(circt,u) : u ≥ 1 } ]fpt,

Σp
2 [k∗,SAT] = [ Σp

2 [k∗]-WSat(form) ]fpt, and

Σp
2 [k∗,P] = [ Σp

2 [k∗]-WSat(circ) ]fpt.

Similarly, we define the classes of the ∗-k hierarchy as follows:

Σp
2 [∗k, t] = [ {Σp

2 [∗k]-WSat(circt,u) : u ≥ 1 } ]fpt,

Σp
2 [∗k, SAT] = [ Σp

2 [∗k]-WSat(form) ]fpt, and
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Σp
2 [∗k,P] = [ Σp

2 [∗k]-WSat(circ) ]fpt.

These definitions are entirely analogous to those of the parameterized complexity classes W[t] of the W-
hierarchy [10, 11].

By definition of the classes Σp
2 [k∗, t] and Σp

2 [k∗, t], we directly get the following inclusions:

Σp
2 [k∗, 1] ⊆ Σp

2 [k∗, 2] ⊆ · · · ⊆ Σp
2 [k∗,SAT] ⊆ Σp

2 [k∗,P], and

Σp
2 [∗k, 1] ⊆ Σp

2 [∗k, 2] ⊆ · · · ⊆ Σp
2 [∗k, SAT] ⊆ Σp

2 [∗k,P].

Dual to the classical complexity class ΣP
2 is its co-class ΠP

2 , whose canonical complete problem is
complementary to the problem QSat2. Similarly, we can define dual classes for each of the parameterized
complexity classes in the k-∗ and ∗-k hierarchies. These co-classes are based on problems complementary
to the problems Σp

2 [k∗]-WSat and Σp
2 [∗k]-WSat, i.e., these problems have as yes-instances exactly the no-

instances of Σp
2 [k∗]-WSat and Σp

2 [∗k]-WSat, respectively. Equivalently, these complementary problems can
be considered as variants of Σp

2 [k∗]-WSat and Σp
2 [∗k]-WSat where the existential and universal quantifiers

are swapped. These complementary problems are denoted by Πp
2 [k∗]-WSat and Πp

2 [∗k]-WSat. We use a
similar notation for the dual complexity classes, e.g., we denote co-Σp

2 [∗k, t] by Πp
2 [∗k, t].

3.2 The k-k Hierarchy

Before we continue with developing structural results for the k-∗ and ∗-k hierarchies, we briefly digress and
consider another similar hierarchy of complexity classes (that we call the k-k hierarchy). We will use one
of the parameterized complexity classes Σp

2 [kk, t] in this additional hierarchy to establish some results in
Section 5.3.

Similarly to the definition of the complexity classes of the k-∗ and ∗-k hierarchies, one can define weighted
variants of the problem QSat2 with weight restrictions on both quantifier blocks. This results in the
parameterized complexity classes Σp

2 [kk, t], whose definition is based on the following parameterized problem.
Let C be a class of Boolean circuits. The problem Σp

2 [kk]-WSat(C) provides the foundation for the k-k
hierarchy.

Σp
2 [kk]-WSat(C)

Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and a positive
integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X of weight k such that for all truth assign-
ments β to Y of weight k the assignment α ∪ β satisfies C?

The classes Σp
2 [kk, t], for t ∈ N ∪ {SAT,P} are then defined as follows:

Σp
2 [kk, t] = [ {Σp

2 [kk]-WSat(circt,u) : u ≥ 1 } ]fpt,

Σp
2 [kk,SAT] = [ Σp

2 [kk]-WSat(form) ]fpt, and

Σp
2 [kk,P] = [ Σp

2 [kk]-WSat(circ) ]fpt.

The complexity class Σp
2 [kk,SAT] has been defined and considered by Gottlob, Scarcello and Sideri [26]

under the name Σ2W[SAT]. Also, for each t ∈ N, variants of the problems Σp
2 [kk, t] have been studied in

the literature (see, e.g., [19, Chapter 8]). Based on these problems, the parameterized complexity classes
A[2,t] (for t ≥ 1) have been defined. These classes generalize A[2], because A[2] = A[2,1]. Due to fact that
the classes A[2,t] and the classes Σp

2 [kk, t] are defined in a very similar way—in fact, the canonical problems
for the classes A[2,t] are a special case of the problems Σp

2 [kk]-WSat(circt,u)—it is straightforward to verify
that for all t ≥ 1 it holds that A[2,t] ⊆ Σp

2 [kk, t].
Moreover, it can also routinely be proved that for each t ∈ N∪{SAT,P} it holds that Σp

2 [kk, t] ⊆ Σp
2 [k∗, t]

and that Σp
2 [kk, t] ⊆ Σp

2 [∗k, t]. Therefore, we directly get the following result (that we state without proof),
that relates A[2] and the classes of the k-∗ and ∗-k hierarchies.

Proposition 1. Let t ∈ N ∪ {SAT,P}. Then A[2] ⊆ Σp
2 [kk, t] ⊆ Σp

2 [k∗, t] ∩ Σp
2 [∗k, t].
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3.3 The Parameterized Complexity Class Σp
2[k∗]

We consider the classes Σp
2 [k∗, t] of the k-∗ hierarchy in more detail. It turns out that this hierarchy collapses

entirely into a single parameterized complexity class, that we denote by Σp
2 [k∗]. We show that the classes of

the k-∗ hierarchy all coincide. We do so by showing that Σp
2 [k∗, 1] = Σp

2 [k∗,P].

Theorem 2 (Collapse of the k-∗ hierarchy). Σp
2 [k∗, 1] = Σp

2 [k∗,P]. Moreover, Σp
2 [k∗]-WSat(3DNF) is

complete for this class.

Proof. Since by definition Σp
2 [k∗, 1] ⊆ Σp

2 [k∗, 2] ⊆ . . . ⊆ Σp
2 [k∗,P], it suffices to show that Σp

2 [k∗,P] ⊆
Σp

2 [k∗, 1]. We show this by giving an fpt-reduction from Σp
2 [k∗]-WSat(circ) to Σp

2 [k∗]-WSat(3DNF). Since
3DNF ⊆ circ1,3, this suffices. We remark that this reduction is based on the standard Tseitin transformation
that transforms arbitrary Boolean circuits into 3CNF by means of additional variables [53].

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat(circ) with ϕ = ∃X.∀Y.C. Assume without loss of generality

that C contains only binary conjunctions and negations. Let o denote the output gate of C. We construct an
instance (ϕ′, k) of Σp

2 [k∗]-WSat(3DNF) as follows. The formula ϕ′ will be over the set of variables X ∪Y ∪Z,
where Z = { zr : r ∈ Nodes(C) }. For each r ∈ Nodes(C), we define a subformula χr. We distinguish three
cases. If r = r1 ∧ r2, then we let χr = (zr ∧ ¬zr1) ∨ (zr ∧ ¬zr2) ∨ (zr1 ∧ zr2 ∧ ¬zr). If r = ¬r1, then we
let χr = (zr ∧ zr1)∨ (¬zr ∧¬zr1). If r = w, for some w ∈ X ∪Y , then we let χr = (zr ∧¬w)∨ (¬zr ∧w). Now
we define ϕ′ = ∃X.∀Y ∪ Z.ψ, where ψ =

∨
r∈Nodes(C) χr ∨ zo. We prove the correctness of this reduction.

(⇒) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat(circ). This means that there exists an assignment α : X → {0, 1}

of weight k such that ∀Y.C[α] evaluates to true. We show that (ϕ′, k) ∈ Σp
2 [k∗]-WSat(3DNF), by showing

that ∀Y ∪Z.ψ[α] evaluates to true. Let β : Y ∪Z → {0, 1} be an arbitrary assignment to the variables Y ∪Z,
and let β′ be the restriction of β to the variables Y . We distinguish two cases: either (i) for each r ∈ Nodes(C)
it holds that β(zr) coincides with the value that gate r gets in the circuit C given assignment α ∪ β′, or (ii)
this is not the case. In case (i), by the fact that α∪β′ satisfies C, we know that β(zo) = 1, and therefore α∪β
satisfies ψ. In case (ii), we know that for some gate r ∈ Nodes(C), the value of β(zr) does not coincide with
the value assigned to r in C given the assignment α ∪ β′. We may assume without loss of generality that for
all parent nodes r′ of r it holds that β(zr′) coincides with the value assigned to r′ by α∪β′. In this case, there
is some term of χr that is satisfied by α ∪ β. From this we can conclude that (ϕ′, k) ∈ Σp

2 [k∗]-WSat(3DNF).
(⇐) Assume that (ϕ′, k) ∈ Σp

2 [k∗]-WSat(3DNF). This means that there exists some assignment α : X →
{0, 1} of weight k such that ∀Y ∪ Z.ψ[α] evaluates to true. We now show that ∀Y.C[α] evaluates to true as
well. Let β′ : Y → {0, 1} be an arbitrary assignment to the variables Y . Define β′′ : Z → {0, 1} as follows. For
any r ∈ Nodes(C), we let β′′(zr) be the value assigned to the node r in the circuit C by the assignment α∪β′.
We then let β = β′ ∪ β′′. Now, since ∀Y ∪ Z.ψ[α] evaluates to true, we know that α ∪ β satisfies ψ. By
construction of β, we know that α ∪ β does not satisfy the term χr for any r ∈ Nodes(C). Therefore, we
know that β(zo) = 1. By construction of β, this implies that α ∪ β′ satisfies C. Since β′ was arbitrary, we
can conclude that ∀Y.C[α] evaluates to true, and therefore that (ϕ, k) ∈ Σp

2 [k∗]-WSat(circ).

As mentioned above, in order to simplify notation, we will use Σp
2 [k∗] to denote the class Σp

2 [k∗, 1] = . . . =
Σp

2 [k∗,P]. Also, for the sake of convenience, by a slight abuse of notation, we will often denote the problems
Σp

2 [k∗]-WSat(circ) and Σp
2 [k∗]-WSat(form) by Σp

2 [k∗]-WSat.
The result of Theorem 2 is useful for showing Σp

2 [k∗]-hardness because it allows us to restrict our attention
to instances where the matrix is in 3DNF when conceiving a reduction from Σp

2 [k∗]-WSat. For example, the
reductions used to show that the problem of reducing the size of a DNF formula by deleting k literals while
preserving logical equivalence (that we discussed as an example in the beginning of Section 3) are based on
this normalization result.

3.4 Normalization Results for Σp
2[∗k, 1] and Σp

2[∗k,P]

We now turn our attention to the classes Σp
2 [∗k, t]. The proof technique that we used to show Theorem 2

cannot be used to show a collapse of the ∗-k hierarchy. Intuitively, the reason for this is that when dealing with
the various problems Σp

2 [∗k]-WSat(C), we cannot freely add auxiliary variables that can get any assignment
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to the second quantifier block because the weight of assignments to the variables in the second quantifier
block is restricted. It is possible that the classes of the ∗-k hierarchy are distinct.

In this section, we show normalization results for the classes Σp
2 [∗k, 1] and Σp

2 [∗k,P]. In particular, we show
that the problem Σp

2 [∗k]-WSat(2DNF) is already Σp
2 [∗k, 1]-hard, and that the problem Σp

2 [∗k]-WSat(circ)
is already Σp

2 [∗k,P]-hard when restricted to circuits where the universally quantified variables occur only
positively in the circuit. These normalization results are useful for showing hardness for the classes Σp

2 [∗k, 1]
and Σp

2 [∗k,P]. In fact, all the Σp
2 [∗k, 1]-completeness results and the Σp

2 [∗k,P]-completeness results that we
mention in Section 6 are based on the normalization results in this section.

3.4.1 A Normalization Result for Σp
2 [∗k, 1]

We begin with showing a normalization result for (the canonical problems of) the parameterized complexity
class Σp

2 [∗k, 1]. In particular, we show that the problem Σp
2 [∗k]-WSat is already Σp

2 [∗k, 1]-hard when the
input circuits are restricted to formulas in r-DNF, for any constant r ≥ 2. For the sake of convenience,
we switch our perspective to the co-problem Πp

2 [∗k]-WSat when stating and proving the following results.
Because we can make heavy use of the original normalization proof for the class W[1] by Downey and
Fellows [9, 10, 11] to prove this normalization result, we provide only proof sketches. We begin with the
following lemma, that shows that we can restrict our attention to CNF formulas (with higher bounds on the
size of clauses).

Lemma 3. For any u ≥ 1, Πp
2 [∗k]-WSat(circ1,u) ≤fpt Πp

2 [∗k]-WSat(s-CNF), where s = 2u + 1.

Proof (sketch). The reduction is completely analogous to the reduction used in the proof of Downey and
Fellows [9, Lemma 2.1], where the presence of universally quantified variables is handled in four steps. In
Steps 1 and 2, in which only the form of the circuit is modified, no changes are needed. In Step 3, universally
quantified variables can be handled exactly as existentially quantified variables. Step 4 can be performed with
only a slight modification, the only difference being that universally quantified variables appearing in the input
circuit will also appear in the resulting clauses that verify whether a given product-of-sums or sum-of-products
is satisfied. It is straightforward to verify that this reduction with the mentioned modifications works for our
purposes.

We are now ready to prove our normalization result.

Theorem 4. Πp
2 [∗k]-WSat(2CNF) is Πp

2 [∗k, 1]-complete.

Proof (sketch). Clearly Πp
2 [∗k]-WSat(2CNF) is in Πp

2 [∗k, 1], since a 2CNF formula can be considered as a
constant-depth circuit of weft 1. To show that Πp

2 [∗k]-WSat(2CNF) is Πp
2 [∗k, 1]-hard, we give an fpt-reduction

from Πp
2 [∗k]-WSat(circ1,u) to Πp

2 [∗k]-WSat(2CNF), for arbitrary u ≥ 1. By Lemma 3, we know that we
can reduce Πp

2 [∗k]-WSat(circ1,u) to Πp
2 [∗k]-WSat(s-CNF), for s = 2u + 1. We continue the reduction in

multiple steps. In each step, we let C denote the circuit resulting from the previous step, and we let Y denote
the universally quantified and X the existentially quantified variables of C, and we let k denote the parameter
value. We describe the last two steps only briefly, since these are completely analogous to constructions in
the work of Downey and Fellows [10].

Step 1: contracting the universally quantified variables. This step transforms C into a CNF
formula C ′ such that each clause contains at most one variable in Y and such that (C, k) is a yes-instance
if and only if (C ′, k) is a yes-instance. We introduce new universally quantified variables Y ′ containing a
variable y′A for each set A of literals over Y of size at least 1 and at most s. Now, it is straightforward to
construct a set D of polynomially many clauses of size 3 over Y and Y ′ such that the following property
holds. An assignment α to Y ∪ Y ′ satisfies D if and only if for each subset A = {l1, . . . , lb} of literals over
Y (of size at least 1 and at most s) it holds that α(y′A) = 1 if and only if α(lj) = 1 for some j ∈ {1, . . . , b}.
Note that we do not directly add the set D of clauses to the formula C ′.
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We introduce k − 1 new existentially quantified variables x?1, . . . , x
?
k−1. We add binary clauses to C ′ that

enforce that the variables x?1, . . . , x
?
k−1 all get the same truth assignment. Also, we add binary clauses to C ′

that enforce that each x ∈ X is set to false if x?1 is set to true.
We introduce |D| existentially quantified variables, including a variable x′d for each clause d ∈ D. Let X ′

denote the new existentially quantified variables that we introduced, i.e., X ′ = {x?1, . . . , x?k−1}∪{x′d : d ∈ D }.
Then, for each d ∈ D, we add the following clauses to C ′. Let d = (l1, l2, l3), where each li is a literal
over Y ∪ Y ′. We add the clauses (¬x′d ∨¬l1), (¬x′d ∨¬l2) and (¬x′d ∨¬l3), enforcing that the clause d cannot
be satisfied if x′d is set to true.

We then modify the clauses of C as follows. Let c = (lx1 , . . . , l
x
s1 , l

y
1 , . . . , l

y
s2) be a clause of C, where lx1 , . . . , l

x
s1

are literals over X, and ly1 , . . . , l
y
s2 are literals over Y . We replace c by the clause (lx1 , . . . , l

x
s1 , x

?
1, y
′
B),

where B = {ly1 , . . . , lys2}. Clauses c of C that contain no literals over the variables Y remain unchanged.
The idea of this reduction is the following. If x?1 is set to true, then exactly one of the variables x′d must

be set to true—this is because the variables x?1, . . . , x
?
k−1 must be set to true, all variables x ∈ X must be set

to false, and exactly k variables must be set to true. This can only result in an satisfying assignment if the
clause d ∈ D is not satisfied. Therefore, if an assignment α to the variables Y ∪ Y ′ does not satisfy D, there
is a satisfying assignment of weight k that sets both x?1 and x′d to true, for some d ∈ D that is not satisfied
by α. Otherwise, we know that the value that α assigns to variables y′A corresponds to the value that α
assigns to

∨
a∈A a, for each set A of at most s literals over Y . Then any satisfying assignment of weight k

for C is also a satisfying assignment of weight k for C ′.
We formally prove that (C, k) is a yes-instance if and only if (C ′, k) is a yes-instance.
(⇒) Suppose that for each α : Y → {0, 1} there is a truth assignment β : X → {0, 1} of weight k such

that C[α∪β] is true. We show that (C ′, k) is a yes-instance. Take an arbitrary truth assignment α′ : Y ∪Y ′ →
{0, 1}. We distinguish two cases: either (i) α′ does not satisfy D or (ii) α′ satisfies D. In case (i), we know
that there is some clause d ∈ D that is not satisfied by α′. Consider the truth assignment β′d : X → {0, 1}
that sets the variables x?1, . . . , x

?
k−1 and x′d to 1, and all remaining variables to 0. It is straightforward to

verify that β′d has weight k and that C[α′ ∪ β′d] is true. For case (ii), we consider the restriction α of α′ to the
variables Y . We know that there is some β : X → {0, 1} of weight k such that C[α ∪ β] is true. We construct
the truth assignment β′ : X ∪X ′ → {0, 1} by letting β(x) = β′(x) for all x ∈ X, and letting β(x′) = 0 for
all x′ ∈ X ′. Clearly, β has weight k. Moreover, by construction of C ′, since C[α ∪ β] is true and because α
satisfies D, we know that C ′[α′ ∪ β′] is true.

(⇐) Conversely, suppose that for each α′ : Y ∪Y ′ → {0, 1} there is a truth assignment β′ : X∪X ′ → {0, 1}
of weight k such that C ′[α′ ∪ β′] is true. We show that (C, k) is a yes-instance. Take an arbitrary truth
assignment α : Y → {0, 1}. Consider a truth assignment α′ : Y ∪ Y ′ → {0, 1} that extends α and that
satisfies D. We know that there exists some truth assignment β′ : X ∪ X ′ → {0, 1} of weight k such
that C ′[α′ ∪ β′] is true. Moreover, by construction of C ′, since α′ satisfies D, we know that β′(x′d) = 0 for
all d ∈ D. Then, we also know that β′(x?1) = 0. If this were not the case, β′ would be of weight k − 1, which
contradicts our assumption that β′ has weight k. We then consider the restriction β of β′ to the variables
in X. We know that β has weight k. Moreover, by construction of C ′, since C ′[α′ ∪β′] is true, and because α′

satisfies D, we know that C[α ∪ β] is true.

Step 2: making C antimonotone in X. This step transforms C into a circuit C ′ that has only negative
occurrences of existentially quantified variables, and transforms k into k′ depending only on k, such that (C, k)
is a yes-instance if and only if (C ′, k′) is a yes-instance. The reduction is completely analogous to the reduction
in the proof of Downey and Fellows [10, Theorem 10.6].

Step 3: contracting the existentially quantified variables. This step transforms C into a circuit C ′

in CNF that contains only clauses with two variables in X and no variables in Y and clauses with one variable
in X and one variable in Y , and transforms k into k′ depending only on k, such that (C, k) is a yes-instance
if and only if (C ′, k′) is a yes-instance. The reduction is completely analogous to the reduction in the proof of
Downey and Fellows [10, Theorem 10.7].

Corollary 5. For any fixed integer r ≥ 2, the problem Σp
2 [∗k]-WSat(r-DNF) is Σp

2 [∗k, 1]-complete.
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3.4.2 A Normalization Result for Σp
2 [∗k,P]

Next, we provide a normalization result for Σp
2 [∗k,P]. In order to do so, we will need some definitions. Let C

be a quantified Boolean circuit over two disjoint sets X and Y of variables that is in negation normal form.
We say that C is monotone in the variables in Y if the only negation nodes that occur in the circuit C have
variables in X as inputs, i.e., the variables in Y can appear only positively in the circuit. Then, the following
restriction of Σp

2 [∗k]-WSat is already Σp
2 [∗k,P]-hard.

Theorem 6. The problem Σp
2 [∗k]-WSat is Σp

2 [∗k,P]-hard, even when restricted to quantified circuits that
are in negation normal form and that are monotone in the universal variables.

Proof. We give an fpt-reduction from the problem Σp
2 [∗k]-WSat to the problem Σp

2 [∗k]-WSat restricted to
circuits that are monotone in the universal variables. Let (C, k) be an instance of Σp

2 [∗k]-WSat, where C
is a quantified Boolean circuit over the set X of existential variables and the set Y of universal variables,
where X = {x1, . . . , xn} and where Y = {y1, . . . , ym}. We construct an equivalent instance (C ′, k) of
Σp

2 [∗k]-WSat where C ′ is a quantified Boolean circuit over the set X of existential variables and the set Y ′

of universal variables, and where the circuit C ′ is monotone in Y ′. We may assume without loss of generality
that C is in negation normal form. If this is not the case, we can simply transform C into an equivalent
circuit that has this property using the De Morgan rule. The form of the circuit C is depicted in Figure 2.

This construction bears some resemblance to the construction used in a proof by Flum and Grohe [19,
Theorem 3.14]. The plan is to replace the variables in Y by k copies, grouped in sets Y 1, . . . , Y k of new
variables. Each assignment of weight k to the new variables that sets a copy of a different variable to true in
each set Y i corresponds exactly to an assignment of weight k to the original variables in Y . Moreover, we will
ensure that each assignment of weight k to the new variables that does not set a copy of a different variable
to true in each set Y i satisfies the newly constructed circuit. Using these new variables we can then construct
internal nodes yj and y′j that, for each assignment to the new input nodes Y ′, evaluate to the truth value
assigned to yj and ¬yj , respectively, by the corresponding truth assignment to the original input nodes Y .

We will describe this construction in more detail. The construction is also depicted in Figure 3. We
let Y ′ = { yij : 1 ≤ i ≤ k, 1 ≤ j ≤ m }. We introduce a number of new internal nodes. For each 1 ≤ j ≤ m,

we introduce an internal node yj , that is the disjunction of the input nodes yij , for 1 ≤ i ≤ k. That is, the

internal node yj is true if and only if yij is true for some 1 ≤ i ≤ k. Intuitively, this node yj corresponds to
the input node yj in the original circuit C. Moreover, we introduce an internal node y′j,i for each 1 ≤ j ≤ m
and each 1 ≤ i ≤ k, that is the disjunction of yij′ , for each 1 ≤ j′ ≤ m such that j 6= j′. That is, the node y′j,i
is true if and only if yij′ is true for some j′ that is different from j. Then, we introduce the node y′j , for
each 1 ≤ j ≤ m, that is the conjunction of the nodes y′j,i for 1 ≤ i ≤ k. That is, the node y′j is true if

and only if for each 1 ≤ i ≤ k there is some j′ 6= j for which the input node yij′ is true. Intuitively, this
node y′j corresponds to the negated input node ¬yj in the original circuit C. Also, for each 1 ≤ i ≤ k and

each 1 ≤ j < j′ ≤ m, we add an internal node zj,j
′

i that is the conjunction of the input nodes yij and yij′ . Then,
for each 1 ≤ i ≤ k we add the internal node zi that is the conjunction of all nodes zj,j

′

i , for 1 ≤ j < j′ ≤ m.
Intuitively, zi is true if and only if at least two input nodes in the set Yi are set to true. In addition, we add
a subcircuit B that acts on the nodes y′1, . . . , y

′
m, and that is satisfied if and only if at least m− k + 1 of the

nodes y′j are set to true. It is straightforward to construct such a circuit B in polynomial time (see, e.g., [50,
Figure 1]). Then, we add the subcircuit C with input nodes x1, . . . , xn, negated input nodes ¬x1, . . . ,¬xn,
where the input nodes y1, . . . , ym are identified with the internal nodes y1, . . . , ym in the newly constructed
circuit C ′, and where the negated input nodes ¬y1, . . . ,¬ym are identified with the internal nodes y′1, . . . , y

′
m

in the newly constructed circuit C ′. Finally, we let the output node be the disjunction of the nodes z1, . . . , zk
and the output nodes of the subcircuits C and B. Since C is a circuit in negation normal form, the circuit C ′

is monotone in Y ′. We claim that for each assignment α : X → {0, 1} it holds that the circuit C[α] is satisfied
by all assignments of weight k if and only if C ′[α] is satisfied by all assignments of weight k.

(⇒) Let α : X → {0, 1} be an arbitrary truth assignment. Assume that C[α] is satisfied by all truth
assignments β : Y → {0, 1} of weight k. We show that C ′[α] is satisfied by all truth assignments β′ : Y ′ →
{0, 1} of weight k. Let β′ : Y ′ → {0, 1} be an arbitrary truth assignment of weight k. We distinguish several
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x1 . . . xn¬x1. . .¬xn y1 . . . ym¬y1. . .¬ym

C

Figure 2: The original quantified Boolean circuit C in the proof of Theorem 6.

x1 . . . xn ¬x1 . . . ¬xn

y1
1

. . . y1
m y2

1
. . . y2

m
. . . yk1 . . . ykm

∨
y1

. . . ∨
ym

∧y′1

∨
y′1,1

. . . ∨
y′1,k

. . . ∧ y′m

∨
y′m,1

. . . ∨
y′m,k

∨
z1

. . . ∨
zk

∧
z1,1
1

. . . ∧
zm−1,m
1

. . . ∧
z1,1
k

. . . ∧
zm−1,m
k

C
B

∨

Figure 3: The constructed quantified Boolean circuit C ′ in the proof of Theorem 6.

cases: either (i) for some 1 ≤ i ≤ k there are some 1 ≤ j < j′ ≤ m such that β′(yij) = β′(yij′) = 1, or (ii) for

each 1 ≤ i ≤ k there is exactly one `i such that β′(yi`i) = 1 and for some 1 ≤ i < i′ ≤ k it holds that `i = `i′ ,

or (iii) for each 1 ≤ i ≤ k there is exactly one `i such that β′(yi`i) = 1 and for each 1 ≤ i < i′ ≤ k it holds

that `i 6= `i′ . In case (i), we know that the assignment β′ sets the node zj,j
′

i to true. Therefore, β′ sets
the node zi to true, and thus satisfies the circuit C ′[α]. In case (ii), we know that β′ sets y′j to true for at
least m− k + 1 different values of j. Therefore, β′ satisfies the subcircuit B, and thus satisfies C ′[α]. Finally,
in case (iii), we know that β′ sets exactly k different internal nodes yj to true, and for each 1 ≤ j ≤ m
sets the internal node y′j to true if and only if it sets yj to false. Then, since C[α] is satisfied by all truth
assignments of weight k, we know that β′ satisfies the subcircuit C, and thus satisfies C ′[α]. Since β′ was
arbitrary, we can conclude that C ′[α] is satisfied by all truth assignments β′ : Y ′ → {0, 1} of weight k.

(⇐) Let α : X → {0, 1} be an arbitrary truth assignment. Assume that C ′[α] is satisfied by all truth
assignments β′ : Y ′ → {0, 1} of weight k. We show that C[α] is satisfied by all truth assignments β : Y → {0, 1}
of weight k. Let β : Y → {0, 1} be an arbitrary truth assignment of weight k. We now define the truth
assignment β′ : Y ′ → {0, 1} as follows. Let {y`1 , . . . , y`k} = { yj : 1 ≤ j ≤ m,β(yj) = 1 }. For each 1 ≤ i ≤ k
and each 1 ≤ j ≤ m we let β′(yij) = 1 if and only if j = `i. Clearly, β′ has weight k. Moreover, the
assignment β′ sets the nodes z1, . . . , zk to false. Furthermore, it is the case that β′ sets the internal node yj
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in C ′ to true for exactly those 1 ≤ j ≤ m for which β(yj) = 1, and it sets the internal node y′j in C ′ to true
for exactly those 1 ≤ j ≤ m for which β(yj) = 0. Thus, since β′ sets exactly m− k of the internal nodes y′j
to true, we know that β′ sets (the output node of) the subcircuit B to false. Therefore, since β′ satisfies the
circuit C ′[α], we can conclude that β′ satisfies the subcircuit C, and thus that β satisfies C[α]. Since β was
arbitrary, we can conclude that C[α] is satisfied by all truth assignments β : Y → {0, 1} of weight k.

4 Additional Characterizations

In this section, we discuss several different characterizations of Σp
2 [k∗] and Σp

2 [∗k,P]. In particular, we
characterize Σp

2 [k∗] using (1) a parameterized model checking problem for first-order logic formulas, (2) a
variant of the canonical problem Σp

2 [k∗]-WSat where the truth assignments to the existential variables are
restricted to weight at most k (rather than weight exactly k) and (3) using alternating Turing machines with
appropriate bounds on the number of alternations and the number of nondeterministic steps. Moreover, for
the class Σp

2 [∗k,P], we briefly discuss a characterization in terms of alternating Turing machines that has
been shown recently in the literature [28].

4.1 A First-order Model Checking Characterization for Σp
2[k∗]

We begin with giving an equivalent characterization of the class Σp
2 [k∗] in terms of model checking of first-order

logic formulas. Consider the following parameterized model checking problem for first-order logic formulas
(with an ∃∀ quantifier prefix) with k existential variables.

Σp
2 [k∗]-MC

Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a vocabulary τ , where ψ
is quantifier-free, and a finite τ -structure A.
Parameter: k.
Question: Is it the case that A |= ϕ?

We show that this problem is complete for the class Σp
2 [k∗].

Theorem 7. Σp
2 [k∗]-MC is Σp

2 [k∗]-complete.

This completeness result follows Lemmas 8 and 9, that we prove below. We begin with showing membership
in Σp

2 [k∗].

Lemma 8. Σp
2 [k∗]-MC is in Σp

2 [k∗].

Proof. We show Σp
2 [k∗]-membership of Σp

2 [k∗]-MC by giving an fpt-reduction to Σp
2 [k∗]-WSat. Let (ϕ,A) be

an instance of Σp
2 [k∗]-MC, where ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ is a first-order logic sentence over vocabulary τ ,

and A is a τ -structure with domain A. We assume without loss of generality that ψ contains only connectives ∧
and ¬.

We construct an instance (ϕ′, k) of Σp
2 [k∗]-WSat, where ϕ is of the form ∃X ′.∀Y ′.ψ′. We define:

X ′ = {x′i,a : 1 ≤ i ≤ k, a ∈ A }, and
Y ′ = { y′j,a : 1 ≤ j ≤ n, a ∈ A }.

In order to define ψ′, we will use the following auxiliary function µ on subformulas of ψ:

µ(χ) =





µ(χ1) ∧ µ(χ2) if χ = χ1 ∧ χ2,

¬µ(χ1) if χ = ¬χ1,

∨

1≤i≤u

(
ψz1,ai1 ∧ · · · ∧ ψzm,aim

) if χ = R(z1, . . . , zm) and

RA = {(a1
1, . . . , a

1
m), . . . , (au1 , . . . , a

u
m)},
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where for each z ∈ X ∪ Y and each a ∈ A we define:

ψz,a =

{
x′i,a if z = xi,

y′j,a if z = yj .

Now, we define ψ′ as follows:

ψ′ = ψ′unique-X′ ∧
(
ψ′unique-Y ′ → µ(ψ)

)
, where

ψ′unique-X′ =
∧

1≤i≤k


 ∨
a∈A

x′i,a ∧
∧

a,a′∈A
a 6=a′

(¬x′i,a ∨ ¬x′i,a′)


 , and

ψ′unique-Y ′ =
∧

1≤j≤n


 ∨
a∈A

y′j,a ∧
∧

a,a′∈A
a 6=a′

(¬y′j,a ∨ ¬y′j,a′)


 .

We show that (A, ϕ) ∈ Σp
2 [k∗]-MC if and only if (ϕ′, k) ∈ Σp

2 [k∗]-WSat.
(⇒) Assume that there exists an assignment α : {x1, . . . , xk} → A such that A, α |= ∀y1, . . . , yn.ψ. We

define the assignment α′ : X ′ → {0, 1} where α′(x′i,a) = 1 if and only if α(xi) = a. Clearly, α′ has weight k.
Also, note that α′ satisfies ψ′unique-X′ . Now, let β′ : Y ′ → {0, 1} be an arbitrary assignment. We show
that α′ ∪ β′ satisfies ψ′. We distinguish two cases: either (i) for each 1 ≤ j ≤ n, there is a unique aj ∈ A
such that β′(y′j,aj ) = 1, or (ii) this is not the case. In case (i), α′ ∪ β′ satisfies ψ′unique-Y ′ , so we have to

show that α′ ∪ β′ satisfies µ(ψ). Define the assignment β : {y1, . . . , yn} → A by letting β(yj) = aj . We
know that A, α ∪ β |= ψ. It is now straightforward to show by induction on the structure of ψ that for
each subformula χ of ψ holds that that α′ ∪ β′ satisfies µ(χ) if and only if A, α ∪ β |= χ. We then know
in particular that α′ ∪ β′ satisfies µ(ψ). In case (ii), we know that α′ ∪ β′ does not satisfy ψ′unique-Y ′ , and
therefore α′ ∪ β′ satisfies ψ′. This concludes our proof that (ϕ′, k) ∈ Σp

2 [k∗]-WSat.
(⇐) Assume that there exists an assignment α : X ′ → {0, 1} of weight k such that ∀Y ′.ψ′[α] is true.

Since ψ′unique-X′ contains only variables in X ′, we know that α satisfies ψ′unique-X′ . From this, we can
conclude that for each 1 ≤ i ≤ k, there is some unique ai ∈ A such that α(x′i,ai) = 1. Now, define the
assignment α′ : {x1, . . . , xk} → A by letting α′(xi) = ai.

We show that A, α′ |= ∀y1, . . . , yn.ψ. Let β′ : {y1, . . . , yn} → A be an arbitrary assignment. We
define β : Y ′ → {0, 1} by letting β(y′i,a) = 1 if and only if β(yi) = a. It is straightforward to verify that β
satisfies ψ′unique-Y ′ . We know that α∪β satisfies ψ′, so therefore α∪β satisfies µ(ψ). It is now straightforward
to show by induction on the structure of ψ that for each subformula χ of ψ holds that that α∪β satisfies µ(χ)
if and only if A, α′ ∪ β′ |= χ. We then know in particular that A, α′ ∪ β′ |= ψ. This concludes our proof
that (A, ϕ) ∈ Σp

2 [k∗]-MC.

Next, we turn our attention to showing Σp
2 [k∗]-hardness.

Lemma 9. Σp
2 [k∗]-MC is Σp

2 [k∗]-hard.

Proof. We show Σp
2 [k∗]-hardness by giving an fpt-reduction from Σp

2 [k∗]-WSat(DNF). Let (ϕ, k) be an
instance of Σp

2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ, X = {x1, . . . , xn}, Y = {y1, . . . , ym}, ψ = δ1 ∨ · · · ∨ δu, and
for each 1 ≤ ` ≤ u, δ` = l`1 ∨ l`2 ∨ l`3. We construct an instance (A, ϕ′) of Σp

2 [k∗]-MC. In order to do so, we
first fix the following vocabulary τ (which does not depend on the instance (ϕ, k)): it contains unary relation
symbols D, X and Y , and binary relation symbols C1, C2, C3 and O. We construct the domain A of A as
follows:

A = X ∪ Y ∪ { δ` : 1 ≤ ` ≤ u } ∪ {?}.
Then, we define:

DA = { δ` : 1 ≤ ` ≤ u };
XA = X;
Y A = Y ∪ {?};
CAd = { (δ`, z) : 1 ≤ ` ≤ u, z ∈ X ∪ Y, l`d ∈ {x,¬x} } for 1 ≤ d ≤ 3; and
OA = { (δ`, δ`′) : 1 ≤ ` < `′ ≤ u }.
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Intuitively, the relations D, X and Y serve to distinguish the various subsets of the domain A. The relations Cd,
for 1 ≤ d ≤ 3, encode (part of) the structure of the matrix ψ of the formula ϕ. The relation O encodes a
linear ordering on the terms δ`.

We now define the formula ϕ′ as follows:

ϕ′ = ∃u1, . . . , uk.∀v1, . . . , vm.∀w1, . . . , wu.χ,

where we define χ to be of the following form:

χ = χUproper ∧ ((χVproper ∧ χWexact)→ χsat).

We will define the subformulas of χ below. Intuitively, the assignment of the variables ui will correspond
to an assignment α : X → {0, 1} of weight k that sets a variable x ∈ X to true if and only if some ui is
assigned to x. Similarly, any assignment of the variables vi will correspond to an assignment β : Y → { 0, 1}
that sets y ∈ Y to true if and only if some vi is assigned to y. The variables w` will function to refer to the
elements δ` ∈ A.

The formula χUproper ensures that the variables u1, . . . , uk select exactly k different elements from X. We
define:

χUproper =
∧

1≤i≤k
X(ui) ∧

∧

1≤i<i′≤k
(ui 6= ui′).

For the sake of clarity, we use the formula χVproper to check whether each variable vi is assigned to a value
in Y ∪ {?}. We define:

χVproper =
∧

1≤i≤m
Y (vi).

Next, the formula χWexact encodes whether the variables w1, . . . , wu get assigned exactly to the elements δ1, . . . , δu
(and also in that order, i.e., w` gets assigned δ` for each 1 ≤ ` ≤ u). We let:

χWexact =
∧

1≤`≤u
D(w`) ∧

∧

1≤`<`′≤u
O(w`, w`′).

Finally, we can turn to the formula χsat, which represents whether the assignments α and β represented by
the assignment to the variables ui and vj satisfies ψ. We define:

χsat =
∨

1≤`≤u
χ`sat,

where we let:
χ`sat = χ`,1sat ∧ χ`,2sat ∧ χ`,3sat,

and for each 1 ≤ d ≤ 3 we let:

χ`,dsat =





∨

1≤j≤k
Cd(w`, uj) if l`d = x ∈ X,

∧

1≤j≤k
¬Cd(w`, uj) if l`d = ¬x for some x ∈ X,

∨

1≤j≤m
Cd(w`, vj) if l`d = y ∈ Y ,

∧

1≤j≤m
¬Cd(w`, vj) if l`d = ¬y for some y ∈ X.

Intuitively, for each 1 ≤ ` ≤ u and each 1 ≤ d ≤ 3, the formula χ`,dsat will be satsified by the assignments to
the variables ui and vi if and only if the corresponding assignments α to X and β to Y satisfy l`d.
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It is straightforward to verify that the instance (A, ϕ′) can be constructed in polynomial time. We show
that (ϕ, k) ∈ Σp

2 [k∗]-WSat(3DNF) if and only if (A, ϕ′) ∈ Σp
2 [k∗]-MC.

(⇒) Assume that there exists an assignment α : X → {0, 1} of weight k such that ∀Y.ψ[α] is true. We
show that A |= ϕ′. Let {x ∈ X : α(x) = 1 } = {xi1 , . . . , xik}. We define the assignment µ : {u1, . . . , uk} → A
by letting µ(xj) = xij for all 1 ≤ j ≤ k. It is straightforward to verify that A, µ |= ψUproper. Now,
let ν : {y1, . . . , ym, w1, . . . , wu} → A be an arbitrary assignment. We need to show that A, µ ∪ ν |= χ,
and we thus need to show that A, µ ∪ ν |= (χVproper ∧ χWexact) → χsat. We distinguish several cases: either
(i) ν(yi) 6∈ Y ∪ {?} for some 1 ≤ i ≤ m, or (ii) the above is not the case and ν(w`) 6= δ` for some 1 ≤ ` ≤ u,
or (iii) neither of the above is the case. In case (i), it is straightforward to verify that A, µ ∪ ν |= ¬χVproper.

In case (ii), it is straightforward to verify that A, µ ∪ ν |= ¬χWexact. Consider case (iii). We construct the
assignment β : Y → {0, 1} by letting β(y) = 1 if and only if ν(vi) = y for some 1 ≤ i ≤ m. We know
that α ∪ β satisfies ψ, and thus in particular that α ∪ β satisfies some term δ`. It is now straightforward to
verify that A, µ ∪ ν |= χ`sat, and thus that A, µ ∪ ν |= χsat. This concludes our proof that A |= ϕ′.

(⇐) Assume that A |= ϕ′. We show that (ϕ, k) ∈ Σp
2 [k∗]-WSat(3DNF). We know that there exists

an assignment µ : {u1, . . . , uk} → A such that A, µ |= ∀u1, . . . , um.∀w1, . . . , wu.χ. Since A, µ |= χUproper, we
know that µ assigns the variables ui to k different values x ∈ X. Define α : X → {0, 1} by letting α(x) = 1 if
and only if µ(ui) = x for some 1 ≤ i ≤ k. Clearly, α has weight k. Now, let β : Y → {0, 1} be an arbitrary
assignment. Construct the assignment ν : {v1, . . . , vm, w1, . . . , wu} as follows. For each 1 ≤ i ≤ m, we
let ν(vi) = yi if β(yi) = 1, and we let ν(vi) = ? otherwise. Also, for each 1 ≤ ` ≤ u, we let ν(w`) = δ`. It
is straightforward to verify that A, µ ∪ ν |= χVproper ∧ χWexact. Therefore, we know that A, µ ∪ ν |= χsat, and

thus that for some 1 ≤ ` ≤ u it holds that A, µ ∪ ν |= χ`sat. It is now straightforward to verify that α ∪ β
satisfies δ`. Since β was arbitrary, this concludes our proof that (ϕ, k) ∈ Σp

2 [k∗]-WSat.

The problem Σp
2 [k∗]-MC takes the relational vocabulary τ over which the structure A and the first-order

logic sentence ϕ are defined as part of the input. However, the proof of Lemma 9 shows that the problem
Σp

2 [k∗]-MC is Σp
2 [k∗]-hard already when the vocabulary τ is fixed and contains only unary and binary relation

symbols.

Corollary 10. The problem Σp
2 [k∗]-MC is Σp

2 [k∗]-hard even when the vocabulary τ is fixed and contains
only unary and binary relation symbols.

4.2 Another Weighted Satisfiability Characterization for Σp
2[k∗]

Next, we show that for the canonical problem Σp
2 [k∗]-WSat, it does not matter whether we require the

weight of truth assignments to the existential variables to be exactly k or at most k. That is, the variant of
Σp

2 [k∗]-WSat where truth assignments to the existentially quantified variables are restricted to weight at
most k is also Σp

2 [k∗]-complete. We will use this result as a technical lemma for the results in Section 4.3.
Formally, we consider the problem Σp

2 [k∗]-WSat≤k, that is defined as follows.

Σp
2 [k∗]-WSat≤k

Instance: A quantified Boolean formula φ = ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist an assignment α to X with weight at most k, such that for all truth
assignments β to Y the assignment α ∪ β satisfies ψ?

We show that Σp
2 [k∗]-WSat≤k is Σp

2 [k∗]-complete.

Proposition 11. Σp
2 [k∗]-WSat≤k is Σp

2 [k∗]-complete.

Proof. Firstly, to show membership in Σp
2 [k∗], we give an fpt-reduction from Σp

2 [k∗]-WSat≤k to Σp
2 [k∗]-WSat.

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat≤k, with ϕ = ∃X.∀Y.ψ. We construct an instance (ϕ′, k) of

Σp
2 [k∗]-WSat. Let X ′ = {x′1, . . . , x′k} be a set of fresh variables. Now define ϕ′ = ∃X ∪X ′.∀Y.ψ. We show

that (ϕ, k) ∈ Σp
2 [k∗]-WSat≤k if and only if (ϕ′, k) ∈ Σp

2 [k∗]-WSat.
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(⇒) Assume that (ϕ, k) ∈ Σp
2 [k∗]-WSat≤k. This means that there exists an assignment α : X → {0, 1}

of weight ` ≤ k such that ∀Y.ψ[α] evaluates to true. Define the assignment α′ : X ′ → {0, 1} as follows. We
let α′(x′i) = 1 if and only if 1 ≤ i ≤ k − `. Then the assignment α ∪ α′ has weight k, and ∀Y.ψ[α ∪ α′]
evaluates to true. Therefore, (ϕ′, k) ∈ Σp

2 [k∗]-WSat.
(⇐) Assume that (ϕ′, k) ∈ Σp

2 [k∗]-WSat. This means that there exists an assignment α : X ∪X ′ → {0, 1}
of weight k such that ∀Y.ψ[α] evaluates to true. Now let α′ be the restriction of α to the set X of variables.
Clearly, α′ has weight at most k. Also, since ψ contains no variables in X ′, we know that ∀Y.ψ[α′] evaluates
to true. Therefore, (ϕ, k) ∈ Σp

2 [k∗]-WSat≤k.
Then, to show Σp

2 [k∗]-hardness, we give an fpt-reduction from Σp
2 [k∗]-WSat to Σp

2 [k∗]-WSat≤k. Let (ϕ, k)
be an instance of Σp

2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ, and X = {x1, . . . , xn}. We construct an instance (ϕ′, k′)
of Σp

2 [k∗]-WSat≤k. Let C = { cj,i : 1 ≤ i ≤ k, 1 ≤ j ≤ n } be a set of fresh propositional variables. Intuitively,
we can think of the variables cj,i as being placed in a matrix with k columns and n rows: variable cj,i is
positioned in the i-th column and in the j-th row. We ensure that in each column, exactly one variable is
set to true (see ψcol below), and that in each row, at most one variable is set to true (see ψrow below). This
way, any satisfying assignment must set exactly k variables in the matrix to true, in different rows. Next, we
ensure that if any variable in the j-th row is set to true, that xj is set to true (see ψcorr below). This way, we
know that exactly k variables xj must be set to true in any satisfying assignment.

Formally, we define:

ϕ′ = ∃X ∪ C.∀Y.ψ′;
k′ = 2k;
ψ′ = ψcol ∧ ψrow ∧ ψcorr ∧ ψ;

ψcol =
∧

1≤j≤n

(
∨

1≤i≤k
cj,i ∧

∧
1≤i<i′≤k

(¬cj,i ∨ ¬cj,i′)
)

;

ψrow =
∧

1≤i≤k

∧
1≤j<j′≤n

(¬cj,i ∨ ¬cj′,i); and

ψcorr =
∧

1≤i≤k

∧
1≤j≤n

(cj,i → xj).

Any assignment α : X ∪C → {0, 1} that satisfies ψcol ∧ ψrow must set the variables cj1,1, . . . , cjk,k to true,
for some 1 ≤ j1 < · · · < jk ≤ n. Furthermore, if α satisfies ψcorr, it must also set xj1 , . . . , xjk to true.

It is now easy to show that (ϕ, k) ∈ Σp
2 [k∗]-WSat if and only if (ϕ′, k′) ∈ Σp

2 [k∗]-WSat≤k. Let α :
X → {0, 1} be an assignment of weight k such that ∀Y.ψ[α] is true, where {xi : 1 ≤ i ≤ n, α(xi) = 1 } =
{xj1 , . . . , xjk}. Then consider the assignment γ : C → {0, 1} where γ(cj,i) = 1 if and only if j = ji. Then the
assignment α ∪ γ has weight k′, and has the property that ∀Y.ψ′[α ∪ γ] is true.

Conversely, let γ : X ∪ C → {0, 1} be an assignment of weigth k′ such that ∀Y.ψ′[γ] is true. Then the
restriction α of γ to the variables X has weight k, and has the property that ∀Y.ψ[α] is true.

4.3 An Alternating Turing Machine Characterization for Σp
2[k∗]

In this section, we give a characterization of the class Σp
2 [k∗] by means of alternating Turing machines

(ATMs). This characterization states that the class Σp
2 [k∗] is the class of parameterized problems that can be

solved by an ATM with appropriate bounds on the type and number of nondeterministic steps used in the
computation. A similar characterization has recently been developed for the class Σp

2 [∗k,P] [28]. Additionally,
we characterize the class Σp

2 [k∗] by showing that the halting problem for alternating Turing machines with
appropriate bounds on the type and number of nondeterministic steps used is Σp

2 [k∗]-complete.
We consider two particular types of ATMs. An ∃∀-Turing machine (or simply ∃∀-machine) is a 2-alternating

ATM (S∃, S∀,Σ,∆, s0, F ), where s0 ∈ S∃.

Definition 12. Let `, t ≥ 1 be positive integers. We say that an ∃∀-machine M halts (on the empty string)
with existential cost ` and universal cost t if:

• there is an accepting run of M with input ε,
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• each computation path of M contains at most ` existential configurations and at most t universal
configurations.

Definition 13. Let P be a parameterized problem. A Σp
2 [k∗]-machine for P is an ∃∀-machine M such that

there exists a computable function f and a polynomial p such that

• M decides P in time f(k) · p(|x|); and

• and for all instances (x, k) of P and each computation path R of M with input (x, k), at most f(k)·log |x|
of the existential configurations of R are nondeterministic.

We say that a parameterized problem P is decided by some Σp
2 [k∗]-machine if there exists a Σp

2 [k∗]-machine
for P .

Let m ∈ N be a positive integer. We consider the following parameterized problem.

Σp
2 [k∗]-TM-haltm

Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Moreover, we consider the following parameterized problem.

Σp
2 [k∗]-TM-halt∗

Instance: A positive integer m, an ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and universal cost t?

Note that for Σp
2 [k∗]-TM-haltm, the number m of tapes of the ∃∀-machines in the input is a fixed

constant, whereas for Σp
2 [k∗]-TM-halt∗, the number of tapes is given as part of the input.

The parameterized complexity class Σp
2 [k∗] can then be characterized by alternating Turing machines as

follows. These results can be seen as an analogue to the Cook-Levin Theorem for the complexity class Σp
2 [k∗].

Theorem 14. The problem Σp
2 [k∗]-TM-halt∗ is Σp

2 [k∗]-complete, and so is the problem Σp
2 [k∗]-TM-haltm

for each m ∈ N.

Theorem 15. Σp
2 [k∗] is exactly the class of parameterized decision problems P that are decidable by some

Σp
2 [k∗]-machine.

Proof of Theorems 14 and 15. In order to show these results, we will use the following statements. We show
how the results follow from these statements. We then present the statements (with a detailed proof) as
Propositions 18 and 20–22.

(i) Let A and B be parameterized problems. If B is decidable by some Σp
2 [k∗]-machine with m tapes, and

if A ≤fpt B, then A is decidable by some Σp
2 [k∗]-machine with m tapes (Proposition 18).

(ii) Σp
2 [k∗]-TM-halt∗ ≤fpt Σp

2 [k∗]-MC (Proposition 20).

(iii) For any parameterized problem P that is decidable by some Σp
2 [k∗]-machine with m tapes, it holds

that P ≤fpt Σp
2 [k∗]-TM-haltm+1 (Proposition 21).

(iv) There is an Σp
2 [k∗]-machine with a single tape that decides Σp

2 [k∗]-WSat≤k (Proposition 22).

In addition to these statements, we will need one result known from the literature (Corollary 17, which follows
from Proposition 16).

(v) Σp
2 [k∗]-TM-halt2 ≤fpt Σp

2 [k∗]-TM-halt1 (Corollary 17).
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To see that these statements imply the desired results, observe the following.
Together, (iii) and (iv) imply that Σp

2 [k∗]-WSat≤k ≤fpt Σp
2 [k∗]-TM-halt2. Clearly, for all m ≥ 2, Σp

2 [k∗]-
TM-halt2 ≤fpt Σp

2 [k∗]-TM-haltm. This gives us Σp
2 [k∗]-hardness of Σp

2 [k∗]-TM-haltm, for all m ≥ 2.
Σp

2 [k∗]-hardness of Σp
2 [k∗]-TM-halt1 follows from Corollary 17, which implies that there is an fpt-reduction

from Σp
2 [k∗]-TM-halt2 to Σp

2 [k∗]-TM-halt1. This also implies that Σp
2 [k∗]-TM-halt∗ is Σp

2 [k∗]-hard. Then,
by (ii), and since Σp

2 [k∗]-MC is in Σp
2 [k∗] by Theorem 7, we obtain Σp

2 [k∗]-completeness of Σp
2 [k∗]-TM-halt∗

and Σp
2 [k∗]-TM-haltm, for each m ≥ 1. This proves Theorem 14. It remains to prove Theorem 15.

By (ii) and (iii), and by transitivity of fpt-reductions, we have that any parameterized problem P that is
decided by an Σp

2 [k∗]-machine is fpt-reducible to Σp
2 [k∗]-WSat, and thus is in Σp

2 [k∗]. Conversely, let P be any
parameterized problem in Σp

2 [k∗]. Then, by Σp
2 [k∗]-hardness of Σp

2 [k∗]-WSat≤k, we know that P ≤fpt Σp
2 [k∗]-

WSat≤k. By (i) and (iv), we know that P is decidable by some Σp
2 [k∗]-machine with a single tape. From this

we conclude that Σp
2 [k∗] is exactly the class of parameterized problems P decided by some Σp

2 [k∗]-machine.

Firstly, we state the result known from the literature that we used in the proof of Theorems 14 and 15.

Proposition 16 ([36, Theorems 8.9 and 8.10]). Let m ≥ 1 be a (fixed) positive integer. For each ATM M
with m tapes, there exists an ATM M′ with 1 tape such that:

• M and M′ are equivalent, i.e., they accept the same language;

• M′ simulates n steps of M using O(n2) steps; and

• M′ simulates existential steps of M using existential steps, and simulates universal steps of M using
universal steps.

Corollary 17. Σp
2 [k∗]-TM-halt2 ≤fpt Σp

2 [k∗]-TM-halt1.

Next, we give detailed proofs of the statements (i)–(iv) that were used in the proof of Theorems 14 and 15
(Propositions 18 and 20–22). We begin with proving the first statement.

Proposition 18. Let A and B be parameterized problems, and let m ∈ N be a positive integer. If B is
decided by some Σp

2 [k∗]-machine with m tapes and if A ≤fpt B, then A is decided by some Σp
2 [k∗]-machine

with m tapes.

Proof. Let R be the fpt-reduction from A to B, and let M be an algorithm that decides B and that can be
implemented by an Σp

2 [k∗]-machine with m tapes. Clearly, the composition of R and M is an algorithm that
decides A—by Proposition 16, we may assume that the fpt-reduction R is implemented by a deterministic
Turing machine with 1 tape. It is straightforward to verify that the composition of R and M can be
implemented by an Σp

2 [k∗]-machine with m tapes.

In order to prove the second statement that we used in the proof of Theorems 14 and 15, we prove the
following technical lemma.

Lemma 19. Let M be an ∃∀-machine with m tapes and let k, t ∈ N. We can construct an ∃∀-machine M′
with m tapes (in time polynomial in |(M, k, t)|) such that the following are equivalent:

• there is an accepting run ρ of M′ with input ε and each computation path in ρ contains exactly k
existential configurations and exactly t universal configurations

• M halts on ε with existential cost k and universal cost t.

Proof. Let M = (S∃, S∀,Σ,∆, s0, F ) be an ∃∀-machine withm tapes. Now construct M = (S′∃, S
′
∀,Σ,∆

′, s0, F
′)

as follows:
S′∃ = { si : s ∈ S∃, 1 ≤ i ≤ k + t },
S′∀ = { si : s ∈ S∀, 1 ≤ i ≤ k + t },
∆′ = { (si, a, s

′
i+1, a

′, d) : (s, a, s′, a′, d) ∈ ∆, 1 ≤ i ≤ k + t− 1 } ∪
{ (si, a, si+1, a,S

m) : s ∈ S∃ ∪ S∀, a ∈ Σm }, and
F ′ = { fk+t : f ∈ F }.
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To see that M′ satisfies the required properties, it suffices to see that for each (accepting) computation
path C1 → . . .→ Ck′+t′ of M with input ε that contains existential configurations C1, . . . , Ck′ and universal
configurations Ck′+1, . . . , Ck′+t′ for 1 ≤ k′ ≤ k and 1 ≤ t′ ≤ t, it holds that

C1
1 → . . .→ Ck

′
k′ → Ck

′+1
k′ → . . .→ Ckk′ → Ck+1

k′+1 → . . .→ Ck+t′

k′+t′ → Ck+t′+1
k′+t′ → . . .→ Ck+t

k′+t′

is an (accepting) computation path of M′ with input ε, where for each 1 ≤ i ≤ k + t and each 1 ≤ j ≤ k′ + t′

we let Cij be the configuration (si, x1, p1, . . . , xm, pm), where Cj = (s, x1, p1, . . . , xm, pm).

With this technical lemma in place, we can now prove the second statement that we used in the proof of
Theorems 14 and 15.

Proposition 20. Σp
2 [k∗]-TM-halt∗ ≤fpt Σp

2 [k∗]-MC

Proof. Let (M, k, t) be an instance of Σp
2 [k∗]-TM-halt∗, where M = (S∃, S∀,Σ,∆, s0, F ) is an ∃∀-machine

with m tapes, and k and t are positive integers. We constuct in fpt-time an instance (A, ϕ) of Σp
2 [k∗]-MC,

such that (M, k, t) ∈ Σp
2 [k∗]-TM-halt∗ if and only if (A, ϕ) ∈ Σp

2 [k∗]-MC. By Lemma 19, it suffices to
construct (A, ϕ) in such a way that (A, ϕ) ∈ Σp

2 [k∗]-MC if and only if there exists an accepting run ρ of M
with input ε such that each computation path of ρ contains exactly k existential configurations and exactly t
universal configurations.

We construct A to be a τ -structure with a domain A. We will define the vocabulary τ below. The
domain A of A is defined as follows:

A = S∃ ∪ S∀ ∪ Σ ∪ {$,�} ∪ {L,R,S} ∪ {0, . . . ,max{m, k + t− 1}} ∪ T,

where T is the set of tuples (a1, . . . , am) ∈ (Σ ∪ {$,�})m and of tuples (d1, . . . , dm) ∈ {L,R,S}m occurring
in transitions of ∆. Observe that |A| = O(k + t+ |M|).

We now describe the relation symbols in τ and their interpretation in A. The vocabulary τ contains the
5-ary relation symbol D (intended as “transition relation”), and the ternary relation symbol P (intended as
“projection relation”), with the following interpretations:

DA = ∆, and

PA = { (j, b, bj) : 1 ≤ j ≤ m, b ∈ T, b = (b1, . . . , bm) }.

Moreover, τ contains the unary relation symbols Rtape, Rcell, Rblank, Rend, Rsymbol, Rinit, Racc, Rleft, Rright,
Rstay, R∃, R∀, Ri for each 1 ≤ i ≤ k + t− 1, and Ra for each a ∈ Σ, which are interpreted in A as follows:

RAtape = {1, . . . ,m}, RAcell = {1, . . . , k + t}, RAblank = {�}, RAend = {$}, RAsymbol = Σ,

RAinit = {s0}, RAacc = F,RAleft = {L}, RAright = {R}, RAstay = {S}, RA∃ = S∃, RA∀ = S∀,

RAi = {i} for each 1 ≤ i ≤ k + t− 1, and RAa = {a} for each a ∈ Σ.

The formula ϕ that we will construct contains variables z�, z$, zinit, zleft, zright, zstay, z1, . . . , zk+t,za1
, . . . , za|Σ| ,

where Σ = {a1, . . . , a|Σ|}, that we will use to refer to elements of the singleton relations of A. We define a
formula ψconstants that is intended to provide a fixed interpretation of some variables that we can use to refer
to the elements of the singleton relations of A:

ψconstants = Rend(z$) ∧Rblank(z�) ∧Rleft(zleft) ∧Rright(zright) ∧
Rstay(zstay) ∧ ∧

0≤i≤k+t−1

Ri(zi) ∧
∧
a∈Σ

Ra(za).

The formula ϕ that we will construct aims to express that there exist k transitions (from existential states),
such that for any sequence of t − 1 transitions (from universal states), the entire sequence of transitions
results in an accepting state. It will contain variables si, ti, s

′
i, t
′
i, di, for 1 ≤ i ≤ k + t− 1.

The formula ϕ will also contain variables pi,j and qi,j,`, for each k + 1 ≤ i ≤ k + t, each 1 ≤ j ≤ m
and each 1 ≤ ` ≤ k + t. The variables pi,j will encode the position of the tape head for tape j at the i-th
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configuration in the computation path, and the variables qi,j,` will encode the symbol that is at cell ` of
tape j at the i-th configuration in the computation path.

The position of the tape heads and the contents of the tapes for configurations 1 to k in the computation
path, will not be encoded by means of variables, but by means of the formulas ψsymbol,i and ψposition,i, which
we define below. Intuitively, the reason for this is that the number of existentially quantified variables in
the formula ϕ has to be bounded by a function of k, and the total amount of information that we need to
encode is not bounded by any function of k. The size of subformulas of ϕ does not need to be bounded
by a function of k, so we can encode this information using formulas ψsymbol,i and ψposition,i. However,
the size of the formulas ψsymbol,i and ψposition,i grows exponentially in i. Therefore, we can only use this
encoding for configurations up to k. This is the reason why we use variables pi,j and qi,j,` to encode the
configurations k + 1 ≤ i ≤ k + t.

We define ϕ as follows:

ϕ = ∃s1, t1, s
′
1, t
′
1, d1, . . . , sk, tk, s

′
k, t
′
k, dk.

∀z0, z�, z$, zinit, zleft, zright, zstay, z1, . . . , zk+t, za1
, . . . , za|Σ| .

∀sk+1, tk+1, s
′
k+1, t

′
k+1, dk+1, . . . , sk+t−1, tk+t−1, s

′
k+t−1, t

′
k+t−1, dk+t−1.

∀pk+1,1, . . . , pk+t,m.qk+1,1,1, . . . , qk+t,m,k+t.ψ,

ψ = ψconstants → (ψ∃-states ∧ ψ∃-tapes ∧ ((ψ∀-states ∧ ψ∀-tapes)→ ψaccept)) ,

ψ∃-states = (s1 = zinit) ∧
∧

1≤i≤k
D(si, ti, s

′
i, t
′
i, di) ∧

∧
1≤i≤k−1

((si+1 = s′i) ∧R∃(si+1)) ,

ψ∀-states =
∧

k+1≤i≤k+t−1

D(si, ti, s
′
i, t
′
i, di) ∧

∧
k≤i≤k+t−2

((si+1 = s′i) ∧R∀(si+1)) , and

ψaccept = Racc(s′k+t−1),

where we define the formulas ψ∃-tapes and ψ∀-tapes below. In order to do so, for each 1 ≤ i ≤ k + 1 we define
the quantifier-free formulas

ψsymbol,i(w, p, a, vi) and ψposition,i(w, p, vi),

with vi = s1, t1, s
′
1, t
′
1, d1, . . . , si−1, ti−1, s

′
i−1, t

′
i−1, di−1. Intuitively:

• ψsymbol,i(w, p, a, vi) represents whether the p-th cell of the w-th tape contains the symbol a, whenever
the sequence of transitions in vi has been carried out starting with empty tapes; and

• ψposition,i(w, p, vi) represents whether the head of the w-th tape is at position p, whenever the sequence
of transitions in vi has been carried out starting with empty tapes.

In particular, for i = 1, we define formulas ψsymbol,1(w, p, a) and ψposition,1(w, p), because v1 is the empty
sequence.

We define ψsymbol,i(w, p, a, vi) and ψposition,i(w, p, vi) simultaneously by induction on i as follows:

ψsymbol,1(w, p, a) = Rtape(w) ∧Rcell(p) ∧
(p = z0 → a = z$) ∧ (p 6= z0 → a = z�),

ψposition,1(w, p) = Rtape(w) ∧ (p = z1),

ψsymbol,i+1(w, p, a, vi+1) = Rtape(w) ∧Rcell(p) ∧
((ψposition,i(w, p, vi) ∧ P (w, t′i, a)) ∨
(¬ψposition,i(w, p, vi) ∧ ψsymbol,i(w, p, a, vi))),

ψposition,i+1(w, p, vi+1) = Rtape(w) ∧ (ψleft,i+1(w, p, vi+1) ∨ ψright,i+1(w, p, vi+1) ∨
ψstay,i+1(w, p, vi+1)),
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ψleft,i+1(w, p, vi+1) = P (w, di, zleft) ∧
∨

1≤j≤i+1

(ψposition,i(w, zj , vi) ∧ (p = zj−1)),

ψright,i+1(w, p, vi+1) = P (w, di, zright) ∧
∨

1≤j≤i+1

(ψposition,i(w, zj , vi) ∧ (p = zj+1)),

and

ψstay,i+1(w, p, vi+1) = P (w, di, zstay) ∧
∨

1≤j≤i+1

(ψposition,i(w, zj , vi) ∧ (p = zj)).

Note that for each 1 ≤ i ≤ k, the size of the formulas ψsymbol,i(w, p, a, vi) and ψposition,i(w, p, vi) only depends
on k. We can now define ψ∃-tapes:

ψ∃-tapes = ∀w.∀p.∀a.
∧

1≤i≤k
((ψposition,i(w, p, vi) ∧ ψsymbol,i(w, p, a, vi))→ P (w, ti, a)) .

Intuitively, the formulas ψ∃-states and ψ∃-tapes together represent whether the transitions specified by si, ti, s
′
i,

t′i, di, for 1 ≤ i ≤ k, together constitute a valid (partial) computation path.
Next, we define the formula ψ∀-tapes:

ψ∀-tapes = ψ∀-tapes-1 ∧ ψ∀-tapes-2 ∧ ψ∀-tapes-3 ∧ ψ∀-tapes-4 ∧ ψ∀-tapes-5,

ψ∀-tapes-1 =
∧

k<i≤k+t
1≤j≤m


Rcell(pi,j) ∧

∧

1≤`≤k+t

Rsymbol(qi,j,`)


 ,

ψ∀-tapes-2 =
∧

1≤j≤m




∧
1≤`≤k+1
a∈Σ

((qk+1,j,` = za)↔ ψsymbol,k+1(zj , zk+1, za, vk+1)) ∧
∧

k+2≤`≤k+t

(qk+1,j,` = z�)


 ,

ψ∀-tapes-3 =
∧

1≤j≤m
1≤i≤k+1

((pk+1,j = zi)↔ ψposition,k+1(zj , zi, vk+1)) ,

ψ∀-tapes-4 =
∧

1≤j≤m
k<i<k+t
1≤`≤k+t




(P (zj , di, zleft) ∧ (pi,j = z`))→ (pi+1,j = z`−1) ∧
(P (zj , di, zright) ∧ (pi,j = z`))→ (pi+1,j = z`+1) ∧
(P (zj , di, zstay) ∧ (pi,j = z`))→ (pi+1,j = z`) ∧


 , and

ψ∀-tapes-5 =
∧

1≤j≤m
k<i<k+t
1≤`≤k+t
a∈Σ




((pi,j 6= z`)→ (qi+1,j,` = qi,j,`)) ∧
((pi,j = z`) ∧ P (zj , ti, za)→ (qi,j,` = za)) ∧
((pi,j = z`) ∧ P (zj , t

′
i, za)→ (qi+1,j,` = za))


 .

Intuitively, the formulas ψ∀-states and ψ∀-tapes together represent whether the transitions specified by si, ti, s
′
i,

t′i, di, for k + 1 ≤ i ≤ k + t − 1, together constitute a valid (partial) computation path, extending the
computation path represented by the transitions si, ti, s

′
i, t
′
i, di, for 1 ≤ i ≤ k.
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It is straightforward to verify that ϕ is (logically equivalent to a formula) of the right form, containing k′ =
5k existentially quantified variables. (Not all quantifiers in ϕ occur as outermost operators in the formula,
but one can easily move them outwards.) Also, it is now straightforward to verify that (M, k, t) ∈ Σp

2 [k∗]-
TM-halt∗ if and only if (A, ϕ) ∈ Σp

2 [k∗]-MC.

We now turn our attention to the third statement that we used in the proof of Theorems 14 and 15.

Proposition 21. For any parameterized problem P that is decided by some Σp
2 [k∗]-machine with m tapes, it

holds that P ≤fpt Σp
2 [k∗]-TM-haltm+1.

Proof. Let P be a parameterized problem, and let M = (S∃, S∀,Σ,∆, s0, F ) be an Σp
2 [k∗]-machine with m

tapes that decides it, i.e., there exists some computable function f and some polynomial p such that for any
instance (x, k) of P we have that any computation path of M with input (x, k) has length at most f(k) · p(|x|)
and contains at most f(k) · log |x| nondeterministic existential configurations. Moreover, let S = S∃ ∪ S∀. We
show how to construct in fpt-time for each instance (x, k) of P an ∃∀-machine M(x,k) with m+ 1 tapes, and
positive integers k′, t ∈ N such that M(x,k) accepts the empty string with existential cost k′ and universal
cost t if and only if M accepts (x, k).

The idea of this construction is the following. We add to Σ a fresh symbol σ(C1,...,Cu) for each u ≤
dlog |x|e and each sequence of possible “transitions” T1, . . . , Tu of M. The machine M(x,k) starts with
nondeterministically writing down f(k) symbols σ(T1,...,Tdlog |x|e) to tape m+ 1 (stage 1). We will choose k′

in such a way (see below) so that this can be done using k′ nondeterministic existential steps. Then, using
universal steps, it writes down the input (x, k) to its first tape (stage 2). It continues with simulating the
existential steps in the execution of M with input (x, k) (stage 3): each deterministic existential step can
simply be performed by a deterministic universal step, and each nondeterministic existential step can be
simulated by “reading off” the next configuration from the symbols on tape m+ 1, and transitioning into this
configuration (if this step is allowed by ∆). Finally, the machine M(x,k) simply performs the universal steps
in the execution of M with input (x, k) (stage 4).

Let (x, k) be an arbitrary instance of P . We construct M(x,k) = (S′∃, S
′
∀,Σ

′,∆′, s′0, F
′). We split the

construction of M(x,k) into several steps that correspond to the various stages in the execution of M(x,k)

described above. We begin with defining Σ′:

Σ′ = Σ ∪ {σ(T1,...,Tu) : 0 ≤ u ≤ dlog |x|e, 1 ≤ i ≤ u,
Ti ∈ S × Σm × {L,R,S}m }.

Observe that for each s ∈ S and each a ∈ Σm, each Tu = (s′, a′, d) corresponds to a tuple (s, a, s′, a′, d) that
may or may not be contained in ∆, i.e., a “possible transition.” Note that also σ() ∈ Σ′, where () denotes the
empty sequence. Moreover, it is straightforward to verify that |Σ′| = |Σ|+O(|x| · |S|), since m is a constant.

We now construct the formal machinery that executes the first stage of the execution of M(x,k). We let:

S1,∃ = {s1,guess, s1,done}, and

∆′1 = { (s1,guess, a, s1,guess, a
′, d) : a = �m+1, a′ = �mσ(T1,...,Tdlog |x|e),

1 ≤ i ≤ dlog |x|e, Ti ∈ S × Σm × {L,R,S}m, d = SmR } ∪
{ (s1,guess, a, s1,done, a, d) : a = �m+1, d = SmL } ∪
{ (s1,done, a, s1,done, a, d) : a ∈ {�}m × Σ′, d = SmL } ∪
{ (s1,done, a, s2,0, a, d) : a = �m$, d = SmR },

where we will define s2,0 ∈ S′∀ below (s2,0 will be the first state of the second stage of M(x,k)). Furthermore,
we let:

s′0 = s1,guess.

The intuition behind the above construction is that state s1,guess can be used as many times as necessary
to write a symbol σ(T1,...,Tdlog |x|e) to the (m + 1)-th tape, for some sequence T1, . . . , Tdlog |x|e of “guessed
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transitions.” Then, the state s1,done moves the tape head of tape m+ 1 back to the first position, in order to
continue with the second stage of the execution of M(x,k).

We continue with the definition of those parts of M(x,k) that perform the second stage of the execution
of M(x,k), i.e., writing down the input (x, k) to the first tape. Let the sequence (σ1, . . . , σn) ∈ Σn denote the
representation of (x, k) using the alphabet Σ. We define:

S2,∀ = { s2,i : 1 ≤ i ≤ n } ∪ {s2,n+1 = s2,done}, and

∆′2 = { (s2,i, a, s2,i+1, a
′, d) : 1 ≤ i ≤ n, a ∈ �mσ, σ ∈ Σ′, a = σi�m−1σ, d = RSm } ∪

{ (s2,done, a, s2,done, a, d) : a ∈ Σ× {�}m−1 × Σ′, d = LSm } ∪
{ (s2,done, a, s3,0, a, d) : a = {$} × {�}m−1 × Σ′, d = RSm },

where we will define s3,0 ∈ S′∀ below (s3,0 will be the first state of the third stage of M(x,k)). Intuitively, each
state s2,i writes the i-th symbol of the representation of (x, k) (that is, symbol σi) to the first tape, and
state s2,n+1 = s2,done moves the tape head of the first tape back to the first position. Note that the states
in S2,∀ are deterministic.

Next, we continue with the definition of those parts of M(x,k) that perform the third stage of the execution
of M(x,k), i.e., simulating the existential steps in the execution of M with input (x, k). We define:

S3,∀ = S∃, and
∆′3 =

⋃{∆′3,s : s ∈ S∃ },

where for each s ∈ S∃ we define the set ∆′3,s as follows:

∆′3,s =
⋃
{∆′3,s,a : a ∈ Σm },

and where for each s ∈ S∃ and each a ∈ Σm we define:

∆(s,a) = { (s′, a′, d) : (s, a, s′, a′, d) ∈ ∆ },

∆′3,s,a =





{ (s, aσ′, s′, a′σ′, dS) : σ′ ∈ Σ′ } if ∆(s,a) = {(s′, a′, d)},
{ (s, aσ(T1,...,Tu), s

′, a′σ(T2,...,Tu), dS) :
1 ≤ u ≤ dlog |x|e,
T1 = (s′, a′, d), (s, a, s′, a′, d) ∈ ∆ } ∪
{(s, aσ(), s, a�,SmR)}

if |∆(s,a)| > 1,

∅ otherwise.

Observe that there exist transitions from states in S3,∀ to states in S∀; this will be unproblematic, since we
will have that S∀ ⊆ S′∀ (see below). Intuitively, each state in S∃ that is deterministic in M simply performs
its behavior from M on the first m tapes, and ignores tape m + 1. Each state in S∃ that would lead to
nondeterministic behavior in M, performs the transition T1 that is written as first “possible transition” in
the currently read symbol σ(T1,...,Tu) on tape m+ 1 (if this transition is allowed by ∆), and removes T1 from
tape m+ 1 (by replacing σ(T1,...,Tu) by σ(T2,...,Tu)). Note that the states in S3,∀ are deterministic.

We continue with formally defining the part of M(x,k) that performs stage 4, i.e., performing the (possibly
nondeterministic) universal steps in the execution of M with input (x, k). We define:

S4,∀ = S∀, and

∆′4 = { (s, aδ′, s′, a′δ′, dS) : s ∈ S∀, a ∈ Σm, (s, a, s′, a′, d) ∈ ∆ }.

Intuitively, each state in S∀ simply performs its behavior from M on the first m tapes, and ignores tape m+ 1.
Note that the states in S4,∀ may be nondeterministic.
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We conclude our definition of M(x,k) = (S′∃, S
′
∀,Σ

′,∆′, s′0, F
′):

S′∃ = S1,∃,

S′∀ = S2,∀ ∪ S3,∀ ∪ S4,∀,

∆′ = ∆′1 ∪∆′2 ∪∆′3 ∪∆′4,

s′0 = s1,guess (as mentioned above), and

F ′ = F.

Finally, we define k′ and t:

k′ = 2f(k) + 2 and t = 2|(x, k)|+ f(k) · (p(|x|) + 1) + 2.

Intuitively, M′ needs k′ = 2f(k) + 2 existential steps to write down f(k) symbols σ(T1,...,Tdlog |x|e) and return
the tape head of tape m+ 1 to the first position. It needs 2|(x, k)|+ 2 steps to write the input (x, k) to the
first tape and return the tape head of tape 1 to the first position. It needs at most f(k) · p(|x|) + f(k) steps
to simulate the existential steps in the execution of M with input (x, k), and to perform the universal steps
in the execution of M with input (x, k).

This concludes our construction of the instance (M(x,k), k′, t) of Σp
2 [k∗]-TM-haltm+1. It is straightforward

to verify that (x, k) ∈ P if and only if (M(x,k), k′, t) ∈ Σp
2 [k∗]-TM-haltm+1, by showing that M accepts (x, k)

if and only if (M(x,k), k′, t) ∈ Σp
2 [k∗]-TM-haltm+1.

Finally, we prove the fourth statement that we used in the proof of Theorems 14 and 15.

Proposition 22. There is an Σp
2 [k∗]-machine with a single tape that decides Σp

2 [k∗]-WSat≤k.

Proof. We describe an Σp
2 [k∗]-machine M with 1 tape for Σp

2 [k∗]-WSat≤k. We will not spell out the
machine M = (S∃, S∀,Σ,∆, s0, F ) in full detail, but describe M in such detail that the working of M is clear
and writing down the complete formal description of M can be done straightforwardly.

We assume that instances (ϕ, k) are encoded as strings σ1σ2 . . . σn over an alphabet Σ′ ⊆ Σ. We denote the
representation of an instance (ϕ, k) using the alphabet Σ′ by Repr(ϕ, k). Also, for any Boolean formula ψ(Z)
over variables Z and any (partial) assignment γ : Z → {0, 1}, we let Repr(ψ, γ) denote the representation
(using alphabet Σ) of the formula ψ, where each variable z in the domain of γ is replaced by the constant
value γ(z).

Let (ϕ, k) be an instance of Σp
2 [k∗]-WSat≤k, where ϕ = ∃X.∀Y.ψ, X = {x1, . . . , xn}, and Y =

{y1, . . . , ym}. In the initial configuration of M, the tape contains the word Repr(ϕ, k). We construct M in
such a way that it proceeds in seven stages. Intuitively, in stage 1, M adds �Repr(ψ, ∅) to the right of the tape
contents—here ∅ denotes the empty assignment and ψ is the quantifier-free part of ϕ. We will refer to this
word Repr(ψ, ∅) as the representation of ψ. In stage 2, it appends the word (�1 . . . 1), containing dlog ne = u
times the symbol 1, k times to the right of the tape contents. Next, in stage 3, M (nondeterministically)
overwrites each such word (�1 . . . 1) by (�b1, . . . , bu), for some bits b1, . . . , bu ∈ {0, 1}. Then, in stage 4, it
repeatedly reads some word (�b1, . . . , bu) written at the rightmost part of the tape, and in the representation
of ψ, written as “second word” on the tape, instantiates variable xi to the value 1, where b1 . . . bu is the
binary representation of i. After stage 4, at most k variables xi are instantiated to 1. Then, in stage 5, M
instantiates the remaining variables xi in the representation of ψ to the value 0. These first five stages are
all implemented using states in S∃. The remaining two stages are implemented using states in S∀. In stage
6, M nondeterministically instantiates each variable yj in the representation of ψ to some truth value 0 or 1.
Finally, in stage 7, the machine verifies whether the fully instantiated formula ψ evaluates to true or not, and
accepts if and only if the formula ψ evaluates to true.

We now give a more detailed description of the seven stages of M, by describing what each stage does
to the tape contents, and by giving bounds on the number of steps that each stage needs. In the initial
configuration, the tape contents w0 are as follows (we omit trailing blank symbols):

w0 = $Repr(ϕ, k).
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In stage 1, M transforms the tape contents w0 to the following contents w1:

w1 = $Repr(ϕ, k)�Repr(ψ, ∅),

where ∅ denotes the empty assignment to the variables X ∪ Y . This addition to the tape contents can be
done by means of O(|Repr(ϕ, k)|) deterministic existential steps.

Next, in stage 2, M adds to the tape contents k words of the form (�1 . . . 1), each containing dlog ne times
the symbol 1, resulting in the tape contents w2 after stage 2:

w2 = $Repr(ϕ, k)�Repr(ψ, ∅)�
dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

word 1

�
dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

word 2

� . . .�
dlogne︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

word k

.

This addition to the tape contents can be done by means of O(k · |Repr(ϕ, k)|2) deterministic existential
steps.

Then, in stage 3, M proceeds nondeterministically. It replaces each word of the form (�1 . . . 1) that were
written to the tape in stage 2 by a word of the form (�b1, . . . , bu), for some bits b1, . . . , bu ∈ {0, 1} ⊆ Σ. Here
we let u = dlog ne. Resultingly, the tape contents w3 after stage 3 are:

w3 = $Repr(ϕ, k)�Repr(ψ, ∅)�b11 . . . b1u�b21 . . . b2u� . . .�bk1 . . . bku,

where for each 1 ≤ i ≤ k and each 1 ≤ j ≤ u, bij ∈ {0, 1}. This transformation of the tape contents can be
done by means of O(k · dlog ne) nondeterministic existential steps.

In stage 4, M repeatedly performs the following transformation of the tape contents, until all words �bi1 . . . biu
are removed. The tape contents w′3 before each such transformation are as follows:

w′3 = $Repr(ϕ, k)�Repr(ψ, α)�b11 . . . b1u�b21 . . . b2u� . . .�b`1 . . . b`u,

for some partial assignment α : X → {0, 1}, and some 1 ≤ ` ≤ k. Each such transformation functions in such
a way that the tape contents w′′3 afterwards are:

w′′3 = $Repr(ϕ, k)�Repr(ψ, α′)�b11 . . . b1u�b21 . . . b2u� . . .�b`−1
1 . . . b`−1

u ,

where the bit string b`1 . . . b
`
u is the binary representation of the integer i ≤ 2u, and where the assignment α′

is defined for all 1 ≤ j ≤ n, by:

α′(xj) =





α(xj) if α(xj) is defined,

1 if α(xj) is undefined and j = i,

undefined otherwise.

Each such transformation can be implemented by means of O(|Repr(ψ, α)|2 ·kdlog ne) deterministic existential
steps. After all the k transformation of stage 4 are performed, the tape contents w4 are thus as follows:

w4 = $Repr(ϕ, k)�Repr(ψ, αpos),

where αpos : X → {0, 1} is the partial assignment such that Dom(αpos) = {i1, . . . , ik}, and αpos(xij ) = 1 for

each 1 ≤ j ≤ k, where for each 1 ≤ j ≤ k, the integer ij is such that bj1 . . . b
j
u is the binary representation

of ij . The operations in stage 4 can be implemented by means of O(|Repr(ψ, ∅)|2 · k2dlog ne) deterministic
existential steps.

Next, in stage 5, the machine M transforms the tape contents by modifying the word Repr(ψ, αpos),
resulting in w5:

w5 = $Repr(ϕ, k)�Repr(ψ, α),

where the complete assignment α′ : X → {0, 1} is defined as follows:

α(x) =

{
αpos(x) if x ∈ Dom(αpos),

0 otherwise.
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This can be done using O(|Repr(ψ, αpos)|) nondeterministic existential steps. Note that the assignment α
has weight at most k.

Now, in stage 6, the machine M alternates to universal steps. It nondeterministically transforms the tape
contents using O(|Repr(ψ, α)|) nondeterministic universal steps, resulting in the tape contents w6:

w6 = $Repr(ϕ, k)�Repr(ψ, α ∪ β),

for some complete assignment β : Y → {0, 1}.
Finally, in stage 7, M checks whether the assignment α∪β satisfies the formula ψ. This check can be done

by means of O(|Repr(ψ, α ∪ β)|) deterministic universal steps. The machine M accepts if and only if α ∪ β
satisfies ψ.

It is straightforward to verify that there exists a computable function f and a polynomial p such that each
computation path of M with input (ϕ, k) has length at most f(k) · p(|ϕ|) and contains at most f(k) · log |ϕ|
nondeterministic existential configurations. Also, it is straightforward to verify that M accepts an input (ϕ, k)
if and only if (ϕ, k) ∈ Σp

2 [k∗]-WSat≤k. This concludes our proof that the Σp
2 [k∗]-machine M decides Σp

2 [k∗]-
WSat≤k.

This concludes our detailed treatment of the proof of Theorems 14 and 15.

5 Relation to Other Parameterized Complexity Classes

In order to be able to use hardness for the classes Σp
2 [k∗] and Σp

2 [∗k, t] to show that parameterized problems
are not fpt-reducible to SAT, we need to have confidence that these classes are indeed different from the
classes para-NP and para-co-NP. We conjecture this to be the case. In this section, we provide several
results that strengthen our confidence in this conjecture. In fact, we provide results that can be interpreted
as evidence that the classes Σp

2 [k∗] and Σp
2 [∗k, t] differ from the parameterized complexity classes para-NP,

para-co-NP, para-ΣP
2 and para-ΠP

2 .

5.1 Basic Separations for the Class Σp
2[k∗]

We begin with establishing several basic results about the relation of Σp
2 [k∗] to the parameterized complexity

classes para-NP, para-co-NP, para-ΣP
2 , XNP, and Xco-NP. We will investigate the relation of Σp

2 [k∗] with
para-ΠP

2 , and more intricate results about the relation of Σp
2 [k∗] with para-co-NP, in Section 5.3.

First, we show that Σp
2 [k∗] ⊆ para-ΣP

2 . In polynomial time, any formula ∃X.∀Y.ψ can be transformed
into a quantified Boolean formula with a ∃∀ quantifier prefix that is true if and only if for some assignment α
of weight k to the variables X the formula ∀Y.ψ[α] is true.

Proposition 23. Σp
2 [k∗] ⊆ para-ΣP

2

Proof (sketch). We show that Σp
2 [k∗]-WSat ∈ para-ΣP

2 by showing that each instance of Σp
2 [k∗]-WSat can

be transformed in polynomial time into an equivalent instance of QSat2. Let (ϕ, k) be an arbitrary instance
of Σp

2 [k∗]-WSat, where ϕ = ∃X.∀Y.ψ. We describe how to construct an instance ϕ′ = ∃X ∪Z.∀Y.(ψ ∧ψ′) of
QSat2 that is a yes-instance if and only if (ϕ, k) ∈ Σp

2 [k∗]-WSat.
Let X = {x1, . . . , xn}. We let Z = { zi,j , zi : 1 ≤ i ≤ n, 1 ≤ j ≤ i } ∪ { zi,0 : 1 ≤ i ≤ n } ∪ {zn,n+1}.

Intuitively, the variables zi,j encodes whether among the variables x1, . . . , xi at least j variables are set to
true, and the variables zi encode whether among the variables x1, . . . , xn exactly i variables are set to true.

We let ψ′ be a conjunction of several formulas. Firstly, we add the conjuncts (z1,1 ↔ x1) and (zi,0 ↔
(x1 ∨ ¬x1)) for each 1 ≤ i ≤ n. Moreover, for each 1 < i ≤ n, we add:


xi ↔

∧

1≤j≤i
(zi,j ↔ zi−1,j−1)


 ∧


¬xi ↔

∧

1≤j≤i
(zi,j ↔ zi−1,j)


 .
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For each 1 ≤ i ≤ n, we add (zi ↔ (zn,i ∧ ¬zn,i+1)). We also add the conjunct (zn,n+1 ↔ (x1 ∧ ¬x1)). Then,
to ensure that exactly k of the variables in X are set to true, we add zk as conjunct.

It is straightforward to verify that (ϕ, k) ∈ Σp
2 [k∗]-WSat if and only if ϕ′ ∈ QSat2.

Also, trivially, para-co-NP ⊆ Σp
2 [k∗], because the para-co-NP-complete parameterized problem UNSAT

(where the parameter value is some fixed constant) can be seen as a special case of Σp
2 [k∗]-WSat. To

summarize, we observe the following inclusions:

para-co-NP ⊆ Σp
2 [k∗] ⊆ para-ΣP

2 and para-NP ⊆ Πp
2 [k∗] ⊆ para-ΠP

2 .

This immediately leads to the following result.

Proposition 24. Assuming that NP 6= co-NP, it holds that Σp
2 [k∗] 6⊆ para-NP.

It is also not difficult to see that Σp
2 [k∗] ⊆ Xco-NP. This is witnessed by the straightforward brute-force

algorithm to solve Σp
2 [k∗]-WSat that tries out all

(
n
k

)
= O(nk) assignments of weight k to the existentially

quantified variables (and that uses nondeterminism to handle the assignment to the universally quantified
variables).

Proposition 25. Σp
2 [k∗] ⊆ Xco-NP.

A natural question to ask is whether para-NP ⊆ Σp
2 [k∗]. Since para-NP ⊆ Xco-NP implies NP = co-NP

[18, Proposition 8], this is unlikely.

Proposition 26. Assuming that NP 6= co-NP, it holds that para-NP 6⊆ Σp
2 [k∗].

This implies that Σp
2 [k∗] is likely to be a strict subset of para-ΣP

2 .

Corollary 27. Assuming that NP 6= co-NP, it holds that Σp
2 [k∗] ( para-ΣP

2 .

Finally, we observe that it is unlikely that Σp
2 [k∗] ⊆ XNP. This is a direct consequence of the fact

that para-co-NP ⊆ XNP implies that NP = co-NP.

Proposition 28. Assuming that NP 6= co-NP, it holds that Σp
2 [k∗] 6⊆ XNP.

5.2 Basic Separations for the Classes Σp
2[∗k, t]

We continue with with establishing several basic results about the relation of the classes Σp
2 [∗k, t] to the

parameterized complexity classes para-NP, para-co-NP, para-ΠP
2 , XNP, and Xco-NP. We will investigate

the relation of the classes Σp
2 [∗k, t] with para-ΣP

2 , and more intricate results about the relation of the classes
Σp

2 [∗k, t] with para-NP, in Section 5.3.
Similarly to the case of k-∗, we can observe the following inclusions:

para-NP ⊆ Σp
2 [∗k, 1] ⊆ · · · ⊆ Σp

2 [∗k,P] ⊆ para-ΣP
2

and
para-co-NP ⊆ Πp

2 [∗k, 1] ⊆ · · · ⊆ Πp
2 [∗k,P] ⊆ para-ΠP

2 .

This immediately leads to the following result.

Proposition 29. Assuming that NP 6= co-NP, it holds that Σp
2 [∗k, 1] 6⊆ para-co-NP.

It is also not so difficult to see that Σp
2 [∗k,P] ⊆ XNP. This is witnessed by the straightforward brute-force

algorithm to solve Σp
2 [∗k]-WSat that tries out all

(
n
k

)
= O(nk) assignments of weight k to the universally

quantified variables (and that uses nondeterminism to handle the assignment to the existentially quantified
variables).

Proposition 30. Σp
2 [∗k,P] ⊆ XNP.
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A natural question to ask is whether para-co-NP is contained in any of the classes Σp
2 [∗k, t]. Since

para-co-NP ⊆ XNP implies NP = co-NP [18, Proposition 8], this is unlikely.

Proposition 31. Assuming that NP 6= co-NP, it holds that para-co-NP 6⊆ Σp
2 [∗k,P].

This immediately gives us the following separation.

Corollary 32. Assuming that NP 6= co-NP, it holds that Σp
2 [∗k,P] ( para-ΣP

2 .

Finally, we observe that it is unlikely that Σp
2 [∗k, 1] ⊆ Xco-NP. This is a direct consequence of the fact

that para-NP ⊆ Xco-NP implies that NP = co-NP.

Proposition 33. Assuming that NP 6= co-NP, it holds that Σp
2 [∗k, 1] 6⊆ Xco-NP.

5.3 More Separation Results

In Sections 5.1 and 5.2, we provided several results relating the classes Σp
2 [k∗] and Σp

2 [∗k, t] to other
parameterized complexity classes known from the literature. However, several important questions were left
open. Concretely, we did not establish whether Σp

2 [k∗] ⊆ para-co-NP or whether Σp
2 [∗k, t] ⊆ para-NP, for

any of the classes Σp
2 [∗k, t]. In this section, we provide results that address these questions.

In particular, we show that under various complexity-theoretic assumptions, it holds that Σp
2 [k∗] 6⊆

para-co-NP and Σp
2 [∗k, t] 6⊆ para-NP. The complexity-theoretic assumptions that underlie our results are

stronger than the most commonly used assumptions (such as P 6= NP). The assumptions that we use in this
section are related to the non-existence of subexponential-time reductions from canonical problems of the
second level of the PH to canonical problems of the first level—e.g., the non-existence of a subexponential-time
reduction from QSat2(DNF) to SAT.

Due to the fact that the underlying complexity-theoretic assumptions for the results in this section are
stronger than the most commonly used assumptions, we cannot claim that they are as widely believed to
be true. Correspondingly, we urge the reader to be skeptical about the absolute truth of the separation
results that we give in this section. It might well turn out to be the case that the strong assumptions that we
use are not true. Nevertheless, we believe that the results in this section are a useful step towards a better
understanding of the parameterized complexity classes Σp

2 [k∗] and Σp
2 [∗k, t].

We begin in Section 5.3.1 with showing that inclusion of A[2] in para-NP or para-co-NP implies the
existence of a subexponential-time reduction from QSat2(3DNF) to SAT or UNSAT, respectively. In fact, for
the case of A[2], we can show a slightly stronger statement, namely that such subexponential-time reductions

must exist even in the case where there exists an f(k)mo(k1/3) time reduction from the A[2]-complete problem
A[2]-MC to SAT or UNSAT—in other words, we can rule out the existence of a larger class of reductions
under the same complexity-assumption.

Since the classes Σp
2 [k∗] and Σp

2 [∗k, t] contain A[2], the result that we establish in Section 5.3.1 already
establishes a separation between the classes Σp

2 [k∗] and Σp
2 [∗k, t] on the one hand, and the classes para-NP and

para-co-NP, on the other hand. For the classes Σp
2 [k∗], Σp

2 [∗k, 2] and Σp
2 [∗k,P], we can establish separation

results from para-NP and para-co-NP using weaker complexity-theoretic assumptions—namely, that there
exists no subexponential-time reduction from QSat2(DNF) or QSat2 to SAT or UNSAT. We develop these
results in Section 5.3.2.

Neither of the results in Sections 5.3.1 and 5.3.2 implies the other. The result in Section 5.3.1 rules
out a larger class of reductions than fpt-reductions, and the result in Section 5.3.2 is based on a weaker
complexity-theoretic assumption.

Throughout the remainder of the paper, we use the “little-o” notation to denote oeff(·) as used by Flum
and Grohe [19], i.e., for any function f, g : N → N, we say that f(n) is o(g(n)) if there is a computable
function λ : N→ N that is unbounded and some n0 ∈ N such that for all n ≥ n0 it holds that f(n) ≤ g(n)/λ(n).
Moreover, we may assume without loss of generality that λ is nondecreasing [19, Lemma 3.23].
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5.3.1 Relation of A[2] with para-NP and para-co-NP

We begin by showing that if A[2] ⊆ para-NP, then there exists a subexponential-time reduction
from QSat2(3DNF) to SAT. In other words, there exists no fpt-reduction from A[2]-MC to SAT, un-
less there exists a subexponential-time reduction from QSat2(3DNF) to SAT. The following result even

rules out reductions with a running time of f(k)mo(k1/3) under the same complexity-theoretic assumption.

Theorem 34. If there exists an f(k)mo(k1/3) time reduction from A[2]-MC to SAT, where k denotes the
parameter value (i.e., the size of the the first-order formula), m denotes the instance size, and f is some
computable function, then there exists a subexponential-time reduction from QSat2(3DNF) to SAT, i.e., a
reduction that runs in time 2o(n), where n denotes the number of variables.

Proof. Suppose that there is a reduction R from A[2]-MC to SAT that runs in time f(k)mo(k1/3), that is,

for sufficiently large values of k it runs in time f(k)mk1/3/λ(k) for some computable function f and some
computable, unbounded and nondecreasing function λ. We construct a reduction from QSat2(3DNF) to
SAT that, for sufficiently large values of n, runs in time 2o(n), where n is the number of variables. Let (ϕ, k)
be an instance of QSat2, where ϕ = ∃X1.∀X2.ψ and where ψ is in 3DNF. We will construct an equivalent
instance (A, ϕ′) of A[2]-MC from the instance (ϕ, k) of QSat2(3DNF), and we will then use the reduction
from A[2]-MC to SAT to transform (A, ϕ′) to an equivalent instance of SAT in subexponential time.

We may assume without loss of generality that |X1| = |X2|; we can add dummy variables to X1 and X2

to ensure this. Then, let n = |X1| = |X2|. We denote the size of ψ by m. Let X = X1 ∪X2. We may assume
without loss of generality that f(`) ≥ 2` for all ` ≥ 1, and that f is nondecreasing and unbounded.

In order to construct (A, ϕ′), we will use several auxiliary definitions. We define the function g as follows:

g(`) = f(c · `3);

we will define the value of the constant c below. Then, define the function grev as follows:

grev(h) = max{ q : g(2q + 1) ≤ h }.
Since the function f is nondecreasing and unbounded, the functions g and grev are also nondecreasing
and unbounded. Moreover, we get that g(2grev(h) + 1) ≤ h. Also, since f(`) ≥ 2` for all ` ≥ 1, we get
that g(`) ≥ 2` for all ` ≥ 1, and therefore also that grev(h) ≤ log h, for all h ≥ 1.

We then choose the integers r and k as follows.

r = bn/grev(n)c and k = dn/re.
Due to this choice for k and r, we get the following inequalities:

r ≤ n

grev(n)
, k ≥ grev(n), r ≥ n

2grev(n)
, and k ≤ 2grev(n) + 1.

We now construct an instance (A, ϕ′) of A[2]-MC such that A |= ϕ′ if and only if ϕ is a yes-instance
of QSat2. In order to do so, for each i ∈ {1, 2}, we split Xi into k disjoint sets Xi,1, . . . , Xi,k. We do
this in such a way that each set Xi,j has at most n/k elements, i.e., |Xi,j | ≤ 2r for each i ∈ {1, 2} and
each 1 ≤ j ≤ k. To construct ϕ′, we will introduce a first-order variable yi,j for each i ∈ {1, 2} and
each 1 ≤ j ≤ k. Intuitively, these variables will be used to quantify over truth assignments to the variables in
the sets Xi,j . For each i ∈ {1, 2}, we let Yi = { yi,j : 1 ≤ j ≤ k }. Moreover, for the sake of convenience, we
introduce alternative names for these variables. Let Z = Y1 ∪Y2 = {z1, . . . , z2k}. Also, for each i ∈ {1, 2} and
each 1 ≤ j ≤ k, we introduce a binary predicate symbol Si,j . In addition, we introduce a ternary predicate
symbol R. We then define the first-order formula ϕ′ as follows:

ϕ′ = ∃Y1.∀Y2.(ψ
′
1 ∧ (ψ′2 → ψ′3));

ψ′i =
∧

1≤j≤k
Si,j(yi,j) for each i ∈ {1, 2}; and

ψ′3 =
∨

1≤j1<j2<j3≤2k

R(zj1 , zj2 , zj3).
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We define the relational structure A as follows. The universe A of A is defined as follows:

A = {α : i ∈ {1, 2}, 1 ≤ j ≤ k, α is a truth assignment to Xi,j }.

Then, for each i ∈ {1, 2} and each 1 ≤ j ≤ k, the interpretation of the relation Si,j is defined as follows:

SAi,j = {α : α is a truth assignment to Xi,j }.

Finally, the interpretation of the relation R is defined as follows:

RA = { (α1, α2, α3) : the assignment α1 ∪ α2 ∪ α3 satisfies some term in ψ }.

Let m′ = |A|+ |ϕ′|, and k′ = |ϕ′|. Observe that by the construction of A, we know that |A| ≤ 2k22r + 8k326r.
Moreover, we have that k′ = |ϕ′| = O(k3). In fact, we can straightforwardly construct ϕ′ in such a way
that k′ = c · k3, for some constant c. We let this constant c be the constant used for the definition of the
function g above.

We verify that ϕ ∈ QSat2 if and only if A |= ϕ′.
(⇒) Suppose that ϕ ∈ QSat2. Then there is a truth assignment β1 : X1 → {0, 1} such that for all

truth assignment β2 : X2 → {0, 1} it holds that ψ[β1 ∪ β2] is true. We show that A |= ϕ′. We define the
assignment γ1 : Y1 → A as follows. For each 1 ≤ j ≤ k, we let γ1(y1,j) = α1,j , where α1,j is the restriction
of β1 to the variables in X1,j . We show that for each assignment γ2 : Y2 → A it holds that A, γ1 ∪ γ2 |= ψ′.
Take an arbitrary assignment γ2 : Y2 → A. Let γ = γ1∪γ2. Clearly, γ satisfies ψ′1. Suppose that γ satisfies ψ′2.
We need to show that then γ also satisfies ψ′3. For each i ∈ {1, 2} and each 1 ≤ j ≤ k, we have that γ(yi,j) is a
truth assignment to the propositional variables Xi,j . Now consider the truth assignment β : X1 ∪X2 → {0, 1}
that is defined as follows. For each x ∈ Xi,j , we let β(x) = αi,j(x), where αi,j = γ(yi,j). By construction
of γ1 and β, we know that β agrees with β1 on the variables in X1. Therefore, we know that β must satisfy ψ,
that is, β must satisfy some term in ψ. Since each term contains at most three literals, we know that there
are some 1 ≤ j1 < j2 < j3 ≤ 2k such that R(zj1 , zj2 , zj3) is satisfied by γ. Therefore, γ satisfies ψ′3. Since γ2

was arbitrary, we can conclude that A |= ϕ′.
(⇐) Conversely, suppose that A |= ϕ′. That is, there is some assignment γ1 : Y1 → A such that for all

assignments γ2 : Y2 → A it holds that A, γ1 ∪ γ2 |= ψ′1 ∧ (ψ′2 → ψ′3). We show that ϕ ∈ QSat2. Since ψ′1
contains only variables in Y1, we know that γ1 satisfies ψ′1. Consider the truth assignment β1 : X1 → {0, 1}
that is defined as follows. For each x ∈ X1,j , we let β1(x) = α1,j(x), where α1,j = γ1(y1,j). We know that β1

is well defined, because γ1 satisfies ψ′1. We show that for all truth assignments β2 : X2 → {0, 1} it holds
that β1 ∪β2 satisfies ψ. Take an arbitrary truth assignment β2 : X2 → {0, 1}. Then, we define γ2 : Y2 → A as
follows. For each 1 ≤ j ≤ k, we let γ2(y2,j) = α2,j , where α2,j is the restriction of β2 to the variables in X2,j .
Let γ = γ1 ∪ γ2. Clearly, γ satisfies ψ′2. Therefore, we know that γ also satisfies ψ′3. By construction of ψ′3
and A, there must be some 1 ≤ j1 < j2 < j3 ≤ 2k such that R(zj1 , zj2 , zj3) is satisfied by γ. From this, we
can conclude that β1 ∪ β2 satisfies some term in ψ. Since β2 was arbitrary, we can conclude that ϕ ∈ QSat2.

Since (A, ϕ′) is an instance of A[2]-MC, we can apply the reduction R to obtain an equivalent instance ϕ′′

of SAT. By first constructing (A, ϕ′) from ϕ, and then constructing ϕ′′ from (A, ϕ′), we get a reduction R′

from QSat2 to SAT. We analyze the running time of this reduction R′ in terms of the values n.
Firstly, constructing (A, ϕ′) can be done in time:

O(2k22r · 8k326r · |ψ|) = 2o(n).

Then, applying the reduction R to obtain ϕ′′ from (A, ϕ′) takes time f(k′)(m′)(k′)1/3/λ(k′). We analyze the
different factors of this expression in terms of n. Firstly:

f(k′) = f(ck3) = g(k) ≤ g(2grev(n) + 1) ≤ n.

In our analysis of the running time of R, we will use an auxiliary function λ′. In particular, it will turn out
that in this analysis we need the following inequality to hold:

λ′(n) ≤ λ(ck3)grev(n)

6(ck3)1/3
.
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We will ensure this by defining λ′ as follows:

λ′(h) =
λ(cgrev(h)3)grev(h)

6c1/3(2grev(h) + 1)
.

We will also need λ′ to be unbounded. In order to see that λ′ is unbounded, we observe the following
inequality:

λ′(h) ≥ λ(cgrev(h)3)grev(h)

6c1/33grev(h)
=
λ(cgrev(h)3)

18c1/3
.

Then, in order to analyze the second factor (m′)(k′)1/3/λ(k′) in terms of n, we firstly consider the following
inequality (here we use the function λ′):

(26r)(k′)1/3/λ(k′) ≤ 26n(k′)1/3/(λ(k′)grev(n)) = 2n6(ck3)1/3/(λ(ck3)grev(n)) ≤ 2n/λ
′(n) = 2o(n).

We then get:

(m′)(k′)1/3/λ(k′) ≤ (k′ + 2k22r + 8k326r)(k′)1/3/λ(k′) ≤ (k′)k
′
(2k)k

′
22r(k′)1/3/λ(k′)(8k3)k

′
26r(k′)1/3/λ(k′).

Then, since (k′)k
′ ≤ O(log3 n)O(log3 n) = 2o(n), we know that the factors (k′)k

′
and (2k)k

′
are 2o(n). By a similar

argument, we know that the factor (8k3)k
′

is 2o(n). Moreover, because we know that (26r)(k′)1/3/λ(k′) ≤ 2o(n) we

know that the factors 22r(k′)1/3/λ(k′) and 26r(k′)1/3/λ(k′) are also 2o(n). Therefore, we know that (m′)(k′)1/3/λ(k′)

is 2o(n). Concluding, the reduction R′ from QSat2(3DNF) to SAT runs in time 2o(n).

Theorem 34 directly gives us the following corollary, separating A[2] from para-NP.

Corollary 35. Assuming that there exists no subexponential-time reduction from QSat2(3DNF) to SAT, it
holds that A[2] 6⊆ para-NP.

In particular, since A[2] ⊆ Σp
2 [∗k, 1], this allows us to separate Σp

2 [∗k, 1] from para-NP.

Corollary 36. Assuming that there exists no subexponential-time reduction from QSat2(3DNF) to SAT, it
holds that Σp

2 [∗k, 1] 6⊆ para-NP.

The proof of Theorem 34 can straightforwardly be modified to separate A[2] also from para-co-NP.

Corollary 37. Assuming that there exists no subexponential-time reduction from QSat2(3DNF) to UNSAT,
it holds that A[2] 6⊆ para-co-NP.

In fact, the result of Theorem 34 generalizes to higher levels of the A-hierarchy and higher levels of the
PH.

Proposition 38. Let t ≥ 2 and i ≥ 1. If A[t] ⊆ para-ΣP
i , then there exists a subexponential-time reduction

from QSatt(3DNF) to QSati for even t, and from QSatt(3CNF) to QSati for odd t. If A[t] ⊆ para-ΠP
i ,

then there exists a subexponential-time reduction from QSatt(3DNF) to co-QSati for even t, and from
QSatt(3CNF) to co-QSati for odd t.

Proof (sketch). The proof of Theorem 34 straightforwardly generalizes to arbitrary t ≥ 2 and arbitrary i ≥ 1,
both for para-ΣP

i and para-ΠP
i .

5.3.2 Results for Σp
2 [k∗], Σp

2 [∗k, 2] and Σp
2 [∗k,P]

Next, we show that separation results that we established in Section 5.3.1 can be strengthened for the cases
of Σp

2 [k∗], Σp
2 [∗k, 2] and Σp

2 [∗k,P]—namely, we can establish separation results using a weaker complexity-
theoretic assumption. We begin with the case for Σp

2 [∗k, 2], and show the following slightly stronger result,
ruling out fpt-reductions with a running time of f(k)no(k)mO(1).
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Theorem 39. If there exists an f(k)no(k)mO(1) time reduction from Σp
2 [kk]-WSat(Γ2,4) to SAT, where k

denotes the parameter value (i.e., the integer k given as part of the input), n denotes the number of variables
and m denotes the instance size, then there exists a subexponential-time reduction from QSat2(DNF) to SAT,
i.e., a reduction that runs in time 2o(n)mO(1), where n denotes the number of variables and m denotes the
instance size.

Proof. Assume that there exists a reduction R from Σp
2 [kk]-WSat(Γ2,4) to SAT that runs in

time f(k)nk/λ(k)mO(1) for sufficiently large values of k, where f is some computable function and λ is
some nondecreasing and unbounded computable function.

We now construct a reduction from QSat2(DNF) to SAT that runs in time 2o(n)mO(1), where n is the
number of variables, and m is the instance size. Let ϕ = ∃X1.∀X2.ψ be an instance of QSat2(DNF), where ψ
is in DNF. We will construct an equivalent instance (ϕ′, k) of Σp

2 [kk]-WSat(Γ2,4) from the instance (ϕ, k) of
QSat2(DNF), and we will then use the reduction from Σp

2 [kk]-WSat(Γ2,4) to SAT to transform (ϕ′, k) to
an equivalent instance of SAT in subexponential time.

We may assume without loss of generality that |X1| = |X2| = n; we can add dummy variables to X1

and X2 to ensure this. We denote the size of ψ by m. Let X = X1 ∪X2. We may assume without loss of
generality that f(k) ≥ 2k and that f is nondecreasing and unbounded.

In order to construct (ϕ′, k), we will use several auxiliary definitions. We define the function f rev as
follows:

f rev(h) = max{ q : f(2q + 1) ≤ h }.
Since the function f is nondecreasing and unbounded, the function f rev is also nondecreasing and unbounded.
Also, we know that f(2f rev(h) + 1) ≤ h, and since f(k) ≥ 2k, we know that f rev(h) ≤ log h. We then choose
the integers r and k as follows.

r = bn/f rev(n)c and k = dn/re.

Due to this choice for k and r, we get the following inequalities:

r ≤ n

f rev(n)
, k ≥ f rev(n), r ≥ n

2f rev(n)
, and k ≤ 2f rev(n) + 1.

We now construct an instance (ϕ′, k) of Σp
2 [kk]-WSat(Γ2,4) that is a yes-instance if and only if ϕ is a

yes-instance of QSat2(DNF). We will describe ϕ′ as a quantified Boolean formula whose matrix corresponds
to a circuit of depth 4 and weft 2. In order to do so, for each i ∈ {1, 2}, we split Xi into k disjoint
sets Xi,1, . . . , Xi,k. We do this in such a way that each set Xi,j has at most n/k elements, i.e., |Xi,j | ≤ 2r
for all i ∈ {1, 2} and all 1 ≤ j ≤ k. Now, for each truth assignment α : Xi,j → {0, 1} we introduce a new
variable yαi,j . Formally, we define a set of variables Yi,j for each i ∈ {1, 2} and each 1 ≤ j ≤ k:

Yi,j = { yαi,j : α is a truth assignment to Xi,j }.

We have that |Yi,j | ≤ 22r, for each i ∈ {1, 2} and each 1 ≤ j ≤ k. We let Yi =
⋃

1≤j≤k Yi,j , and we
let Y = Y1 ∪ Y2.

We continue the construction of the formula ϕ′. For each i ∈ {1, 2}, we define the formula ψYi as follows:

ψYi =
∧

1≤j≤k

∧

α,α′:Xi,j→{0,1}
α 6=α′

(
¬yαi,j ∨ ¬yα

′
i,j

)
.

Then we define the auxiliary functions σ0, σ1 : X → 2Y , that map variables in X to sets of variables in Y .
For each x ∈ Xi,j , we let:

σ0(x) = { yαi,j : α is a truth assignment to Xi,j , α(x) = 0 }, and

σ1(x) = { yαi,j : α is a truth assignment to Xi,j , α(x) = 1 }.
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Intuitively, for b ∈ {0, 1}, σb(x) corresponds to those variables yαi,j where α is an assignment that sets x to b.
Now, we construct a formula ψ′′, by transforming the formula ψ in the following way. We replace each

occurrence of a positive literal x ∈ Xi,j in ψ by the formula χx, that is defined as follows:

χx =
∧

yαi,j∈σ0(x)

¬yαi,j .

Moreover, we replace each occurrence of a negative literal ¬x in ψ (for x ∈ Xi,j) by the formula χ¬x, that is
defined as follows:

χ¬x =
∧

yαi,j∈σ1(x)

¬yαi,j .

We can now define the quantified Boolean formula ϕ′. We let ϕ′ = ∃Y1.∀Y2.ψ
′, where ψ′ is defined as

follows:
ψ′ = ψY1

∧ (ψY2
→ ψ′′).

The formula ψ′ can be seen as a circuit of depth 4 and weft 2. In the remainder, we will refer to ψ′ as a
circuit.

We verify that ϕ ∈ QSat2(DNF) if and only if (ϕ′, k) ∈ Σp
2 [kk]-WSat(Γ2,4).

(⇒) Assume that ϕ ∈ QSat2(DNF), i.e., that there exists a truth assignment β1 : X1 → {0, 1} such that
for all truth assignments β2 : X2 → {0, 1} it holds that ψ[β1∪β2] is true. We show that (ϕ′, k) ∈ Σp

2 [kk]-WSat.
We define the truth assignment γ1 : Y1 → {0, 1} by letting γ1(yα1,j) = 1 if and only if β1 coincides with α on
the variables X1,j , for each 1 ≤ j ≤ k and each α : X1,j → {0, 1}. Clearly, γ1 has weight k. Moreover, γ1

satisfies ψY1 . We show that for each truth assignment γ2 : Y2 → {0, 1} of weight k it holds that ψ′[γ1 ∪ γ2] is
true. Let γ2 be an arbitrary truth assignment of weight k. We distinguish two cases: either (i) γ2 does not
satisfy ψY2

, or (ii) γ2 does satisfy ψY2
. In case (i), clearly, ψ′[γ1 ∪ γ2] is true. In case (ii), we know that for

each 1 ≤ j ≤ k, there is exactly one αj : X2,j → {0, 1} such that γ2(y
αj
2,j) = 1. Now let β2 : X2 → {0, 1} be

the assignment that coincides with αj on the variables Y2,j , for each 1 ≤ j ≤ k. We know that ψ[β1 ∪ β2] is
true. Then, by definition of ψ′′, it follows that ψ′′[γ1 ∪ γ2] is true as well. Since γ2 was arbitrary, we can
conclude that (ϕ′, k) ∈ Σp

2 [kk]-WSat.
(⇐) Conversely, assume that (ϕ′, k) ∈ Σp

2 [kk]-WSat, i.e., that there exists a truth assignment γ1 : Y1 →
{0, 1} of weight k such that for all truth assignments γ2 : Y2 → {0, 1} of weight k it holds that ψ′[γ1 ∪ γ2]
is true. We show that ϕ ∈ QSat2. Since ψY1

contains only variables in Y1, we know that γ1 satisfies ψY1
,

i.e., that for each 1 ≤ j ≤ k there is a unique αj : X1,j → {0, 1} such that γ1(y
αj
1,j) = 1. We define the truth

assignment β1 : X1 → {0, 1} to be the unique truth assignment that coincides with αj for each 1 ≤ j ≤ k.
We show that for all truth assignments β2 : X2 → {0, 1} it holds that ψ[β1 ∪ β2] is true. Let β2 be an
arbitrary truth assignment. We construct the truth assignment γ2 : Y2 → {0, 1} by letting γ2(yα2,j) = 1 if
and only if β2 coincides with α on the variables in Y2,j , for each 1 ≤ j ≤ k and each α : X2,j → {0, 1}.
Clearly, γ2 has weight k. Moreover, γ2 satisfies ψY2

. Therefore, since we know that ψ′[γ1 ∪ γ2] is true, we
know that ψ′′[γ1 ∪ γ2] is true. Then, by definition of ψ′′, it follows that ψ[β1 ∪ β2] is true as well. Since β2

was arbitrary, we can conclude that ϕ ∈ QSat2(DNF).
We observe some properties of the quantified Boolean formula ϕ′ = ∃Y1.∀Y2.ψ

′. Each Yi, for i ∈ {1, 2},
contains at most n′ = k22r variables. Furthermore, the circuit ψ′ has size m′ ≤ O(k24r + 22rm) ≤ O(k24rm),
since the size of the subcircuits ψY1

and ψY2
is bounded by O(k24r) and the size of the subcircuit ψ′′ is

bounded by O(22rm)—this is due to the fact that we do not need to make copies of internal nodes representing
literals. Finally, it is straightforward to verify that the circuit ψ′ can be constructed in time O((m′)2).

Since (ϕ′, k) is an instance of Σp
2 [kk]-WSat(Γ2,4), we can apply the reduction R to obtain an equivalent

instance (ϕ′′, k′′) of SAT. This reduction runs in time f(k)(n′)k/λ(k)(m′)O(1). By first constructing (ϕ′, k)
from ϕ, and then constructing ϕ′′ from (ϕ′, k), we get a reduction R′ from QSat2(DNF) to SAT, that runs
in time f(k)(n′)k/λ(k)(m′)O(1) +O((m′)2). We analyze the running time of this reduction R′ in terms of the
values n and m. Firstly:

f(k) ≤ f(2f rev(n) + 1) ≤ n.
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In our analysis of the running time of R′, we will use an auxiliary function λ′. In particular, it will turn out
that in this analysis we need the following inequality to hold:

λ′(n) ≤ λ(k)

6
.

We do so by defining λ′ as follows:

λ′(h) =
λ(f rev(h))

6
.

We will also need λ′ to be unbounded. Since both λ and f rev are nondecreasing and unbounded, λ′ is a
nondecreasing and unbounded function.

We have,

(n′)k/λ(k) = (k22r)k/λ(k) ≤ kk22kr/λ(k) ≤ kk22kn/(λ(k)frev(n)) ≤ kk26n/λ(k)

≤ kk2n/λ
′(n) = O(log n)O(logn)2n/λ

′(n) = 2o(n).

Finally, consider the factor m′. Since f rev is nondecreasing and unbounded,

m′ ≤ O(k24rm) = O(log n24n/frev(n)m) = 2o(n)m.

Therefore, both terms (m′)O(1) and O((m′)2) in the running time of R′ are bounded by 2o(n)mO(1). Combining
all these, we conclude that the running time f(k)(n′)k/λ(k)(m′)O(1) +O((m′)2) of R′ is bounded by 2o(n)mO(1).
Therefore, R′ is a subexponential-time reduction from QSat2(DNF) to SAT. This completes our proof.

Theorem 39 gives us the following corollary, separating Σp
2 [∗k, 2] from para-NP.

Corollary 40. Assuming that there exists no subexponential-time reduction from QSat2(DNF) to SAT, it
holds that Σp

2 [∗k, 2] 6⊆ para-NP.

Proof. The parameterized problem Σp
2 [kk]-WSat(Γ2,4) is in Σp

2 [∗k, 2]. Therefore, the result for Σp
2 [∗k, 2]

follows directly from Theorem 39.

Finally, the proof of Theorem 39 extends to even stronger results for the cases of Σp
2 [∗k,SAT] and Σp

2 [∗k,P].

Corollary 41. Assuming that there exists no subexponential-time reduction from QSat2 to SAT, it holds
that Σp

2 [∗k, SAT] 6⊆ para-NP. Moreover, assuming that there exists no subexponential-time reduction from the
extension of QSat2 to quantified Boolean circuits to SAT, it holds that Σp

2 [∗k,P] 6⊆ para-NP.

Proof (sketch). The proof of Theorem 39 can straightforwardly be modified to show this result.

A similar result as for the case of Σp
2 [∗k,P] holds for the case of Σp

2 [k∗].

Corollary 42. Assuming that there exists no subexponential-time reduction from the extension of QSat2 to
quantified Boolean circuits to UNSAT, it holds that Σp

2 [k∗] 6⊆ para-co-NP.

Proof (sketch). The proof of Theorem 39 can straightforwardly be modified to show this result.

5.3.3 Relation of Σp
2 [k∗] and Σp

2 [∗k, t] with XNP and Xco-NP

The results that we showed above also allow us to separate the classes Σp
2 [k∗] and Σp

2 [∗k, t] from the
parameterized complexity classes XNP and Xco-NP.

Corollary 43. If

(i) Σp
2 [k∗] = XNP,

(ii) Σp
2 [k∗] = Xco-NP,
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(iii) Σp
2 [∗k,P] = XNP, or

(iv) Σp
2 [∗k,P] = Xco-NP,

then for each t ≥ 3 there is a subexponential-time reduction from QSatt(3CNF) to QSat2 and from
QSatt(3DNF) to QSat2.

Proof. Suppose that one of the statements (i)–(iv) holds. Then for each t ≥ 3 it holds that A[t] ⊆ XP ⊆
XNP ∩Xco-NP ⊆ para-ΣP

2 . Therefore, the required consequence follows from Proposition 38.

5.4 Relation Between the Classes Σp
2[k∗] and Σp

2[∗k, t]
Finally, in this section, we argue that the classes Σp

2 [k∗], Πp
2 [k∗], Σp

2 [∗k, t] and Πp
2 [∗k, t] are different from

each other. For this, we will use some of the results that we developed in Section 5.3.
We begin with some results that are based on the assumption that NP 6= co-NP.

Proposition 44. Assuming that NP 6= co-NP, the following statements hold:

(i) Σp
2 [k∗] 6⊆ Πp

2 [k∗];

(ii) Σp
2 [∗k, 1] 6⊆ Πp

2 [∗k,P];

(iii) Σp
2 [k∗] 6⊆ Σp

2 [∗k,P]; and

(iv) Σp
2 [∗k, 1] 6⊆ Σp

2 [k∗].

Proof. These results all follow from the facts that para-co-NP ⊆ XNP implies NP = co-NP, and
that para-NP ⊆ Xco-NP implies NP = co-NP. Take for instance result (i). Suppose that Σp

2 [k∗] ⊆ Πp
2 [k∗].

Since para-co-NP ⊆ Σp
2 [k∗] and Πp

2 [k∗] ⊆ XNP, we get that para-co-NP ⊆ XNP, and thus that NP = co-NP.
The other results can be proven analogously.

All that remains to show now is that Σp
2 [k∗] 6⊆ Πp

2 [∗k,P] and Σp
2 [∗k, 1] 6⊆ Πp

2 [k∗]. Proposition 38 allows us
to show these results under the assumption that there is no subexponential-time reduction from QSat2(3DNF)
to co-QSat2.

Proposition 45. Assuming that there is no subexponential-time reduction from QSat2(3DNF) to co-QSat2,
the following statements hold:

(v) Σp
2 [k∗] 6⊆ Πp

2 [∗k,P]; and

(vi) Σp
2 [∗k, 1] 6⊆ Πp

2 [k∗].

Proof. We give a proof for result (v). The other result can be proven analogously.
Suppose that Σp

2 [k∗] ⊆ Πp
2 [∗k,P]. Then, since A[2] ⊆ Σp

2 [k∗] and Πp
2 [∗k,P] ⊆ para-ΠP

2 , we get
that A[2] ⊆ para-ΠP

2 . Then, by Proposition 38, we get that there exists a subexponential-time reduc-
tion from QSat2(3DNF) to co-QSat2.

6 Application for the Analysis of Problems

Finally, we underline how useful the newly developed parameterized complexity classes Σp
2 [k∗] and Σp

2 [∗k, t]
are for the analysis of parameterized variants of problems at higher levels of the PH. We do so in two ways.

Firstly, in Section 6.1, we conduct a case study. This case study discusses the scenario where we are
faced with a ΠP

2 -complete problem, and we have several parameterizations in mind. We would like to find
out for which of the parameterized variants of the problem we can find an fpt-reduction to SAT, and for
which variants this is not possible. We show that the newly developed parameterized complexity classes are
invaluable in such concrete complexity analyses of problems at higher levels of the PH. The ΠP

2 -complete
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problem that we consider in our case study is the problem of deciding whether any 3-coloring of the edges of
a given graph can be extended to a proper 3-coloring of the entire graph.

Secondly, in the remainder of this section (that is, in Sections 6.2–6.4), we provide a compendium of
parameterized variants of problems at higher levels of the PH whose complexity has been analyzed recently
in the literature, and whose complexity is characterized using the classes Σp

2 [k∗] and Σp
2 [∗k, t] (and their co-

classes). All but one of the parameterized problems that we consider are complete for one of the parameterized
complexity classes that we developed in this paper. Moreover, the problems that we consider originate in a
variety of domains in computer science and artificial intelligence.

For a more extensive compendium of parameterized variants of problems at higher levels of the PH and
their complexity, we refer to a technical report [30]. This report also includes parameterized variants of the
problems that we consider in this section that are complete for the classes para-NP, para-co-NP, para-ΣP

2 ,
and para-ΠP

2 —for the sake of succinctness, we omitted these variants here.

6.1 Case Study: Extending Graph Colorings

In order to illustrate the significance of the theoretical results that we developed and investigated in Sections 3–
5, we demonstrate how the newly developed parameterized complexity classes are indispensable when analyzing
the parameterized complexity of problems at higher levels of the PH. We do so by considering a case study,
where we look at several parameterized variants of a ΠP

2 -complete problem. In particular, we would like to
investigate which of these parameterized variants admit an fpt-reduction to SAT, and for which of these
parameterized variants fpt-reductions to SAT are impossible.

The problem that we consider in this case study related to extending colorings to the leaves of a graph to
a coloring on the entire graph. Let G = (V,E) be a graph. We will denote those vertices v ∈ V that have
degree 1 by leaves. We call a (partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover, we say that a
3-coloring c is proper if c assigns a color to every vertex v ∈ V , and if for each edge e = {v1, v2} ∈ E holds
that c(v1) 6= c(v2). We consider the problem 3-Coloring-Extension. The input for this problem consists
of a graph G = (V,E) with n leaves, and an integer m. The question is to decide whether any 3-coloring that
assigns a color to exactly m leaves of G (and to no other vertices) can be extended to a proper 3-coloring
of G. This problem, in its unparameterized form, is ΠP

2 -complete [2].
We consider several parameterized variants of this problem.

• 3-Coloring-Extension(degree), where the parameter k is the degree of G, i.e., k is the maximum
number of neighbors of any vertex v ∈ V ;

• 3-Coloring-Extension(#leaves), where the parameter k is the number of leaves, i.e., k = n;

• 3-Coloring-Extension(#col.leaves), where the parameter k is the number of pre-colored leaves,
i.e., k = m; and

• 3-Coloring-Extension(#uncol.leaves), where the parameter k is the number of leaves that are not
pre-colored, i.e., k = n−m.

These parameterized problems fall into several categories. The first category is that of those problems
for which we manage to come up with an fpt-reduction to SAT. The parameterized problem 3-Coloring-
Extension(#leaves) belongs to this category. We can iterate over all possible 3-colorings to m of the leaves
of G in time 2m ·

(
n
m

)
. Since m ≤ n and since in this case k = n, iterating over all possible 3-colorings to m

of the leaves of G can be done in fixed-parameter tractable time. Then, for each such coloring, checking
whether it can be extended to a proper 3-coloring to the entire graph can be done with a nondeterministic
algorithm. Therefore, the problem can be solved with a nondeterministic fpt-algorithm, and thus the problem
is in para-NP [19, Section 2.2]. In other words, the problem 3-Coloring-Extension(#leaves) admits an
fpt-reduction to SAT.

On the other hand, several of the other parameterized variants of 3-Coloring-Extension fall into a
different category. This is the category of parameterized problems that are already hard for the second level of
the PH, even for constant values of the parameter. This is the case for the problems 3-Coloring-Extension

43

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
7-
00
4



(degree) and 3-Coloring-Extension(#uncol.leaves). Namely, the problem 3-Coloring-Extension is
already ΠP

2 -hard when restricted to instances where G has degree 4 and where n = m [2]. Therefore, both
3-Coloring-Extension(degree) and 3-Coloring-Extension(#uncol.leaves) are para-ΠP

2 -hard, and thus
do not admit fpt-reductions to SAT unless NP = co-NP.

At this point, we would like to point out that it is entirely reasonable for negative results in this context—
that is, for results that show that no fpt-reduction to SAT is possible—to be based on complexity-theoretic
assumptions. For example, para-ΠP

2 -hardness results indicate the impossibility of fpt-reductions to SAT,
assuming that NP 6= co-NP. This is reasonable for the following reason. If it were the case that P = NP,
then also P = ΠP

2 . In other words, in that case, the problem 3-Coloring-Extension would be solvable
in polynomial time, and would thus admit an fpt-reduction to SAT for any choice of parameter. Stated
conversely, any unconditional result that 3-Coloring-Extension does not admit an fpt-reduction to SAT
for some parameter would imply that P 6= NP.

We are left with one of the parameterized variants of 3-Coloring-Extension, namely, with 3-Coloring-
Extension(#col.leaves). This parameterized problem belongs to the third category. Parameterized problems
in this category seemingly do not admit an fpt-reduction to SAT, unlike problems in the first category.
Additionally, for these problems it is unreasonable to hope that we can rule out fpt-reductions to SAT by
showing hardness for para-ΠP

2 or para-ΣP
2 . This is due to the following reason. If we fix a constant value of

the parameter for 3-Coloring-Extension(#col.leaves), the problem is in NP. For example, fix a value k0

for the parameter k = m. Then using a similar algorithm as the one we sketched above for the case of
3-Coloring-Extension(#leaves), we can easily show that the problem is in NP. However, since problems
that are hard for para-ΠP

2 are ΠP
2 -hard for a finite set of parameter values [18], it immediately follows that

para-ΠP
2 -hardness for this problem would imply that NP = co-NP.

In other words, for this third category of parameterized problems the previously known parameterized
complexity toolbox fails to provide an accurate picture of the computational complexity of problems. Namely,
there is a significant gap between the lower and upper bounds provided by the parameterized complexity
tools. In the concrete example of 3-Coloring-Extension(#col.leaves), this gap is between membership
in para-ΠP

2 and hardness for para-NP. Moreover, when considering the question whether a parameterized
problem admits an fpt-reduction to SAT, such a gap indicates the lack of an answer.

In order to provide an adequate analysis of the complexity of parameterized problems in this third category,
the newly developed parameterized complexity classes Σp

2 [k∗] and Σp
2 [∗k, t] (and their co-classes Πp

2 [k∗] and
Πp

2 [∗k, t]) are crucial. This is illustrated by the remaining parameterized problem in our case study. The
problem 3-Coloring-Extension(#col.leaves) is Πp

2 [k∗]-complete [34]. This means that we can rule out
fpt-reductions to SAT for this problem, under the assumption that there exists no subexponential-time
reduction to SAT from the extension of QSat2 to quantified Boolean circuits (Corollary 42).

Overview of Parameterized Complexity Results for 3-Coloring-Extension For the sake of
completeness, we conclude the treatment of our case study with a brief overview of the different parameterized
problems that we discussed, together with their parameterized complexity.

3-Coloring-Extension(degree)
Instance: a graph G = (V,E) with n leaves, and an integer m.
Parameter: the degree of G.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-ΠP
2 -complete [33, 34].
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3-Coloring-Extension(#leaves)
Instance: a graph G = (V,E) with n leaves, and an integer m.
Parameter: n.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-NP-complete [33, 34].

3-Coloring-Extension(#col.leaves)
Instance: a graph G = (V,E) with n leaves, and an integer m.
Parameter: m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: Πp
2 [k∗]-complete [33, 34].

3-Coloring-Extension(#uncol.leaves)
Instance: a graph G = (V,E) with n leaves, and an integer m.
Parameter: n−m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G (and to no other vertices)
be extended to a proper 3-coloring of G?

Complexity: para-ΠP
2 -complete [33, 34].

6.2 Problems in Knowledge Representation and Reasoning

Next, we continue with our compendium of parameterized variants of problems at higher levels of the PH
whose complexity has been analyzed recently in the literature, and whose complexity is characterized using
the classes Σp

2 [k∗] and Σp
2 [∗k, t] (and their co-classes). We begin with a number of problems from the area

of Knowledge Representation and Reasoning. Concretely, we consider several parameterized variants of
the consistency problem for disjunctive answer set programs, a robust variant of the constraint satisfaction
problem, and two parameterized problems related to abductive reasoning.

6.2.1 Disjunctive Answer Set Programming

The following problems from the setting of disjunctive answer set programming (ASP) are based on the notions
of disjunctive logic programs and answer sets for such programs (cf. [7, 40]). A disjunctive logic program P is
a finite set of rules of the form r = (a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . ,not cn), for k,m, n ≥ 0, where
all ai, bj and cl are atoms. A rule is called disjunctive if k > 1, and it is called normal if k ≤ 1 (note that
we only call rules with strictly more than one disjunct in the head disjunctive). A rule is called dual-Horn
if m ≤ 1. A program is called normal if all its rules are normal, it is called negation-free if all its rules are
negation-free, and it is called dual-Horn if all its rules are dual-Horn. We let At(P ) denote the set of all
atoms occurring in P . By literals we mean atoms a or their negations not a. The reduct of a program P with
respect to a set M of atoms, denoted PM , is the program obtained from P by: (i) removing rules with not a
in the body for each a ∈M , and (ii) removing literals not a from all other rules [21]. An answer set A of a
program P is a subset-minimal model of the reduct PA. One important decision problem is to decide, given
a disjunctive logic program P , whether P has an answer set. We consider several parameterized variants of
this problem.

One of the parameterized variants of this problem that we consider is related to atoms that must be part
of any answer set of a program P . We identify a subset Comp(P ) of compulsory atoms, that any answer
set must include. Given a program P , we let Comp(P ) be the smallest set such that: (i) if (w ← not w)
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is a rule of P , then w ∈ Comp(P ); and (ii) if (b ← a1, . . . , an) is a rule of P , and a1, . . . , an ∈ Comp(P ),
then b ∈ Comp(P ). We then let the set Cont(P ) of contingent atoms be those atoms that occur in P but are
not in Comp(P ). We call a rule contingent if all the atoms that appear in the head are contingent.

ASP-consistency(#cont.rules)
Instance: A disjunctive logic program P .
Parameter: The number of contingent rules of P .
Question: Does P have an answer set?

Complexity: Σp
2 [k∗]-complete [32, 33].

ASP-consistency(#disj.rules)
Instance: A disjunctive logic program P .
Parameter: The number of disjunctive rules of P .
Question: Does P have an answer set?

Complexity: Σp
2 [∗k,P]-complete [33].

ASP-consistency(#dual-Horn.rules)
Instance: A disjunctive logic program P .
Parameter: The number of rules of P that are dual-Horn.
Question: Does P have an answer set?

Complexity: Σp
2 [∗k,P]-complete [33].

6.2.2 Robust Constraint Satisfaction

The following problem is based on the class of robust constraint satisfaction problems introduced by
Gottlob [25] and Abramsky, Gottlob and Kolaitis [1]. These problems are concerned with the question of
whether every partial assignment of a particular size can be extended to a full solution, in the setting of
constraint satisfaction problems.

A CSP instance N is a triple (X,D,C), where X is a finite set of variables, the domain D is a finite set
of values, and C is a finite set of constraints. Each constraint c ∈ C is a pair (S,R), where S = Var(c), the
constraint scope, is a finite sequence of distinct variables from X, and R, the constraint relation, is a relation
over D whose arity matches the length of S, i.e., R ⊆ Dr where r is the length of S.

Let N = (X,D,C) be a CSP instance. A partial instantiation of N is a mapping α : X ′ → D defined
on some subset X ′ ⊆ X. We say that α satisfies a constraint c = ((x1, . . . , xr), R) ∈ C if Var(c) ⊆ X ′

and (α(x1), . . . , α(xr)) ∈ R. If α satisfies all constraints of N then it is a solution of N . We say that α
violates a constraint c = ((x1, . . . , xr), R) ∈ C if there is no extension β of α defined on X ′ ∪ Var(c) such
that (β(x1), . . . , β(xr)) ∈ R.

Let k be a positive integer. We say that a CSP instance N = (X,D,C) is k-robustly satisfiable if for each
instantiation α : X ′ → D defined on some subset X ′ ⊆ X of k variables (i.e., |X ′| = k) that does not violate
any constraint in C, it holds that α can be extended to a solution for the CSP instance (X,D,C).

Robust-CSP-SAT
Instance: A CSP instance (X,D,C), and an integer k.
Parameter: k.
Question: Is (X,D,C) k-robustly satisfiable?

Complexity: Πp
2 [k∗]-complete [32, 33].
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6.2.3 Abductive Reasoning

We conclude this section with several parameterized variants related to abductive reasoning. The setting
of (propositional) abductive reasoning can be formalized as follows. An abduction instance P consists of
a tuple (V,H,M, T ), where V is the set of variables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of
manifestations, and T is the theory, a formula in CNF over V . It is required that M ∩H = ∅. A set S ⊆ H
is a solution (or explanation) of P if (i) T ∪ S is consistent and (ii) T ∪ S |= M . One central problem is to
decide, given an abduction instance P and an integer m, whether there exists a solution S of P of size at
most m. This problem is ΣP

2 -complete in general [12].

Abduction(#non-Krom-clauses):
Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses in T that contains more than 2 literals.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k, 1]-complete [29].

Abduction(#non-Horn-clauses):
Input: An abduction instance P = (V,H,M, T ), and a positive integer m.
Parameter: The number of clauses in T that are not Horn.
Question: Does there exist a solution S of P of size at most m?

Complexity: Σp
2 [∗k,P]-complete [29].

6.3 Minimization Problems for Propositional Logic

We continue our compendium in this section with a number of parameterized problems that are related to
minimizing DNF formulas and minimizing implicants of DNF formulas.

Let ϕ be a propositional formula in DNF. We say that a set C of literals is an implicant of ϕ if all
assignments that satisfy

∧
l∈C l also satisfy ϕ. Moreover, we say that a DNF formula ϕ′ is a term-wise

subformula of ϕ′ if for all terms t′ ∈ ϕ′ there exists a term t ∈ ϕ such that t′ ⊆ t. The following parameterized
problems are natural parameterizations of problems shown to be ΣP

2 -complete by Umans [54].

Shortest-Implicant-Core(core size)
Instance: A DNF formula ϕ, an implicant C of ϕ, and an integer k.
Parameter: k.
Question: Does there exists an implicant C ′ ⊆ C of ϕ of size k?

Complexity: Σp
2 [k∗]-complete [31, 33].

Shortest-Implicant-Core(reduction size)
Instance: A DNF formula ϕ, an implicant C of ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exists an implicant C ′ ⊆ C of ϕ of size n− k?

Complexity: Σp
2 [k∗]-complete [31, 33].

DNF-Minimization(reduction size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist a term-wise subformula ϕ′ of ϕ of size n− k such that ϕ ≡ ϕ′?
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Complexity: Σp
2 [k∗]-complete [31, 33].

DNF-Minimization(core size)
Instance: A DNF formula ϕ of size n, and an integer k.
Parameter: k.
Question: Does there exist an DNF formula ϕ′ of size k, such that ϕ ≡ ϕ′?
Complexity: para-co-NP-hard, solvable in fpt-time using O(log k) queries to an NP oracle, and
in Σp

2 [k∗] [31, 33].

6.4 Other Problems

We conclude our compendium by considering a parameterized problem about the question whether every clique
of a subgraph of a graph can be extended to a large enough clique of the entire graph, and a parameterized
variant of a problem that arises in the area of computational social choice.

6.4.1 Clique Extensions

Let G = (V,E) be a graph. A clique C ⊆ V of G is a subset of vertices that induces a complete subgraph
of G, i.e. {v, v′} ∈ E for all v, v′ ∈ C such that v 6= v′. The W[1]-complete problem of determining whether a
graph has a clique of size k is an important problem in the W-hierarchy, and is used in many W[1]-hardness
proofs. The following related problem is complete for Πp

2 [∗k, 1].

Small-Clique-Extension
Instance: A graph G = (V,E), a subset V ′ ⊆ V , and an integer k.
Parameter: k.
Question: Is it the case that for each clique C ⊆ V ′, there is some k-clique D of G such that C ∪D
is a (|C|+ k)-clique?

Complexity: Πp
2 [∗k, 1]-complete [33].

6.4.2 Agenda Safety in Judgment Aggregation

Finally, we consider a parameterized problem that is related to judgment aggregation, in the domain of
computational social choice. Judgment aggregation studies procedures that combine individuals’ opinions
into a collective group opinion.

An agenda is a finite nonempty set Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} of formulas that is closed under
complementation. A judgment set J for an agenda Φ is a subset J ⊆ Φ. We call a judgment set J complete
if ϕi ∈ J or ¬ϕi ∈ J for all formulas ϕi, and we call it consistent if there exists a truth assignment to the vari-
ables occurring in Φ that makes all formulas in J true. Let J (Φ) denote the set of all complete and consistent
subsets of Φ. We call a sequence J ∈ J (Φ)n of complete and consistent subsets a profile. A (resolute) judgment
aggregation procedure for the agenda Φ and n individuals is a function F : J (Φ)n → P(Φ\∅)\∅ that returns
for each profile J a non-empty set F (J) of non-empty judgment sets. An example is the majority rule Fmaj,
where Fmaj(J) = {J∗} and where ϕ ∈ J∗ if and only if ϕ occurs in the majority of judgment sets in J , for
each ϕ ∈ Φ. We call F complete and consistent, if each J∗ ∈ F (J) is complete and consistent, respectively,
for every J ∈ J (Φ)n. For instance, the majority rule Fmaj is complete, whenever the number n of individuals
is odd. An agenda Φ is safe with respect to an aggregation procedure F , if F is consistent when applied
to profiles of judgment sets over Φ. We say that an agenda Φ satisfies the median property (MP) if every
inconsistent subset of Φ has itself an inconsistent subset of size at most 2. Safety for the majority rule can be
characterized in terms of the median property as follows: an agenda Φ is safe for the majority rule if and only
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if Φ satisfies the MP [13, 43]. The problem of deciding whether an agenda satisfies the MP is ΠP
2 -complete [13].

Maj-Agenda-Safety(counterexample size)
Instance: An agenda Φ, and an integer k.
Parameter: k.
Question: Does every inconsistent subset Φ′ of Φ of size k have itself an inconsistent subset of size
at most 2?

Complexity: Πp
2 [k∗]-hard [14, 15, 16].

7 Conclusion

We developed a general theoretical framework that supports the classification of parameterized problems
on whether they admit an fpt-reduction to SAT or not. Our theory is based on two new hierarchies of
complexity classes, the k-∗ and ∗-k hierarchies. We developed basic structural results for these parameterized
complexity classes, that make it possible to conveniently use them in the analysis of concrete parameterized
problems. Additionally, we underpinned the robustness of our theory by providing a characterization of the
new complexity classes in terms of weighted QBF satisfiability, alternating Turing machines, and first-order
model checking. Also, we provide evidence that the newly developed classes are different from parameterized
complexity classes that are known from the literature. Finally, to indicate how well the parameterized
complexity classes that we developed can be used to analyze the parameterized complexity of problems at
higher levels of the PH, we considered a case study and we provided a compendium of natural parameterized
problems from various domains that are complete for the new classes.

In this paper, we extended and combined ideas known from the theory of parameterized complexity as
it is usually applied to problems in NP, and applied these ideas to the setting of parameterized variants
of problems at the second level of the PH and higher. Even though the proofs in this paper are mostly
based on ideas and proof techniques that were known from the literature, the results in this paper provide
useful insights about the inherent computational complexity of parameterized variants of problems at the
second level of the PH. For instance, for one of the parameterized analogues of the W-hierarchy that we
considered (namely, the classes Σp

2 [∗k, t]) the structure of the W-hierarchy is reflected, whereas for the other
parameterized analogue of the W-hierarchy that we considered (the class Σp

2 [k∗]), this structure vanishes. As
a consequence, we were able to show that problems in the latter class do not admit fpt-reductions to SAT
using weaker complexity-theoretic assumptions than we needed for problems in the former classes. Discoveries
such as these are nontrivial outcomes of our adaptation of known parameterized complexity results and
techniques to the setting of parameterized variants of problems at the second level of the PH.

Directions for Future Research The results in this paper provide a relatively clear understanding of
the parameterized complexity class originally defined as the k-∗ hierarchy. The ∗-k hierarchy seems to be
more intricate and we have focused only on two of its levels—namely, on the classes Σp

2 [∗k, 1] and Σp
2 [∗k,P].

A more comprehensive study of the ∗-k hierarchy including alternative characterizations of its classes using
first-order model checking and machine models comprises an interesting topic for future research.

Another interesting topic for future investigations is to get a deeper understanding of the separation
results that we developed Section 5.3. For instance, we showed that Σp

2 [k∗] 6⊆ para-co-NP unless there exists
a subexponential-time reduction from QSat2 to UNSAT. It would greatly improve our understanding of
the class Σp

2 [k∗] if we could establish a similar result that is based on more widely believed complexity-
theoretic assumptions. Alternatively, a more in-depth investigation into the (im)possibility of constructing
subexponential-time reductions from (variants of) QSat2 to SAT or UNSAT would allow us to better
appreciate the results from Section 5.3.

In the development of theoretical parameterized complexity tools in this paper, we focused our attention
on the range between the first and the second level of the PH. This is partially due to the fact that many
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natural problems lie there [48], and this is partially because SAT solvers perform significantly better in
practice than solvers for problems at higher levels of the PH or for PSPACE-complete problems. However, it
would also be interesting to identify fpt-reductions from problems at higher levels of the PH to problems at a
lower level of the PH. For instance, for a ΣP

3 -complete problem, an fpt-reduction to a problem in ΣP
2 could be

used as a starting point for algorithmic methods that could work better in practice than existing solving
methods for the problem. With this more general setting in mind, it would be helpful to develop tools that
can be used to provide evidence that fpt-reductions to higher levels of the PH are not possible. The classes of
the k-∗ and ∗-k hierarchies can straightforwardly be generalized to analogous variants at higher levels of the
PH. For example, for the third level of the PH, one could define the classes Σp

3 [∗∗k, t], Σp
3 [∗k∗], Σp

3 [∗kk, t],
Σp

3 [k∗∗], Σp
3 [k∗k, t], Σp

3 [kk∗], and Σp
3 [kkk, t]. Several results from this paper also carry over straightforwardly

to this more general setting—for instance, the collapse result of Theorem 2 extends to any hierarchy Σp
i [ω∗, t]

for ω ∈ {∗, k}i−1. We hope that this paper provides a starting point for further developments.
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