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Abstract. Branch decomposition is a prominent method for structurally decom-
posing a graph, hypergraph or CNF formula. The width of a branch decomposi-
tion provides a measure of how well the object is decomposed. For many applica-
tions it is crucial to compute a branch decomposition whose width is as small as
possible. We propose a SAT approach to finding branch decompositions of small
width. The core of our approach is an efficient SAT encoding which determines
with a single SAT-call whether a given hypergraph admits a branch decompo-
sition of certain width. For our encoding we developed a novel partition-based
characterization of branch decomposition. The encoding size imposes a limit on
the size of the given hypergraph. In order to break through this barrier and to scale
the SAT approach to larger instances, we developed a new heuristic approach
where the SAT encoding is used to locally improve a given candidate decomposi-
tion until a fixed-point is reached. This new method scales now to instances with
several thousands of vertices and edges.

1 Introduction

Background Branch decomposition is a prominent method for structurally decompos-
ing a graph or hypergraph. This decomposition method was originally introduced by
Robertson and Seymour [17] in their Graph Minors Project and has become a key no-
tion in discrete mathematics and combinatorial optimization. Branch decompositions
can be used to decompose other combinatorial objects such as matroids, integer-valued
symmetric submodular functions, and propositional CNF formulas (after dropping of
negations, clauses can be considered as (hyper-)edges). The width of a branch decom-
position provides a measure of how well it decomposes the given object; the smallest
width over its branch decompositions denotes the branchwidth of an object. Many hard
computational problems can be solved efficiently by means of dynamic programming
along a branch decomposition of small width. Prominent examples include the traveling
salesman problem [6], the #P-complete problem of propositional model counting [3],
and the generation of resolution refutations for unsatisfiable CNF formulas [2]. In fact,
all decision problems on graphs that can be expressed in monadic second order logic
can be solved in linear time on graphs that admit a branch decomposition of bounded
width [10].

A bottleneck for all these algorithmic applications is the space requirement of dy-
namic programming, which is typically single or double exponential in the width of
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the given branch decomposition. Hence it is crucial to compute first a branch decom-
position whose width is as small as possible. This is very similar to the situation in the
context of treewidth, where the following was noted about inference on probabilistic
networks of bounded treewidth [15]:

[. . . ] since inference is exponential in the tree-width, a small reduction in tree-
width (say by even by 1 or 2) can amount to one or two orders of magnitude
reduction in inference time.

Hence small improvements in the width can change a dynamic programming approach
from unfeasible to feasible. The boundary between unfeasible and feasible width values
strongly depends on the considered problem and the currently available hardware. For
instance, Cook and Seymour [6] mention a threshold of 20 for the Traveling Salesman
Problem in 2003. Today one might consider a higher threshold. Computing an optimal
branch decomposition is NP-hard [19].

Contribution In this paper we propose a practical SAT-based approach to finding a
branch decompositions of small width. At the core of our approach is an efficient SAT
encoding which takes a hypergraphH and an integerw as input and produces a proposi-
tional CNF formula which is satisfiable if and only ifH admits a branch decomposition
of width w. By multiple calls of the solver with various values of w we can determine
the smallest w for which the formula is satisfiable (i.e., the branchwidth of H), and we
can transform the satisfying assignment into an optimal branch decomposition. Our en-
coding is based on a novel partition-based characterization of branch decompositions
in terms of certain sequences of partitions of the set of edges. This characterization
together with clauses that express cardinality constraints allow for an efficient SAT en-
coding that scales up to instances with about hundred edges. The computationally most
expensive part in this procedure is to determine the optimality of w by checking that the
formula corresponding to a width of w − 1 is unsatisfiable. If we do not insist on opti-
mality and aim at good upper bounds, we can scale the approach to larger hypergraphs
with over two hundred edges.

The number of clauses in the formula is polynomial in the size of the hypergraph
and the given width w, but the order of the polynomial can be quintic, hence there
is a firm barrier to the scalability of the approach to larger hypergraphs. In order to
break through this barrier, we developed a new SAT-based local improvement approach
where the encoding is not applied to the entire hypergraph but to certain smaller hyper-
graphs that represent local parts of a current candidate branch decomposition. The over-
all procedure thus starts with a branch decomposition obtained by a heuristic method
and then tries to improve it locally by multiple SAT-calls until a fixed-point (or time-
out) is reached. This method scales now to instances with several thousands of vertices
and edges and branchwidth upper bounds well over hundred. We believe that a simi-
lar approach using a SAT-based local improvement could also be developed for other
(hyper)graph width measures.

Related Work Previously, SAT techniques have been proposed for other graph width
measures: Samer and Veith [18] proposed a SAT encoding for treewidth, based on a
characterization of treewidth in terms of elimination orderings (that is, the encoding
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entails variables whose truth values determine a permutation of the vertices, and the
width of a corresponding decomposition is then bounded by cardinality constraints).
This approach was later improved by Berg and Järvisalo [4] who empirically evalu-
ated various SAT and MaxSAT strategies for treewidth encodings based on elimina-
tion orderings. Heule and Szeider [11] developed a SAT approach for computing the
clique-width of graphs. For this purpose they developed a novel partition-based charac-
terization of clique-width. Our encoding of branchwidth was inspired by this. However,
the two encodings are different as clique-width and branchwidth are entirly different
notions.

For finding branch decompositions of smallest width, Robertson and Seymour [17]
suggested an exponential-time algorithm which was later implemented by Hicks [12].
Further exponential-time algorithms have been proposed (see, for instance [9, 14]) but
there seem to be no implementations. Ulusal [20] proposed an encoding to integer pro-
gramming (CPLEX). One could also find suboptimal branch decompositions based on
the related notion of tree decompositions; however, finding an optimal tree decompo-
sition is again NP-hard, and by transforming it into a branch decomposition one in-
troduces an approximation error factor of up to 50% [17] which makes this approach
prohibitive in practice. For practical purposes one therefore mainly resorts to heuristic
methods that compute suboptimal branch decompositions [6, 13, 16].

Due to the space restrictions several proofs have been omitted.

2 Preliminaries

Formulas and Satisfiability We consider propositional formulas in Conjunctive Normal
Form (CNF formulas, for short), which are conjunctions of clauses, where a clause is a
disjunction of literals, and a literal is a propositional variable or a negated propositional
variables. A CNF formula is satisfiable if its variables can be assigned true or false,
such that each clause contains either a variable set to true or a negated variable set to
false. The satisfiability problem (SAT) asks whether a given formula is satisfiable.

Graphs and Branchwidth We consider finite hypergraphs and undirected graphs. For
basic terminology on graphs we refer to a standard text book [8]. For a (hyper-)graphH
we denote by V (H) the vertex set of H and by E(H) the edge set of H . If E ⊆ E(H),
we denote by H \ E the hypergraph with vertices V (H) and edges E(H) \ E. Let G
be a simple undirected graph. The radius of G, denoted by rad(G), is the minimum
integer r such that G has a vertex from which all other vertices are reachable via a
path of length at most rad(G). The center of G is the set of vertices such that all other
vertices ofG can be reached via a path of length at most rad(G). We will often consider
various forms of trees, i.e., connected acyclic graphs, as they form the backbone of
branch decompositions. Let T be an undirected tree. We will always assume that T is
rooted (in some arbitrary vertex r) and hence the parent and child relationships between
its vertices are well-defined. We say that T is ternary if every non-leaf vertex of T has
degree exactly three. We will write pT (t) (or just p(t) if T is clear from the context) to
denote the parent of t ∈ V (T ) in T . We also write Tt to denote the subtree of T rooted
in t, i.e., the component of T \ {{t, pT (t)}} containing t. For a tree T , we denote by
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h(T ), the height of T , i.e., the length of a longest path between the root and any leaf of
T plus one. It is well-known that every tree has at most two center vertices, moreover,
if it has two center vertices then they form the endpoints of an edge in the tree.

Let H be a hypergraph. Every subset E of E(H) defines a cut of H , i.e., the pair
(E,E(H) \ E). We denote by δH(E) (or just δ(E) if H is clear form the context) the
set of cut vertices of E in H , i.e., δ(E) contains all vertices incident to both an edge in
E and an edge in E(H) \ E. Note that δ(E) = δ(E(H) \ E).
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Fig. 1: A hypergraph H (left) and an optimal branch decomposition (T, γ) of H (right).
The labels of the leaves of T are the edges assigned to them by γ and the labels of the
edges of T are the cut vertices of that edge.

A branch decomposition B(H) of H is a pair (T, γ), where T is a ternary tree and
γ : L(T )→ E(H) is a bijection between the edges of H and the leaves of T (denoted
by L(T )). For simplicity, we write γ(L) to denote the set { γ(l) | l ∈ L } for a set of
leaves L of T and we also write δ(T ′) instead of δ(γ(L(T ′))) for a subtree T of T ′.
For an edge e of T , we denote by δB(e) (or simply δ(e) if B is clear from the context),
the set of cut vertices of e, i.e., the set δ(T ′), where T ′ is any of the two components of
T \ {e}. Observe that δB(e) consists of the set of all vertices v such that there are two
leaves l1 and l2 of T in distinct components of T \ {e} such that v ∈ γ(l1) ∩ γ(l2).
The width of an edge e of T is the number of cut vertices of e, i.e., |δB(e)| and the
width of B is the maximum width of any edge of T . The branchwidth bw(H) of H
is the minimum width over all branch decompositions of H (or 0 if |E(G)| = 0 and
H has no branch decomposition). We also define the depth of B as the radius of T .
Fig. 1 illustrates a branch decomposition of a small hypergraph. In the figure and in the
remainder of the paper we will often denote a set {1, 2, 3, A} of vertices as 123A. We
will use the following property of branch decompositions.

Proposition 1. Let B := (T, γ) and B′ := (T ′, γ′) be two branch decompositions
of the same hypergraph H . Then there is bijection α : V (T ) → V (T ′) between the
vertices of T such that l ∈ L(T ) if and only if α(l) ∈ L(T ′) and moreover γ(l) =
γ′(α(l)) for every l ∈ L(T ). In other words w.l.o.g. one can assume that B and B′
differ only in terms of the edges of T and T ′.
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Partitions As partitions play an important role in our reformulation of branchwidth, we
recall some basic terminology. A partition of a set S is a set P of nonempty subsets
of S such that any two sets in P are disjoint and S is the union of all sets in P . The
elements of P are called equivalence classes. Let P, P ′ be partitions of S. Then P ′ is
a refinement of P if for any two elements x, y ∈ S that are in the same equivalence
class of P ′ are also in the same equivalence class of P (this entails the case P = P ′).
Moreover, we say that P ′ is a k-ary refinement of P if additionally it holds that for
every p ∈ P there are p1, . . . , pk in P ′ such that p =

⋃
1≤i≤k pi.

3 Partition-based Reformulation of Branchwidth

One might be tempted to think that the original characterization of branch decomposi-
tions as ternary trees leads to a very natural and efficient SAT encoding for the existence
of a branch decomposition of a certain width. In particular, in the light of Proposition 1
one could encode the branch decomposition as a formlula by fixing all vertices of the
tree (as well as the bijection on the leaves) and then employing variables to guess the
children for each inner vertex of the tree. We have tried this approach, however, to our
surprise the performance of the encoding based on this characterization of branch de-
composition was very poor. We therefore opted to develop a different encoding based
on a new partition-based characterization of branch decomposition which we will in-
troduce next. Compared to this, the original encoding was clearly inferior, resulting in
an encoding size that was always at least twice as large and overall solving times that
where longer by a factor of 3-10, even after several rounds of fine-tuning and experi-
menting with natural variants.

Let H be a hypergraph. A derivation P of H of length l is a sequence (P1, . . . , Pl)
of partitions of E(G) such that:

D1 P1 = { {e} | e ∈ E(H) } and Pl = {E(H)} and
D2 for every i ∈ {1, . . . , l − 1}, Pi is a 2-ary refinement of Pi+1 and
D3 Pl−1 is a 3-ary refinement of Pl.

The width of P is the maximum size of δH(E) over all sets E ∈ ⋃1≤i<l Pi. We
will refer to Pi as the i-th level of the derivation P and we will refer to elements in⋃

1≤i≤l Pi as sets of the derivation. We will show that any branch decomposition can
be transformed into a derivation of the same width and also the other way around. The
following example illustrates the close connection between branch decompositions and
derivations.

Example 1. Consider the branch decomposition B given in Fig. 1. Then B can, e.g., be
translated into the derivation P = (P1, . . . , P5) defined by:

P1 =
{{

129
}
,
{
35
}
,
{
45
}
,
{
3A
}
,
{
14
}
,
{
28
}
,
{
38
}
,
{
29
}}

P2 =
{{

129
}
,
{
35
}
,
{
45, 3A

}
,
{
14
}
,
{
28
}
,
{
38
}
,
{
29
}}

P3 =
{{

129
}
,
{
35, 45, 3A

}
,
{
14
}
,
{
28, 38

}
,
{
29
}}

P4 =
{{

129
}
,
{
35, 45, 3A, 14

}
,
{
28, 38, 29

}}
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P5 =
{{

129, 35, 45, 3A, 14, 28, 38, 29
}}

The width of B is equal to the width of P .

The following theorem shows that derivations provide an alternative characteriza-
tion of branch decompositions.

Theorem 1. Let H be a hypergraph and w and d two integers. H has a branch decom-
position of width at most w and depth at most d if and only if H has a derivation of
width at most w and length at most d.

One important parameter influencing the size of the encoding for the existence of a
derivation is the length of the derivation. The next theorem shows a tight upper bound on
the length of any derivation required to rule out the existence of a branch decomposition.
Observe that a simple caterpillar (i.e., a path where each inner vertex has one additional
“pending” neighbor) shows that the bound given below is tight. The main observations
behind the following theorem are that every branch decomposition has depth at most
b|E(H)|/2c and moreover for certain branch decompositions one can further reduce
its depth by replacing subtrees at the bottom of the branch decomposition containing at
most dw/ee leaves with complete binary subtrees of height at most dlogbw/ece.

Theorem 2. Let H be a hypergraph, e the maximum size over all edges of H , and w
an integer. Then the branchwidth of H is at most w if and only if H has a derivation of
width at most w and length at most b|E(H)|/2c − dw/ee+ dlogbw/ece.

4 Encoding

LetH be a hypergraph withm edges and n vertices, and letw and d be positive integers.
We will assume that the vertices of H are represented by the numbers from 1 to n and
the edges of H by the numbers from 1 to m. The aim of this section is to construct a
formula F (H,w, d) that is satisfiable if and only if H has derivation of width at most
w and length at most d. Because of Theorem 2 (after setting d to the value specified in
the theorem) it holds that F (H,w, d) is satisfiable if and only if H has branchwidth at
most w. To achieve this aim we first construct a formula F (H, d) that is satisfiable if
and only if H has a derivation of length at most d and then we extend this formula by
adding constrains that restrict the width of the derivation to w.

4.1 Encoding of a Derivation of a Hypergraph

The formula F (H, d) uses the following variables. A set variable s(e, f, i), for every
e, f ∈ E(H) with e < f and every i with 0 ≤ i ≤ d. Informally, s(e, f, i) is true
whenever e and f are contained in the same set at level i of the derivation. A leader
variable l(e, i), for every e ∈ E(H) and every i with 0 ≤ i ≤ d. Informally, the leader
variables will be used to uniquely identify the sets at each level of a derivation, i.e.,
l(e, i) is true whenever e is the smallest edge in a set at level i of the derivation.

We now describe the clauses of the formula. The following clauses ensure (D1) and
that the derivation is a sequence of refinements.
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(¬s(e, f, 0)) ∧ (s(e, f, d)) ∧ (¬s(e, f, i) ∨ s(e, f, i+ 1))
for e, f ∈ E(H), e < f , 1 ≤ i < d

The following clauses ensure that the relation of being in the same set is transitive.

(¬s(e, f, i) ∨ ¬s(e, g, i) ∨ s(f, g, i))
∧(¬s(e, f, i) ∨ ¬s(f, g, i) ∨ s(e, g, i))
∧(¬s(e, g, i) ∨ ¬s(f, g, i) ∨ s(e, f, i)) for e, f, g ∈ E(H), e < f < g, 1 ≤ i ≤ d

The following clauses ensure that l(e, i) is true if and only if e is the smallest edge
contained in some set at level i of a derivation.

(l(e, i) ∨
∨

f∈E(H),f<e

s(f, e, i))

︸ ︷︷ ︸
A

∧
∧

f∈E(H),f<e

(¬l(e, i) ∨ ¬s(f, e, i))

︸ ︷︷ ︸
B

for e ∈ E(H), 1 ≤ i ≤ d
Part A ensures that e is a leader or it is in a set with an edge which is smaller than e
and the part B ensures that if e is not in same set with any smaller edge then it is a
leader. The following clauses ensure that at most two sets in the partition at level i can
be combined into a set in the partition at level i+1, i.e., together with the clauses above
it ensures (D2).

¬l(e, i) ∨ ¬l(f, i) ∨ ¬s(e, f, i+ 1) ∨ l(e, i+ 1) ∨ l(f, i+ 1)

for e, f ∈ E(H), e < f , 1 ≤ i < d− 1
The following clauses ensure that at most three sets in the partition at level d − 1 can
be combined into a set in the partition at level d , i.e., together with the clauses above it
ensures (D3).

¬l(e, d− 1) ∨ ¬l(f, d− 1) ∨ ¬l(g, d− 1) ∨ ¬s(e, f, d) ∨ ¬s(e, g, d)
∨l(e, d) ∨ l(f, d) ∨ l(g, d) for e, f, g ∈ E(H), e < f < g

All of the above clauses together ensure (D1), (D2), and (D3). We also add the following
redundant clauses.

l(e, i) ∨ ¬l(e, i+ 1) for e ∈ E(H), 1 ≤ i < d

These clauses use the observation that if an edge is not a leader at level i then it cannot
be a leader at level i+ 1. The formula F (H, d) contains at most O(m2d) variables and
O(m3d) clauses.

4.2 Encoding of a Derivation of Bounded Width

Next we describe how F (H, d) can be extended to restrict the width of the derivation.
The main idea is to first identify the set of cut vertices for the sets in the derivation
and then restrict their sizes. To this end we first need to introduce new variables (and
later clauses), which allow us to identify cut vertices of edge sets in the derivation. In
particular, we introduce a cut variable c(e, u, i) for every e ∈ E(H), u ∈ V (H) and i
with 1 ≤ i ≤ d. Informally, c(e, u, i) is true if u is a cut vertex of the set containing e
at level i of the derivation. In order to restrict the size of the sets of cut vertices later on
we do not need the reverse direction of the previous statement. Recall that a vertex u is
a cut vertex for some set p of the derivation if there are two distinct edges incident to u
such that one of them is contained in p and the other one is not.
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Table 1: An illustration of the behavior of the
sequential counter for the case that H has six
vertices (labeled from 1 to 6) and w = 4. The
first column identifies the vertex u, the second
column gives the value of the variable c(e, u, i)
for a fixed edge e and a fixed level i and the
last four columns give the values of the variables
#(e, u, i, j).

u c(e, u, i)
j

1 2 3 4
1 0 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 0 1 1 0 0
5 1 1 1 1 0
6 0 1 1 1 0

Defining the Cut Vertices In the following we will present an encoding that has turned
out to give the best results in our case. The main idea behind the encoding is to only
define the variables c(e, u, i) for the leading edges e in the current derivation.

The following clauses ensure that whenever two edges incident to a vertex are not in
the same set at level i of the derivation, then the vertex is a cut vertex for every leading
edge of the sets containing the incident edges.

¬l(e, i) ∨ c(e, u, i) ∨ s(min{e, f},max{e, f}, i) ∨ ¬s(min{e, g},max{e, g}, i)
for e, f, g ∈ E(H), e 6= f , e 6= g, u ∈ V (H), u ∈ f , u ∈ g, 1 ≤ i ≤ d

¬l(e, i) ∨ s(min{e, f},max{e, f}, i) ∨ c(e, u, i)

for e, f ∈ E(H), e 6= f , u ∈ V (H), u ∈ e, u ∈ f , 1 ≤ i ≤ d
Additionally, we add the following redundant clauses that ensure the “monotonic-

ity” of the cut vertices, i.e., if u is a cut vertex for a set at level i and for the correspond-
ing set at level i+ 2, then it also has to be a cut vertex at level i+ 1.

¬l(e, i) ∨ ¬l(e, i+ 1) ∨ ¬l(e, i+ 2) ∨ ¬c(e, u, i) ∨ ¬c(e, u, i+ 2) ∨ c(e, u, i+ 1))

for e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d− 2
The definition of cut vertices adds at mostO(mnd) variables and at mostO(m3nd)

clauses.

Restricting the Size of the Cuts Next we describe how to restrict the size of all sets of
cut vertices to w and thereby complete the encoding of F (H,w, d). In particular, our
aim is to restrict the number of vertices u ∈ V (H) for which a variable c(e, u, i) is true
for some e ∈ E(H) and 1 ≤ i ≤ d. In this paper we will only present the sequential
counter approach [18] since this approach has turned out to provide the best results in
our setting. We also considered the order encoding [11] with less promising results.
For the sequential counter, we will introduce a counter variable #(e, u, i, j) for every
e ∈ E(H), u ∈ V (H), 1 ≤ i ≤ d, 1 ≤ j ≤ w.

The idea of the sequential counter is illustrated in Table 1. Informally, #(e, u, i, j)
is true if u is the lexicographically j-th cut vertex of the edge edge e. We need the
following clauses.

(¬#(e, u− 1, i, j) ∨ #(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u− 1, i, j − 1))
∨#(e, u, i, j)) ∧ (¬c(e, u, i) ∨ ¬#(e, u− 1, i, w))

for e ∈ E(H), 2 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d, 1 ≤ j ≤ w
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¬c(e, u, i) ∨ #(e, u, i, 1) for e ∈ E(H), 1 ≤ u ≤ |V (H)|, 1 ≤ i ≤ d
This completes the construction of the formula F (H,w, d). In total F (H,w, d) has

at mostO(m2d+mndw) ⊆ O(m3+m2n2) variables and at mostO(m3nd+mndw) ⊆
O(m4n+m2n2) clauses. By construction, F (H,w, d) is satisfiable if and only H has
a derivation of width at most w and length at most d. Because of Theorem 1, we obtain:

Theorem 3. The formula F (H,w, d) is satisfiable if and only if H has a branch de-
composition of width at most w and depth at most d. Moreover, a corresponding branch
decomposition can be constructed from a satisfying assignment of F (H,w, d) in linear
time in terms of the number of variables of F (H,w, d).

5 Local Improvement
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Fig. 2: A branch decomposition B of the graph H given in Fig. 3 together with an
example of a local branch decomposition BL (highlighted by thicker edges) chosen by
our algorithm.

The encoding presented in the previous sec-
tion allows us to compute the exact branch-
width of hypergraphs up to a certain size. Due
to the instinct difficulty of the problem one
can hardly hope to go much further beyond
this size barrier with an exact method. In this
section we therefore propose a local improve-
ment approach that employs our SAT encod-
ing to improve small parts of an heuristically
obtained branch decomposition. Our local im-
provement procedure can be seen as a kind of
local search procedure that at each step tries
to replace a part of the branch decomposition
with an better one found by means of the SAT
encoding and repeats this process until a fixed-
point (or timeout) is reached.
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Fig. 3: The graph H used to illustrate
the main idea behind our local im-
provement procedure.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
6-
00
4



29

3828

28

38

23

29

6714

14

6

1646

46

16

14
6 146

3A45

45

3

35

35

345

34
14

0912
12

09

0201

01

02

01
2

0129

129

1
3

239

Fig. 4: The improved branch decomposition B′ obtained from B after replacing the
local branch decomposition BL of H(TL) with an optimal branch decomposition B′L of
H(TL) obtained from our SAT encoding. See Fig. 2 for an illustration of B and BL.

Let H be a hypergraph and B := (T, γ) a branch decomposition of H . For a
connected ternary subtree TL of T we define the local branch decomposition BL :=
(TL, γL) of B by setting γL(l) = δB(e) for every leaf l ∈ L(TL), where e is the
(unique) edge incident to l in TL. We also define the hypergraph H(TL) as the hyper-
graph that has one (hyper-)edge γL(l) for every leaf l of TL and whose vertices are
defined as the union of all these edges. We observe that BL is a branch decomposition
of H(TL). The main idea behind our approach, which we will formalize below, is that
we can obtain a new branch decomposition of H by replacing the part of B formed
by BL with any branch decomposition of H(TL). In particular, by replacing BL with a
branch decomposition ofH(TL) of lower width, we will potentially improve the branch
decomposition B. This idea is illustrated in Fig. 2 and Fig. 4.
input : A hypergraph H
output: A branch decomposition of H

B ← BDHeuristic(H) // (B := (T, γ))
improved← true
while improved do

M ← “the set of edges e of B whose width
(|δB(e)|) is maximum”
C ← “the set of components of T [M ]”
improved← false
for C ∈ C do
BL ← LocalBD (B, C)
B′L ← ImproveLD (BL)
if B′L 6= NULL then
B ← Replace (B, BL, B′L)
improved← true

else
break

Algorithm 1: Local Improvement

input : A branch decomposition
B := (T, γ) of H and a branch
decomposition BL := (TL, γL)
of H(TL)

output: An “improved” branch
decomposition of H(TL)

if |TL| >globalbudget then
return NULL

w ← “the width of BL”
repeat
BD ← SATSolve(H(TL), w)
if BD 6= NULL then
B′L ← BD

w ← w − 1

until BD == NULL
return B′L

Algorithm 2: ImproveLD

A general outline of our algorithm is given in Algorithm 1. The algorithm uses
two global parameters: globalbudget gives an upper bound on the size of the lo-
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input : A branch decomposition B := (T, γ) of H and a component C of T
output: A local branch decomposition of B

1 w ← “the width of B”
2 TL ← C
3 for c ∈ V (C) with degC(c) = 2 do
4 “add the unique third neighbor and its edge incident to c to TL”
5 Q← “the set of leaves of TL”
6 while Q 6= ∅ and |TL| ≤globalbudget −2 do
7 l← Q.pop()
8 if “l is not a leaf of T” then
9 c, c′ ← “the two neighbors of l in T which are not neighbors of l in TL”

10 if δB({l, c}) < w and δB({l, c′}) < w then
11 “add c and c′ together with their edges incident to l to TL”
12 Q.push(c)
13 Q.push(c′)
14 return “the local branch decomposition of B represented by TL”

Algorithm 3: Local Selection (LocalBD)

cal branch decomposition and the function length(H,w), which is only used by
the function SATSolve explained below, provides an upper bound on the length of a
derivation which will be considered by our SAT encoding.

Given a hypergraph H , the algorithm first computes a (not necessarily optimal)
branch decomposition B := (T, γ) of H using, e.g., the heuristics from [6, 13]. The
algorithm then computes the setM of maximum cut edges of T , i.e., the set of edges e of
T with |δ(e)| = w, where w is the width of B. It then computes the set C of components
of T [M ] and for every component C ∈ C it calls the function LocalBD to obtain a
local branch decomposition BL := (TL, γL) of B, which contains (at least) all the edges
of C. The function LocalBD is given in Algorithm 3 and will be described later. Given
BL the algorithm tries to compute a branch decomposition B′L := (T ′L, γ

′
L) of H(TL)

with smaller width than BL using the function ImproveLD, which is described later.
If successful, the algorithm updates B by replacing the part of B represented by TL with
B′L according to Theorem 4 and proceeds with line 4. If on the other hand BL cannot be
improved, the algorithm proceeds with the next component C of T [M ]. This process is
repeated until none of the components C of T [M ] lead to an improvement.

The function LocalBD, which is given in Algorithm 3, computes a local branch
decomposition BL := (TL, γL) of B that contains at least all edges in the component
C and which should be small enough to ensure solvability found by our SAT encoding
as follows. In the beginning TL is set to the connected ternary subtree of T obtained
from T [C] after adding the (unique) third neighbor of any vertex v of C that has degree
exactly two in T [C]. It then proceeds by processing the (current) leaves of TL in a
breadth first search manner, i.e., in the beginning all the leaves of TL are put in a first-in
first-out queue Q. If l is the current leaf of TL, which is not a leaf of T , the algorithm
adds the two additional neighbors of l in T to TL and adds them to Q. It proceeds in
this manner until the number of edges in TL does exceed the global budget.
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The function ImproveLD tries to compute a branch decomposition ofH(TL) with
lower width than BL using our SAT encoding. In particular, if the size of TL does
not exceed the global budget (in which case it would be highly unlikely that a lower
width branch decomposition can be found using our SAT encoding), the function calls
the function SATSolve with decreasing widths w until SATSolve does not return
a branch decomposition any more. Here, the function SATSolve uses the formula
F (H(TL), w, d) from Theorem 3 with d set to length(H,w) to test whether H(TL)
has a branch decomposition of width at most w and depth at most d. If so (and if
the SAT-solver solves the formula within a predefined timeout) SATSolve returns the
corresponding branch decomposition; otherwise it returns NULL.

Last but not least the function Replace replaces the part of B represented by BL
with the new branch decomposition B′L according to Theorem 4.

Let H be a hypergraph, B := (T, γ) a branch decomposition of H , TL a connected
ternary subtree of T , BL := (TL, γL) be the local branch decomposition of B corre-
sponding to TL, and let B′L := (T ′L, γ

′) be any branch decomposition of H(TL). Note
that because BL and B′L are branch decompositions of the same hypergraph H(TL), we
obtain from Proposition 1 that we can assume that V (TL) = V (T ′L) and γ = γ′. We
define the locally improved branch decomposition, denoted by B(BL

B′
L
), to be the branch

decomposition obtained from B by replacing the part corresponding to BL with B′L, i.e.,
the tree of B′ is obtained from T by removing all edges of TL from T and replacing
them with the edges of T ′L and the bijection of B′ is equal to γ.

Theorem 4. B(BL

B′
L
) is a branch decomposition of H , whose width is the maximum the

width of B′L and maximum width over all edges e ∈ E(T ) \ E(TL) in B.

6 Experimental Results

We have implemented the single SAT encoding and the SAT-based local improvement
method and tested them on various benchmark instances, including famous named
graphs from the literature [21], graphs from TreewidthLIB [5] which origin from a
broad range of applications, and a series of circular clusters [7] which are hypergraphs
denoted Ce

v with v vertices and v edges of size e. Throughout we used the SAT-solver
Glucose 4.0 (with standard parameter setting) as it performed best in our initial tests
compared to other solvers such as GlueMiniSat 2.2.8, Lingeling, and Riss 4.27. We run
the experiments on a 4-core Intel Xeon CPU E5649, 2.35GHz, 72 GB RAM machine
with Ubuntu 14.04 with each process having access to at most 8 GB RAM.

6.1 Single SAT Encoding

To determine the branchwidth of a graph or hypergraph with our encoding, one could
either start from w = 1 and increase w until the formula becomes satisfiable, or by
setting w to an upper bound on the branchwidth obtained by a heuristic method, and
decrease it until the formula becomes unsatisfiable. For both approaches the solving
time at the threshold (i.e., for the largest w for which the formula is unsatisfiable) is,
as one would expect, by far the longest. Table 2 shows this behavior on some typical
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Table 2: Distribution of solving time in seconds for various values ofw for some famous
named graphs of branchwidth 6.

w 2 3 4 5 6 7 8 9 10

Graph unsat unsat unsat unsat sat sat sat sat sat

Kittell 19.5 87.6 400.8 204.7 103.3 40.4 22.5 18.5 11.2
Errera 5.7 22.7 79.4 1530.9 12.0 7.3 6.7 5.4 6.1
Folkman 3.4 13.7 98.6 2747.0 6.1 5.3 3.7 3.8 5.2
Poussin 3.3 9.2 68.7 941.2 4.5 3.5 3.9 2.9 3.4

Table 3: Exact branchwidth w of famous named graphs known from the literature. Col-
umn d indicates the smallest depth of a branch decomposition of width w for the con-
sidered graph.

Graph |V | |E| w d

Watsin 50 75 6 8
Kittell 23 63 6 8
Holt 27 54 9 9
Shrikhande 16 48 8 7
Errera 17 45 6 7
Brinkmann 21 42 8 7
Clebsch 16 40 8 7
Folkman 20 40 6 7
Paley13 13 39 7 7
Poussin 15 39 6 7
Robertson 19 38 8 7

Graph |V | |E| w d

McGee 24 36 7 7
Nauru 24 36 6 7
Hoffman 16 32 6 6
Desargues 20 30 6 6
Dodecahedron 20 30 6 6
Flower Snark 20 30 6 6
Goldner-Harary 11 27 4 6
Pappus 18 27 6 6
Sousselier 16 27 5 6
Chvátal 12 24 6 6
Grötzsch 11 20 5 6

Graph |V | |E| w d

Dürer 12 18 4 6
Franklin 12 18 4 6
Frucht 12 18 3 6
Herschel 11 18 4 6
Tietze 12 18 4 6
Petersen 10 15 4 6
Pmin 9 12 3 5
Wagner 8 12 4 5
Moser spindle 7 11 3 6
Prism 6 9 3 5
Butterfly 5 6 2 3

instances. Hence whether we determine the branchwidth from below or from above
does not matter much. A more elaborate binary search strategy could save some time,
but overall the expected gain is little compared to the solving time at the threshold.
The size of the encoding is manageable for graphs and hypergraphs for up to about
100 edges. The solving time varies and depends on the structure of the (hyper)graph.
We could determine the exact branchwidth of many famous graphs known from the
literature, see Table 3. For many of the graphs the exact branchwidth has not been
known before. We also tested the encoding on circular cluster hypergraphs Ci

2i−1. We
were able to solve instances up to the hypergraph C26

51 , for which we established a
branchwidth of 42.

6.2 SAT-Based Local Improvement

We tested our local improvement method on graphs with several thousands of vertices
and edges and with initial branch decomposition of width over 200. In particular, we
tested it on all graphs from TreewidthLIB omitting graphs that are minors from other
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Table 4: Results for SAT-based local improvement for instances from TreewidthLIB.
Column iw gives the width of the initial branch decomposition, w the width of the
branch decomposition obtained by local improvement.

Graph |V | |E| iw w

inithx.i.2-pp 363 8897 55 45
fpsol2.i.2-pp 333 7910 48 39
fpsol2.i.3-pp 333 7907 48 39
graph13 458 1877 141 134
fpsol2.i.3 425 8688 53 48
graph13pp-pp 374 1722 133 128
graph09-pp 405 1525 128 123
bn 31-pp 1148 3317 40 36
bn 4 100 574 42 38
celar08-pp-003 76 421 20 16
celar08pp-pp.dgf-034 76 421 20 16
celar09-pp-002 76 421 20 16

Graph |V | |E| iw w

celar10-pp-002 76 421 20 16
fpsol2.i.2 451 8691 53 49
graph05-wpp 94 397 28 24
graph04-pp 179 678 52 48
nrw1379.tsp 1379 4115 42 38
nrw1379.tsp-pp 1367 4081 42 38
bn 36 1444 4181 45 42
inithx.i.1-pp 317 12720 68 65
u724.tsp 724 2117 29 26
water-wpp 22 96 11 8
celar05-pp 80 426 18 15
mulsol.i.2-pp 116 2468 62 59

graphs as well as small graphs with 80 or fewer edges (small graphs can be solved with
the single SAT encoding). These are in total 684 graphs with up to 5934 vertices and
17770 edges. We ran our SAT-based local improvement algorithm on each graph with a
timeout of 6 hours, where each SAT-call had a timeout of 600 seconds. We used a global
budget of 80 and set the depth to 0.6 times the upper bound provided by Theorem 2. We
computed the initial branch decomposition by a greedy heuristic kindly provided to us
by Hicks [12].

From the 684 graphs, our SAT-based local improvement algorithm could improve
the width of the initial branch decomposition for 290 graphs. In some cases the im-
provement was significant. Table 4 shows the graphs with the best improvement.

6.3 Discussion

As discussed earlier, we are aware of only two implemented algorithms that determine
the exact branchwidth of a graph or hypergraph: Hick’s combinatorial algorithm based
on tangles [12], and Ulusal’s integer programming encoding [20]. Since neither of the
two implementations are available to the public, we were not able to provide an up-
to-date comparision with their approaches but instead performed the comparision with
respect to the results stated in the papers. It should therefore be taken into account that
hardware and software improved since the time their results were obtained. As Ulusal
[20] reports, the integer programming encoding could not solve hypergraphs with more
than 13 edges, for instance, it could only solve the circular clusters Ci

2i−1 up to i = 7,
whereas we could go up to i = 26.

Because of the high branchwidth of these hypergraphs, they are also far out of reach
for the tangles-based algorithm. On small graphs the tangles-based algorithm and our
SAT encoding perform similarly. For very small branchwidth the tangles-based algo-
rithm can deal with larger graphs (according to [12]) whereas our SAT encoding can
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deal with graphs with larger branchwidth. These differences in scalability can be ex-
plained by the space requirements of the two approaches: The tangles-based algorithm
requires space that is exponential in the branchwidth, whereas our SAT encoding re-
quires polynomial space that depends only linearly on the branchwidth.

Our experiments show that the SAT-based local improvement approach scales well
to large graphs with several thousands of vertices and edges and branchwidth upper
bounds well over hundred. These are instances that are by far out of reach for any known
exact method, in particular, for the tangles-based algorithm which cannot handle large
branchwidth. The use of our SAT encoding which scales well with the branchwidth is
therefore essential for these instances.

Our results on TreewidthLIB instances show that in some cases the obtained im-
provement can make a difference of whether a dynamic programming algorithm that
uses the obtained branch decomposition is feasible or not.

7 Final Remarks

We have presented a first SAT encoding for branchwidth and introduced the new method
of SAT-based local improvements for branch decompositions. Both methods are based
on a novel partition-based formulation of branch decompositions. Our experiments
show that the single encoding outperforms a known integer programming method and
performs competitively with the best known combinatorial method. Our SAT-based lo-
cal improvement method provides the means for scaling the SAT-approach to much
larger instances and exhibits a fruitful new application field of SAT solvers.

For both the single SAT encoding and the SAT-based local improvement we see sev-
eral possibilities for further improvement. For the encoding one can try other ways for
stating cardinality constraints and one could apply incremental SAT solving techniques.
Further, one could consider alternative encoding techniques based on MaxSAT, which
have been shown effective for related problems [4]. For the local improvement we see
various directions for further research. For instance, when a local branch decomposi-
tion cannot be improved, one could use the SAT solver to obtain an alternative branch
decomposition of the same width but where other parameters are optimized, e.g., the
number of maximum cuts. This could propagate into adjacent local improvement steps
and yield an overall branch decomposition of smaller width.

Finally we would like to mention that branch decompositions are the basis for sev-
eral other (hyper)graph width measures such as rankwidth and Boolean-width [1], and
we leave the investigation on how our approaches can be extended to these width mea-
sures for future research.
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width heuristics and acknowledge support by the Austrian Science Fund (FWF, projects
W1255-N23 and P-27721).
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14. Petr Hliněný and Sang-il Oum. Finding branch-decompositions and rank-decompositions.

SIAM J. Comput., 38(3):1012–1032, 2008.
15. Kalev Kask, Andrew Gelfand, Lars Otten, and Rina Dechter. Pushing the power of stochastic

greedy ordering schemes for inference in graphical models. In Wolfram Burgard and Dan
Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

16. Arnold Overwijk, Eelko Penninkx, and Hans L. Bodlaender. A local search algorithm for
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puter Science, Nový Smokovec, Slovakia, January 22-28, 2011. Proceedings, volume 6543
of Lecture Notes in Computer Science, pages 444–454. Springer, 2011.

17. Neil Robertson and P. D. Seymour. Graph minors X. Obstructions to tree-decomposition. J.
Combin. Theory Ser. B, 52(2):153–190, 1991.

18. Marko Samer and Helmut Veith. Encoding treewidth into SAT. In Theory and Applications
of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science,
pages 45–50. Springer Verlag, 2009.

19. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–
241, 1994.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
6-
00
4



20. Elif Ulusal. Integer Programming Models for the Branchwidth Problem. PhD thesis, Texas
A&M University, May 2008.

21. Eric Weisstein. MathWorld online mathematics resource. http://mathworld.wolfram.com.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
6-
00
4


