
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-15-010
December 2015

Complexity of theWinner
Determination Problem in
Judgment Aggregation:
Kemeny, Slater, Tideman,
Young

Ulle Endriss and Ronald de Haan

This is the authors’ copy of a paper that appeared in the proceedings of AAMAS2015,
pp. 117–125, IFAAMAS/ACM, 2015.

www.ac.tuwien.ac.at/tr

Complexity of the Winner Determination Problem in
Judgment Aggregation: Kemeny, Slater, Tideman, Young

Ulle Endriss
ILLC, University of Amsterdam

ulle.endriss@uva.nl

Ronald de Haan
Technische Universität Wien
dehaan@kr.tuwien.ac.at

ABSTRACT
Judgment aggregation is a collective decision making frame-
work where the opinions of a group of agents is combined
into a collective opinion. This can be done using many differ-
ent judgment aggregation procedures. We study the com-
putational complexity of computing the group opinion for
several of the most prominent judgment aggregation proce-
dures. In particular, we show that the complexity of this
winner determination problem for analogues of the Kemeny
rule, the Slater rule and the Young rule lies at the Θp

2-level of
the Polynomial Hierarchy (PH). Moreover, we show that the
problem has a complexity at the ∆p

2-level of the PH for the
analogue of Tideman’s procedure with a fixed tie-breaking
rule, and at the Σp

2-level of the PH for the analogue of Tide-
man’s procedure without a fixed tie-breaking rule.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms
Theory

Keywords
Judgment Aggregation; Winner Determination; Complexity
Theory; Bounded Query Complexity

1. INTRODUCTION
Collective decision making is central in the area of multia-
gent systems [6]. Judgment aggregation is a collective deci-
sion making framework that can be used for many applica-
tions [12, 17, 23]. In judgment aggregation, the goal is to
combine the opinions of a group of individuals (or agents)
on a set of propositions into a collective opinion reflecting
the views of the group as a whole. As such, judgment ag-
gregation generalizes the setting of preference aggregation,
where the opinions are restricted to preferences over a given
domain of alternatives [9]. There are many ways (or pro-
cedures) to combine the individual opinions, and choosing
between such procedures involves deciding between various

Appears in: Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2015), Bordini, Elkind, Weiss, Yolum
(eds.), May 4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

desirable properties that such procedures can have. Some
of the most salient desiderata for these procedures are that
they are consistent (that is, the resulting group opinion is a
tenable position) and complete (that is, for each proposition,
the resulting group opinion takes a clear position).

Another important property of judgment aggregation pro-
cedures concerns their computational complexity, i.e., the
amount of time it takes to compute the group opinion. In
this paper, expanding on previous work [13, 21], we study
the computational complexity of the winner determination
problem for several of the most prominent judgment ag-
gregation procedures that are complete and consistent. In
particular, we study the judgment aggregation analogues of
the Kemeny rule, the Slater rule and the Young rule, as
well as two variants of Tideman’s Ranked-Pairs rule (whose
judgment aggregation analogue we call the Ranked-Agenda
rule), all familiar from voting theory and preference aggre-
gation [5].

Concretely, we study two different computational prob-
lems for the various procedures, one decision problem and
one search problem. We consider the problem of deciding
whether there exists an outcome that is deemed acceptable
by the judgment aggregation procedure and that satisfies a
number of additional requirements. In addition, we consider
the computational task of producing one such acceptable
outcome, if it exists. We argue that this latter formalization
of the problem more adequately models the relevant compu-
tational properties of the various procedures. We show that
the complexity (of both the decision and the search problem)
for the Kemeny, Slater and Young rules lies at the Θp

2-level
of the Polynomial Hierarchy (PH). Interestingly, these rules
have exactly the same complexity in the setting of prefer-
ence aggregation. In addition, we show that the complexity
of Tideman’s Ranked-Agenda procedure lies at the ∆p

2-level
of the PH, in case of a fixed tie-breaking rule, and lies at the
Σp

2-level of the PH in case ties can be broken in arbitrary
ways. It is interesting that both variants of the Ranked-
Agenda rule are of higher computational complexity than
the other three rules we consider in the setting of judgment
aggregation, whereas in the case of preference aggregation
both variants are of lower complexity than these rules. An
overview of the complexity results that we obtain in this
paper can be found in Table 1.

Understanding the complexity of the winner determina-
tion problem is a first step to making these important, but
generally highly intractable, procedures amenable to practi-
cal use in multiagent systems and related fields requiring the
consistent aggregation of information coming from several

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

autonomous agents, or more generally, independent sources
of information. Determining the exact location of these
problems in the PH is very useful for determining what algo-
rithmic approaches are best-suited to solve the problems in
practice. For problems at the Θp

2-level and at the ∆p
2-level,

for instance, the method of iterative SAT solving could be
used, which is generally more efficient than solving methods
for problems at the Σp

2-level.

Related Work.
The computational complexity of the winner determination
problem has been studied before, by Endriss et al. [13] for
several procedures including the Kemeny rule, and by Lang
and Slavkovik [21] for several procedures, including the Slater
rule, the Kemeny rule and the variant of the Ranked-Agenda
procedure without a fixed tie-breaking rule. However, those
previous works consider different formalizations of the com-
putational task of winner determination. First, they study
only decision problems (and no search problems) [13, 21].
Second, the problems studied by Lang and Slavkovik in-
volve checking whether all outcomes satisfy a certain prop-
erty, rather than some outcome [21]. The computational
complexity of various other computational tasks in judg-
ment aggregation has also been studied, including problems
related to manipulation, bribery and control [1, 3, 4, 8, 13].

Structure of the Paper.
We begin, in Section 2, with reviewing notions from logic,
judgment aggregation and complexity theory. Then, in Sec-
tion 3, we formally define the computational problems that
we use to capture the task of winner determination, and
we analyze their computational complexity for the various
judgment aggregation procedures. Finally, in Section 4, we
conclude, and suggest directions for further research.

2. PRELIMINARIES
In this section we review relevant material on logic, judg-
ment aggregation and complexity theory.

2.1 Propositional Logic
A literal is a propositional variable x or a negated vari-
able ¬x. For literals l ∈ {x,¬x}, we let Var(l) = x denote
the variable occurring in l. A clause is a finite set of lit-
erals, not containing a complementary pair x, ¬x, and is
interpreted as the disjunction of these literals. We let ⊥
denote the empty clause. A formula in conjunctive normal
form (CNF) is a finite set of clauses, interpreted as the con-
junction of these clauses. We define the size ||ϕ|| of a CNF
formula ϕ to be

∑
c∈ϕ |c|; the number of clauses of ϕ is de-

noted by |ϕ|. For a CNF formula ϕ, the set Var(ϕ) denotes
the set of all variables x such that some clause of ϕ con-
tains x or ¬x. We use the standard notion of (truth) assign-
ments α : Var(ϕ) → {0, 1} for Boolean formulas and truth
of a formula under such an assignment. We let SAT denote
the problem of deciding whether a given propositional for-
mula is satisfiable. For every propositional formula ϕ, we
let ∼ϕ denote the complement of ϕ, i.e., ∼ϕ = ¬ϕ if ϕ is
not of the form ¬ψ, and ∼ϕ = ψ if ϕ is of the form ¬ψ.

2.2 Judgment Aggregation
An agenda is a finite nonempty set Φ of propositional for-
mulas that does not contain any doubly-negated formu-

las and that is closed under complementation. Moreover,
if Φ = {ϕ1, . . . , ϕm,¬ϕ1, . . . ,¬ϕm} is an agenda, then we
let [Φ] = {ϕ1, . . . , ϕm} denote the preagenda associated with
the agenda Φ. A judgment set J for an agenda Φ is a sub-
set J ⊆ Φ. We call a judgment set J complete if either ϕ ∈ J
or ∼ϕ ∈ J , for all ϕ ∈ Φ; we call it complement-free if for
all ϕ ∈ Φ it is not the case that both ϕ and ∼ϕ are in J ;
and we call it consistent if there exists a truth assignment
that makes all formulas in J true.

In addition, we associate with each agenda Φ an integrity
constraint Γ, that can be used to explicitly represent logical
dependencies between agenda issues. Integrity constraints
for agendas have been considered in previous literature [10,
21], and the notion bears resemblance to the framework of
binary aggregation with integrity constraints [15, 16]. Such
an integrity constraint Γ consists of a single propositional
formula. In the remainder of the paper, if no integrity con-
straint is specified, we implicitly assume that Γ = >. We
say that a judgment set J is Γ-consistent if there exists
a truth assignment that simultaneously makes all formulas
in J and Γ true. Let J (Φ,Γ) denote the set of all complete
and Γ-consistent subsets of Φ.

Let N be a finite set of individuals (or agents). A judg-
ment aggregation procedure (or rule) for the agenda Φ and
the set N of individuals is a function F that takes as input
a profile J ∈ J (Φ,Γ)n, consisting of a sequence (J1, . . . , Jn)
of n = |N | complete and Γ-consistent judgment sets, and
that produces a non-empty set of non-empty judgment sets,
i.e., it produces an element in P(P(Φ)\{∅})\{∅}. We call
a judgment aggregation procedure F resolute if for any
profile J it returns a singleton, i.e., |F (J)| = 1; other-
wise, we call F irresolute. An example of a resolute judg-
ment aggregation procedure is the strict majority rule Fmaj,
where ϕ ∈ Fmaj(J) if and only if ϕ occurs in the strict ma-
jority of judgment sets in J , for all ϕ ∈ Φ. We call F
complete, complement-free and (Γ-)consistent, if J is com-
plete, complement-free and (Γ-)consistent, respectively, for
every J ∈ J (Φ,Γ)n and every J ∈ F (J).

As an example, consider the following profile for a judg-
ment aggregation problem with preagenda [Φ] = {p, q, p∨q},
integrity constraint Γ = ¬(p ∧ q), and three individuals:

p q p ∨ q
individual 1 no yes yes
individual 2 yes no yes
individual 3 no no no

majority no no yes

Thus, respecting majorities leads to an inconsistent outcome
for this profile. This is an instance of the well-known dis-
cursive dilemma [22]. In this paper, we will consider several
judgment aggregation procedures that resolve this dilemma
by always picking from the set of all consistent judgment
sets. There currently is no consistent naming convention for
these aggregation procedures in the literature. Here, to iden-
tify the procedures that we consider, we use names from well-
known voting rules that most closely resemble them [5]. The
procedures that we consider have been studied as judgment
aggregation procedures before. We consider procedures that
resemble the Kemeny rule [24, 25], the Slater rule [24], the
Young rule [20], and the Ranked-Agenda rule [20, 26].

The former three aggregation procedures are based on
a notion of score. For F ∈ {Kemeny, Slater,Young}, we
define ScoreF as follows. Here J denotes a single consis-
tent and complete judgment set, J ∈ J (Φ,Γ)n denotes

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

F WinDet(F) FWinDet(F) location in the PH

Kemeny PNP[log]-complete FPNP[log,wit]-complete Θp
2-level

Slater PNP[log]-complete FPNP[log,wit]-complete Θp
2-level

Young PNP[log]-complete FPNP[log,wit]-complete Θp
2-level

Tideman (fixed tie-breaking) PNP-complete FPNP-complete ∆p
2-level

Tideman Σp
2-complete FΣp

2-complete Σp
2-level

Table 1: Overview of complexity results.

a profile, and d(J, J ′) denotes the Hamming distance be-
tween two consistent and complete judgment sets J, J ′. We
let ScoreKemeny(J,J) =

∑
1≤i≤n d(J, Ji). Moreover, we

let ScoreSlater(J,J) = d(J, Fmaj(J)), where Fmaj(J) de-
notes the (possibly inconsistent) majority outcome of a pro-
file J . Finally, we let ScoreYoung(J,J) = min{ k : there
exists a subprofile J ′ of J containing n − k judgment sets
such that J = Fmaj(J ′) }. Using these scores, we can define
the aggregation procedures WinnerF,Φ, Γ, for F ∈ {Kemeny,
Slater,Young}, as follows. We say that a Γ-consistent and
complete judgment set J∗ is in WinnerF,Φ,Γ(J) if and only
if there is no Γ-consistent and complete judgment set J such
that ScoreF(J,J) < ScoreF(J∗,J).

Intuitively, the Kemeny rule selects those complete and
consistent judgment sets that minimize the cumulative Ham-
ming distance to the judgment sets in the profile. The Slater
rule selects those complete and consistent judgment sets that
minimize the Hamming distance to the majority outcome.
The Young rule selects those complete and consistent judg-
ment sets that are the majority outcome of a subprofile of
maximal size with a consistent majority outcome.

Next, we consider the Ranked-Agenda aggregation proce-
dure. Given a profile J = (J1, . . . , Jn) ∈ J (Φ,Γ)n and a
formula ϕ ∈ Φ, we let the majority strength ms(J , ϕ) be the
number of i’s such that ϕ ∈ Ji, i.e., ms(J , ϕ) = |{ 1 ≤ i ≤
n : ϕ ∈ Ji }|. We define the partial order ≤J ⊆ Φ × Φ as
follows. Let ϕ,ϕ′ ∈ Φ be formulas. If ms(J , ϕ) < ms(J , ϕ′),
we let ϕ ≤J ϕ

′; and if ms(J , ϕ) = ms(J , ϕ′), we let ϕ 6≤J ϕ
′.

We say that a total order <J is a Ranked-Agenda order
(for J) if it extends ≤J . Given a Ranked-Agenda or-
der <J , we define the judgment set RA(<J ,Φ,Γ) as follows.
Let Φ = {ϕ1, . . . , ϕm} and assume that ϕ1 >J · · · >J ϕ2m.
We let J0 = ∅. For each 1 ≤ i ≤ 2m, we let Ji = Ji−1∪{ϕi}
if Ji−1 ∪ {ϕi} is Γ-consistent; otherwise, we let Ji = Ji−1.
By definition, each Ji is Γ-consistent. (Note that we could
equivalently let Ji = Ji−1 ∪ {¬ϕi} if Ji−1 ∪ {ϕi} is not
Γ-consistent.) We then let RA(<J ,Φ,Γ) = J2m. Given
any total order <A ⊆ Φ × Φ, and a partial order ≤J ,
we define the Ranked-Agenda order <A

J to be the unique
total order such that: (1) ϕ <A

J ϕ′ whenever ϕ ≤J ϕ′

and ϕ′ 6≤J ϕ; and (2) ϕ <A
J ϕ′ if and only if ϕ <A ϕ′,

whenever ϕ =J ϕ
′. We now say that a Γ-consistent and com-

plete judgment set J∗ ∈ J (Φ,Γ) is a Ranked-Agenda winner,
denoted J∗ ∈ WinnerRA,Φ,Γ(J) if there is some Ranked-
Agenda order <J for J such that J∗ = RA(<J ,Φ,Γ). We
say that a tie-breaking rule A is defined by a total or-
der <A ⊆ Φ× Φ for each agenda Φ. Moreover, we say that
a Γ-consistent and complete judgment set J∗ ∈ J (Φ,Γ) is
a Ranked-Agenda winner for the fixed tie-breaking rule A,
denoted J∗ ∈ WinnerRAA,Φ, Γ(J) if J∗ = RA(<A

J ,Φ,Γ). In
voting, it is pairs (of alternatives) rather than propositions
that are being ranked, which is why the corresponding vot-
ing rule is called the Ranked-Pairs rule.

2.3 Complexity Theory
Readers familiar with seach problems and bounded query
complexity may skip this section.

Search Problems.
In this paper, we will assume knowledge of to the well-
known complexity classes P and NP, consisting of decision
problems. In addition, we will consider search problems.
Let Σ be an alphabet. A search problem is a binary rela-
tion R over strings in Σ∗. For any input string x ∈ Σ∗,
we let R(x) = { y ∈ Σ∗ : (x, y) ∈ R } denote the set of
solutions for x. We say that a Turing machine T solves R
if on input x ∈ Σ∗ the following holds: if there exists at
least one y such that (x, y) ∈ R, then T accepts x and out-
puts some y such that (x, y) ∈ R; otherwise, T rejects x.
With any search problem R we associate a decision prob-
lem SR, defined by SR = {x ∈ Σ∗ : there exists some y ∈
Σ∗ such that (x, y) ∈ R }. We will use the following notion
of reductions for search problems. A polynomial-time Levin
reduction from one search problem R1 to another search
problem R2 is a pair of polynomial-time computable func-
tions (g1, g2) such that (1) the function g1 is a many-one
reduction from SR1 to SR2 , i.e., for every x ∈ Σ∗ it holds
that x ∈ SR1 if and only if g1(x) ∈ SR2 ; and (2) for every
string x ∈ SR1 and every solution y ∈ R2(g1(x)) it holds
that (x, g2(x, y)) ∈ R1. For more details, we refer to text-
books on the topic [14].

Complexity Classes.
The complexity class FP consists of those search problems
that can be computed by a polynomial-time deterministic
Turing machine, and the class FNP consists of those search
problems that can be computed by a polynomial-time non-
deterministic Turing machine.

Moreover, we will use complexity classes that are based
on Turing machines that have access to an oracle. Let C
be a complexity class with decision problems. A Turing ma-
chine T with access to a yes-no C oracle is a Turing machine
with a dedicated oracle tape and dedicated states qoracle, qyes

and qno. Whenever T is in the state qoracle, it does not pro-
ceed according to the transition relation, but instead it tran-
sitions into the state qyes if the oracle tape contains a string x
that is a yes-instance for the problem C, i.e., if x ∈ C, and it
transitions into the state qno if x 6∈ C. Let C be a complex-
ity class with search problems. Similarly, a Turing machine
with access to a witness C oracle has a dedicated oracle tape
and dedicated states qoracle, qyes and qno. Also, whenever T
is in the state qoracle it transitions into the state qyes if the
oracle tape contains a string x such that there exists some y
such that C(x, y), and in addition the contents of the oracle
tape are replaced by (the encoding of) such an y; it transi-
tions into the state qno if there exists no y such that C(x, y).
Such transitions are called oracle queries.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

We point out that the notion of algorithms that have ac-
cess to witness FNP oracles accurately models algorithms
that can call a SAT solver (modulo the running time of the
SAT solver), as SAT solvers also return a satisfying assign-
ment if it exists.

In this paper, we will consider the following complexity
classes that are based on oracle machines. The class PNP[log]
consists of all decision problems that can be decided by a de-
terministic polynomial-time Turing machine that has access
to a yes-no NP oracle, and on any input of length n queries
the oracle at most O(logn) many times. This class coincides
with the class PNP

|| , and is also known as Θp
2 .

The class FPNP[log,wit] consists of all search problems
that can be solved by a deterministic polynomial-time Tur-
ing machine that has access to a witness FNP oracle, and
on any input of length n queries the oracle at most O(logn)
many times. In a sense, it is the search variant of PNP[log].

The class FΣp
2 consists of all search problems that can

be computed by a nondeterministic polynomial-time Turing
machine that has access to a witness FNP oracle. In a sense,
it is the search variant of Σp

2 .
We say that a decision problem P is complete for a com-

plexity class C containing decision problems if any prob-
lem Q ∈ C is polynomial-time (many-one) reducible to P .
Similarly, we say that a search problem R is complete for
a complexity class C containing search problems if for any
problem R′ ∈ C there exists a polynomial-time Levin reduc-
tion from R′ to R.

Complete Problems.
Next, we consider a number of search and decision problems
that are complete for the various complexity classes that
we consider in this paper. The decision problem SAT is
NP-complete. This problem consists of deciding whether a
given propositional formula ϕ has a satisfying assignment.
The corresponding search problem, FSAT, consisting of all
pairs (ϕ, α), where α is a satisfying assignment for ϕ, is
FNP-complete. Next, consider the following problems.

X-Max-Model
Input: a formula ϕ and a subset X ⊆ Var(ϕ) of vari-
ables of ϕ.
Output: a model M of ϕ that sets a maximum number
of variables in X to true, if such a model exists.

X-Max-Model-Parity
Instance: a formula ϕ, a subset X ⊆ Var(ϕ) of vari-
ables of ϕ, and a variable x0 ∈ X.
Question: is there a model M of ϕ such that X-Max-
Model(ϕ,M) and M sets x0 to true?

The search problem X-Max-Model is complete for
FPNP[log,wit] [7]. Moreover, the decision problem X-Max-
Model-Parity is complete for PNP[log]. This follows from
the fact that all predicates in FPNP[log,wit] are computable
in PNP[log] [18, Corollary 6.3.5].

FLex-Max-Model
Input: a formula ϕ with Var(ϕ) = {x1, . . . , xn}.
Output: a lexicographically maximal model M of ϕ,
if such a model exists. (Here, the variables are or-
dered x1 < · · · < xn.)

Lex-Max-Model
Instance: a formula ϕ and a variable x0 ∈ Var(ϕ).
Question: is there a model M of ϕ such that FLex-
Max-Model(ϕ,M) and M sets x0 to true?

The search problem FLex-Max-Model is complete for
FPNP, and the decision problem Lex-Max-Model is com-
plete for PNP [19].

FQSat2

Input: a quantified Boolean formula ϕ = ∃X.∀Y.ψ,
where ψ is quantifier-free.
Output: an assignment α to the variables in X, such
that ∀Y.ψ[α] is true, if it exists.

The decision problem QSat2 associated to FQSat2 is well-
known to be Σp

2-complete. The search problem FQSat2 is
complete for FΣp

2 . This can be shown straightforwardly by
modifying the proof of Σp

2-completeness for QSat2 [27, 28],
which can also be found in many textbooks (e.g., [2]).

3. COMPLEXITY RESULTS
For the various judgment aggregation procedures F , we will
consider the following decision problem.

WinDet(F)
Instance: an agenda Φ with an integrity constraint Γ,
a profile J ∈ J (Φ,Γ)n and a number of sub-
sets L0, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Question: is there a judgment set J∗ ∈
WinnerF,Φ,Γ(J) such that L0 ⊆ J∗ and Li 6⊆ J∗ for
each 1 ≤ i ≤ u?

In addition, we will consider the following search problem.

FWinDet(F)
Input: an agenda Φ with an integrity constraint Γ,
a profile J ∈ J (Φ,Γ)n and a number of sub-
sets L0, . . . , Lu ⊆ Φ of the agenda, with u ≥ 0.
Output: a judgment set J∗ ∈ WinnerF,Φ, Γ(J) such
that L0 ⊆ J∗ and Li 6⊆ J∗ for each 1 ≤ i ≤ u, if it
exists.

In these problems, the set L0 allows us to specify judg-
ments that the outcome must contain. Moreover, using the
sets L1, . . . , Lu, we can specify a list of forbidden (combi-
nations of) judgments that the outcome may not contain.
This allows us, for instance, to enumerate several outcomes
by using previously found outcomes as the sets L1, . . . , Lu.

We make several observations about this formalization of
the computational task of winner determination for the judg-
ment aggregation procedures. In previous work [13, 21], only
decision problems have been studied. We argue that the
search problem formulation is a more accurate formalization
of the computational task related to the winner determina-
tion problem in judgment aggregation. In general, for any
judgment aggregation procedure, given a multiagent setting
and individual opinions of the agents, one would like to com-
pute a group opinion, which could then be used for various
purposes. Given access to an algorithm that performs the
computational task captured by the decision problem, one
needs a linear number of calls to produce the description of
an outcome. However, it turns out that (under some com-
mon complexity-theoretic assumptions) any such (determin-
istic) algorithm invokes an NP oracle only a small (sublinear)
number of times in the worst case. This was known for the
case of the Kemeny rule [13], and we show that it is also
the case for the Slater and Young rules. Therefore, it could
be that an algorithm that produces an outcome by simply
calling an algorithm for the decision problem a linear num-
ber of times exceeds the minimum number of calls to the

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

NP oracle that are needed. In fact, we show that producing
an outcome can be done in deterministic polynomial time
with only a logarithmic number of calls to an oracle that
produces witnesses for NP problems. Formalizing the task
as a search problem in the first place circumvents this issue.

Secondly, these computational problems involve the ques-
tion whether there exists an outcome that satisfies certain
properties, rather than the question whether all outcomes
satisfy certain properties (as studied by Lang and Slavkovik
[21]). We think the former question is the more natural of
these two, as computing outcomes for judgment aggregation
procedures is arguably the most central computational task
in judgment aggregation.

The third observation concerns the condition that the sub-
sets L1, . . . , Lu, given as part of the input to the problems,
are not subsets of the judgment set J∗ ∈ WinnerF,Φ,Γ(J).
As can be seen in the proofs in the remainder of this sec-
tion, this condition does not have an effect on the complexity
analysis of the problem. However, it does allow us to use this
formalization of the problem to devise an algorithm to enu-
merate outcomes of judgment aggregation procedures. In
order to enumerate outcomes, one could use an algorithm
that solves FWinDet(F) repeatedly, and rule out previ-
ously found outcomes by providing them as the subsets Li

(with i > 0).
We obtain the following complexity results for these two

computational problems (summarized in Table 1).

Theorem 1. For each F ∈ {Kemeny,Slater,Young}:
a) WinDet(F) is PNP[log]-complete; and

b) FWinDet(F) is FPNP[log,wit]-complete.

Theorem 2. For any tie-breaking rule A, it holds that
WinDet(RAA) is in PNP and FWinDet(RAA) is in
FPNP. Moreover, there is some tie-breaking rule A such
that WinDet(RAA) is PNP-complete and FWinDet(RAA)
is FPNP-complete.

Theorem 3. WinDet(RA) is Σp
2-complete and

FWinDet(RA) is FΣp
2-complete.

We would like to point out that the complexity result
for WinDet(Kemeny) has been shown before [13]. We
give an alternative proof of hardness for this problem. We
prove hardness by giving a reduction directly from a canon-
ical complete problem for PNP[log], which allows us to ex-
tend this hardness result to the case of the search prob-
lem FWinDet(Kemeny), which would not have been at all
straightforward with the known PNP[log]-hardness proof for
WinDet(Kemeny) from the literature.

We begin by proving Theorem 1 in Sections 3.1–3.3
(Propositions 5–9 and Corollaries 6–10). Then, we prove
Theorems 2 and 3 in Section 3.4 (Propositions 11–12 and
Corollaries 13–14, and Propositions 15–16 and Corollary 17,
respectively).

3.1 Membership for Kemeny, Slater, Young
We will show FPNP[log,wit]-membership of the problem
FWinDet(F), for each F ∈ {Kemeny, Slater,Young} by
giving a polynomial-time algorithm that uses an FNP wit-
ness oracle at most O(logn) many times. Since PNP[log]
coincides with PNP[log,wit], this algorithm can then easily
be adapted to show PNP[log]-membership of WinDet(F).

The approach that we use to show these membership re-
sults is similar to the approach taken in the known PNP[log]-
membership proof of WinDet(Kemeny) [13].

For each F ∈ {Kemeny,Slater,Young}, we will consider
the following auxiliary problem.

FSetScore(F)
Input: an agenda Φ with an integrity constraint Γ, a
profile J ∈ J (Φ,Γ), a number of subsets L0, . . . , Lu ⊆
Φ, with u ≥ 0, and a positive integer m (in unary).
Output: a consistent and complete judgment set J
such that L0 ⊆ J , Li 6⊆ J for each 1 ≤ i ≤ u,
and ScoreF(J,J) ≤ m, if it exists.

Lemma 4. For each F ∈ {Kemeny, Slater,Young}, it
holds that FSetScore(F) ∈ FNP.

Proof (sketch). We describe a guess-and-check algo-
rithm for FSetScore(F). The algorithm gets as input
an agenda Φ with an integrity constraint Γ, a profile J ∈
J (Φ,Γ), a number of subsets L0, . . . , Lu ⊆ Φ of the agenda,
with u ≥ 0, and a positive integer m in unary. The al-
gorithm guesses a complete judgment set J , and an inter-
pretation M that witnesses that J is Γ-consistent. Ad-
ditionally, if F = Young, the algorithm guesses ` ≤ m
many judgment sets Ji1 , . . . , Ji` in J to remove from J .
Then, the algorithm verifies (1) whether M satisfies both J
and Γ, (2) whether ScoreF(J,J) ≤ m, (3) whether L0 ⊆ J ,
and (4) whether Li 6⊆ J for each 1 ≤ i ≤ u. If F =
Young, the verification of (2) uses the guessed judgment
sets Ji1 , . . . , Ji` . It is straightforward to verify that these
checks can be done in polynomial time. If J satisfies condi-
tions (1)–(4), the algorithm accepts and outputs J ; other-
wise, the algorithm rejects.

Proposition 5. For each F ∈ {Kemeny, Slater,Young},
FWinDet(F) ∈ FPNP[log,wit].

Proof (sketch). We describe a polynomial-time algo-
rithm that computes FWinDet(F) by using an FSet-
Score(F) oracle. The algorithm firstly computes the min-
imal number m∗ such that there is some Γ-consistent and
complete judgment set J such that ScoreF(J,J) ≤ m∗. For
each F ∈ {Kemeny, Slater,Young}, we know that m∗ is
polynomially bounded by the size of (the encoding of) J .
Therefore, we can employ a binary search strategy to com-
pute m∗ by asking O(log |J |) many oracle queries of the
form (Φ,Γ,J , ∅,m). Then, the algorithm returns the an-
swer to the oracle query (Φ,Γ,J , L0, . . . , Lu,m

∗).

Corollary 6. For each F ∈ {Kemeny, Slater,Young},
WinDet(F) ∈ PNP[log].

3.2 Hardness for Kemeny and Slater

Proposition 7. The problems FWinDet(Kemeny) and
FWinDet(Slater) are FPNP[log,wit]-hard, even with the
restriction that Γ = >, and u = 0.

Proof (sketch). We give a polynomial-time Levin re-
duction from X-Max-Model. The same reduction works
for both FWinDet(Kemeny) and FWinDet(Slater).
Let (ϕ,X) be an input to X-Max-Model with X =
{x1, . . . , xv} ⊆ Var(ϕ). We construct an agenda Φ, an in-
tegrity constraint Γ = >, an integer u = 0, a subset L0 ⊆ Φ,
and a profile J ∈ J (Φ,Γ)n as follows. We pick some w

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

such that w > v2, e.g., w = 2v2. For each 1 ≤ i ≤ v
and 1 ≤ j ≤ w, we introduce a fresh variable zj,i. More-
over, we introduce a fresh variabe y. Then, we construct a
propositional formula ϕ′ that is true if and only if one of the
following conditions holds: either (i) for some 1 ≤ i ≤ v, xi
is set to false, y is set to false, and all zj,i for 1 ≤ j ≤ w
are set to true, or (ii) all zj,i are set to false, y is set to
true, and the assignment to the variables xi satisfies ϕ. It
is straightforward to construct in polynomial time some for-
mula ϕ′ that satisfies this property. Then we introduce w
many syntactic copies ϕ′j of ϕ′. We now define the agenda Φ
by letting [Φ] = {y} ∪ {x1, . . . , xv} ∪ { zj,i : 1 ≤ j ≤
w, 1 ≤ i ≤ n } ∪ {ϕ′1, . . . , ϕ′w}. Next, we construct the pro-
file J = (J1, . . . , Jv) as shown in Figure 1. Moreover, we
let L0 = {y}.

J J1 J2 . . . Jv−1 Jv m(J)

y 0 0 0 . . . 0 0
x1 0 1 1 . . . 1 1
x2 1 0 1 . . . 1 1
...

...
. . .

...
...

xv−1 1 . . . 1 0 1 1
xv 1 . . . 1 1 0 1
z1,1 1 0 0 . . . 0 0
z1,2 0 1 0 . . . 0 0

...
...

. . .
...

...
z1,v−1 0 . . . 0 1 0 0
z1,v 0 . . . 0 0 1 0

...
...

...
zw,1 1 0 0 . . . 0 0
zw,2 0 1 0 . . . 0 0

...
...

. . .
...

...
zw,v−1 0 . . . 0 1 0 0
zw,v 0 . . . 0 0 1 0
ϕ′1 1 1 . . . 1 1
ϕ′2 1 1 . . . 1 1
...

...
. . .

...
...

ϕ′w−1 1 . . . 1 1 1
ϕ′w 1 . . . 1 1 1

Figure 1: construction of the profile in the proof of
Proposition 7.

What remains is to specify a polynomial-time com-
putable function g that takes some J∗ ∈ WinnerF,Φ,Γ(J)
with L0 ⊆ J∗, if it exists, and that produces a model M such
that X-Max-Model(ϕ,X,M). Let J∗ ∈ WinnerF,Φ,Γ(J)
such that L0 ∈ J∗. Then the function g outputs J∗ ∩
{x1, . . . , xv}.

The intuition behind this reduction is the following. The
agenda and the profile are constructed in such a way that
it is ‘cheaper’ to agree with the overall profile (respectively,
with the majority outcome) on the formulas ϕ′i and the for-
mulas zj,i, if possible. If ϕ is satisfiable, the cheapest way to
agree with the overall profile (respectively, with the majority
outcome) on the above formulas (in a consistent judgment
set) is to set the variables xi to a maximal assignment α
to the variables in X that is extendable to a satisfying as-
signment to ϕ, and to set y to true. If ϕ is unsatisfiable,

all consistent judgment sets that disagree with the majority
outcome on a minimal number of formulas (e.g., setting zj,i
to true for some 1 ≤ i ≤ v and all 1 ≤ j ≤ w) do not
contain y (and thus are not a superset of L0).

Corollary 8. The problems WinDet(Kemeny) and
WinDet(Slater) are PNP[log]-hard, even with the restric-
tion that Γ = >, and u = 0.

Proof (sketch). The reduction in the proof of Propo-
sition 7 can be adapted to a many-one reduction from
WinDet(Kemeny) (respectively, from WinDet(Slater))
to X-Max-Model-Parity, by letting L0 = {y, x0},
where x0 is given in the original input for the problem
X-Max-Model-Parity.

3.3 Hardness for Young
Proposition 9. FWinDet(Young) is FPNP[log,wit]-

hard, even with the restriction that Γ = >, and u = 0.

Proof (sketch). We give a polynomial-time Levin re-
duction from X-Max-Model. Let ϕ be an input
to X-Max-Model with Var(ϕ) = {x1, . . . , xv}. We may
assume that any satisfying assignment (if there exists any)
sets at least one variable in X to true, and that setting all
variables in X to true does not satisfy ϕ. We construct an
agenda Φ, an integrity constraint Γ = >, an integer u = 0,
a subset L0 ⊆ Φ, and a profile J ∈ J (Φ,Γ)n as follows.
We let w = 2v + 1. Then, we construct a propositional for-
mula ϕ′ that is satisfiable if and only if one of the following
conditions holds: either (i) for some 1 ≤ j ≤ w, yj is set to
true, or (ii) all yj are set to false and the assignment to the
variables xi reduces ϕ to a satisfiable formula. It is straight-
forward to construct in polynomial time some formula ϕ′

that satisfies this property. We now define the agenda Φ
by letting [Φ] = {x1, . . . , xv} ∪ { yj : 1 ≤ j ≤ w } ∪ {ϕ′}.
Next, we construct the profile J = (J1, . . . , Jw) as shown in
Figure 2. Moreover, we let L0 = {¬y1, . . . ,¬yw}.

What remains is to specify a polynomial-time computable
function g that takes some J∗ ∈ WinnerYoung,Φ,Γ(J)
with L0 ⊆ J∗, if it exists, and that produces a model M such
that X-Max-Model(ϕ,M). Let J∗ ∈WinnerYoung,Φ, Γ(J).
Then the function g outputs J∗ ∩ {x1, . . . , xv}.

The intuition behind this reduction is the following. Since
the profile is unanimous on ϕ′, any winner must include ϕ′.
Satisfying ϕ′ can be done by either setting some yi to true,
or by satisfying the original formula ϕ. In the case that ϕ
is satisfiable, a maximal assignment α to the variables in X
that is extendable to a satisfying assignment for ϕ corre-
sponds to the minimum number of judgment sets that need
to be removed from the profile to get a consistent majority
outcome (namely, remove exactly those Ji for which α sets xi
to false, and remove an equal number of judgment sets Jj
for v + 1 ≤ j ≤ w). In the case that ϕ is unsatisfiable, the
only subprofiles that have a consistent majority outcome are
subprofiles consisting of a single judgment set J , for which
all holds that L0 6⊆ J .

Corollary 10. WinDet(Young) is PNP[log]-hard,
even with the restriction that Γ = >, and u = 0.

Proof (sketch). The reduction in the proof of Propo-
sition 9 can be adapted to a many-one reduction from
WinDet(Young) to X-Max-Model-Parity, by let-
ting L0 = {x0, x1}, where x0 is given in the original input
for the problem X-Max-Model-Parity.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

J J1 J2 J3 . . . Jv Jv+1 Jv+2 . . . Jw

ϕ′ 1 1 1 . . . 1 1 1 . . . 1
x1 1 0 0 . . . 0 1 1 . . . 1
x2 0 1 0 . . . 0 1 1 . . . 1
...

...
. . .

...
...

...
. . .

...
xv−1 0 . . . 0 1 0 1 1 . . . 1
xv 0 . . . 0 0 1 1 1 . . . 1
y1 1 0 0 0
y2 0 1 0 0
...

...
. . .

...
yw−1 0 0 1 0
yw 0 0 0 1

Figure 2: construction of the profile in the proof of Proposition 9.

3.4 Completeness for Tideman

Proposition 11. Let <A be some tie-breaking rule.
Then FWinDet(RAA) is in FPNP.

Proof (sketch). We describe a deterministic
polynomial-time algorithm with access to a (yes-no)
SAT oracle that solves FWinDet(RAA). The algorithm
takes as input an agenda Φ, an integrity constraint Γ, a
profile J ∈ J (Φ,Γ)n, and a number of subsets L0, . . . , Lu

of the agenda with u ≥ 0. In polynomial time, the
algorithm computes ≤J , and computes the Ranked-
Agenda order <A

J , using the tie-breaking rule <A.
Let Φ = {ϕ1, . . . , ϕ2m}, where ϕ1 >A

J · · · >A
J ϕ2m. We

compute RA(<A
J ,Φ,Γ) = J2m by iteratively computing Ji,

for all 0 ≤ i ≤ 2m. Let J0 = ∅. Given Ji, we compute Ji+1

as follows, by querying the SAT oracle. We query the
SAT solver whether ψi+1 =

∧
ϕ∈Ji

ϕ ∧ ϕi+1 is Γ-consistent.

If ψi+1 is Γ-consistent, we let Ji+1 = Ji∪{ϕi+1}; otherwise,
we let Ji+1 = Ji. Clearly, this requires 2m = |Φ| calls to the
SAT oracle. Then, let J∗ = J2m = RA(<A

J ,Φ,Γ). Finally,
the algorithm verifies whether L0 ⊆ J∗ and Li 6⊆ J∗ for
all 1 ≤ i ≤ u. If these checks do not succeed, the algorithm
rejects the input; otherwise, it returns J∗.

Proposition 12. FWinDet(RAA) is FPNP-hard for
some (fixed) tie-breaking rule A, even with the restriction
that Γ = >, and u = 0.

Proof (sketch). We give a polynomial-time Levin re-
duction from FLex-Max-Model. Let ϕ be an input for
FLex-Max-Model, with Var(ϕ) = {x1, . . . , xv}. We con-
struct an agenda Φ, an integrity constraint Γ = >, an inte-
ger u = 0, a linear order <A⊆ Φ×Φ, a profile J ∈ J (Φ,Γ)n,
and a subset L0 ⊆ Φ, as follows. We pick some even w
such that w > v, e.g., w = 2v. We introduce auxiliary
variables y1, . . . , yw. Then, we construct a propositional
formula ϕ′ that is true if and only if one of the follow-
ing conditions holds: either (i) for some 1 ≤ j ≤ w, yj
is set to true, or (ii) the assignment to the variables xi
satisfies ϕ. We define the agenda Φ by letting [Φ] =
{ϕ′}∪{y1, . . . , yw}∪{x1, . . . , xv}. Then, we define the total
order <A by letting ϕ′ >A ¬y1 >

A · · · >A ¬yw >A x1 >
A

¬x1 >
A · · · >A xv >

A ¬xv >A y1 >
A · · · >A yw >A ¬ϕ′.

Next, we construct the profile J = (J1, . . . , Jw) as shown in
Figure 3. Note that the Ranked-Agenda order <A

J coindices
with the order <A. Finally, we let L0 = {¬yw}.

J J1 J2 J3 J4 . . . Jw−1 Jw

ϕ′ 1 1 1 1 . . . 1 1
x1 1 0 1 0 . . . 1 0
x2 1 0 1 0 . . . 1 0
...

...
...

...
...

. . .
...

...
xv−1 1 0 1 0 . . . 1 0
xv 1 0 1 0 . . . 1 0
y1 1 0 0 . . . 0
y2 0 1 0 . . . 0
...

...
. . .

...
yw−1 0 . . . 0 1 0
yw 0 . . . 0 0 1

Figure 3: construction of the profile in the proof of
Proposition 12.

What remains is to specify a polynomial-time com-
putable function g that takes some J∗ ∈WinnerRAA,Φ,Γ(J)
with L0 ⊆ J∗, and that produces a model M such
that FLex-Max-Model(ϕ,M). The function g out-
puts J∗ ∩ {x1, . . . , xv}.

Note that for each instance ϕ of FLex-Max-Model, this
reduction produces a different agenda Φ. Therefore, there
is a single tie-breaking rule A that produces the correct or-
der <A for each agenda Φ that is generated by this reduction
(and moreover, this order <A clearly is computable in poly-
nomial time, given ϕ).

The intuition behind this reduction is the following. If ϕ is
satisfiable, the Ranked-Agenda winner (for the tie-breaking
rule A) will contain ϕ′ and ¬y1, . . . ,¬yw, because these are
consistent (and are the first formulas in the order >A

J , and
if ϕ is unsatisfiable, the winner will not contain ¬yw, be-
cause ϕ′ and ¬y1, . . . ,¬yw−1 are not consistent with ¬yw.
Moreover, if ϕ is satisfiable, the Ranked-Agenda order >A

J

forces the winner to contain the lexicographically maximal
model of ϕ.

Corollary 13. Let <A be some tie-breaking rule. Then
WinDet(RAA) is in PNP.

Corollary 14. WinDet(RAA) is PNP-hard for some
(fixed) tie-breaking rule A, even with the restriction that Γ =
>, and u = 0.

Proof (sketch). The reduction in the proof of Propo-
sition 12 can be adapted to a many-one reduction from

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

WinDet(RAA) to Lex-Max-Model, by letting L0 =
{¬yw, x0}, where x0 is given in the original input for the
problem Lex-Max-Model.

Because the winner determination problem is hard for
the ∆p

2-level of the PH for some tie-breaking rule, we know
that one cannot obtain lower complexity results without ex-
ploiting the structure of tie-breaking rules. In other words,
any lower complexity results cannot hold for all tie-breaking
rules, and their proofs will have to take into account some
specific properties of any tie-breaking rules for which the
results hold.

Proposition 15. FWinDet(RA) is in FΣp
2 .

Proof (sketch). We describe a nondeterministic
polynomial-time algorithm with access to a (yes-no) SAT
oracle that solves FWinDet(RA). The algorithm takes
as input an agenda Φ, an integrity constraint Γ, a pro-
file J ∈ J (Φ,Γ)n, and a number of subsets L0, . . . , Lu ⊆ Φ
of the agenda. It is straightforward to compute ≤J in
polynomial time. Then, the algorithm guesses some total
order <A

J⊆ Φ × Φ. It is straightforward to verify in poly-
nomial time that <A

J extends the partial order ≤J . (If <A
J

does not extend ≤J , the algorithm rejects.) Then, the
algorithm proceeds similarly to the algorithm described in
the proof of Proposition 11 to compute J∗ = RA(<A

J ,Φ,Γ).
Also, the algorithm verifies whether L0 ⊆ J∗ and Li 6⊆ J∗

for all 1 ≤ i ≤ u. If these checks do not succeed, the
algorithm rejects; otherwise, it returns J∗.

Proposition 16. FWinDet(RA) is FΣp
2-hard, even

with the restriction that Γ = >, and u = 0.

Proof (sketch). We give a polynomial-time Levin re-
duction from FQSat2. Let ϕ = ∃X.∀Y.ψ be an instance of
FQSat2, where X = {x1, . . . , xv}. We may assume without
loss of generality that ψ is not a tautology. We construct an
agenda Φ, an integrity constraint Γ = >, an integer u = 0, a
profile J ∈ J (Φ,Γ)n, and a subset L0 ⊆ Φ of the agenda, as
follows. We pick some w such that w > v, e.g., w = 2v. We
introduce auxiliary variables y1, . . . , yw. Also, we introduce
auxiliary variables zl for each l ∈ {xi,¬xi : 1 ≤ i ≤ v }.
Then we construct a propositional formula χ that is true if
and only if one of the following two conditions holds: ei-
ther (i) some yi is true, or (ii) for each l ∈ {xi,¬xi : 1 ≤
i ≤ v } it holds that l is true if and only if zl is true.
Moreover, we construct a propositional formula ψ′ that is
true if and only if both of the following two conditions
holds: both (i) no yi with 1 ≤ i ≤ 3 is true, and (ii) ei-
ther (ii.a) some yi is true, or (ii.b) the formula ¬ψ is sat-
isfiable. It is straightforward to construct these formulas χ
and ψ′ in polynomial time. We now define the agenda Φ by
letting [Φ] = {χ, ψ′}∪{ zxi , z¬xi : 1 ≤ i ≤ v }∪{y1, . . . , yw}.
Next, we construct the profile J = (J1, . . . , Jw) as shown
in Figure 4. Note that m(J , χ) = w; m(J , ψ′) = w − 3;
for each 1 ≤ i ≤ v, m(J , zxi) = m(J , z¬xi) = w − 2; for
each 1 ≤ j ≤ w, m(J ,¬yj) = w − 1. Therefore {χ} ≤J

{¬yj : 1 ≤ j ≤ w } ≤J { zxi , z¬xi : 1 ≤ i ≤ v } ≤J {ψ′}.
Moreover, we let L0 = {¬ψ′}.

What remains is to specify a polynomial-time com-
putable function g that takes some J∗ ∈ WinnerRA,Φ,Γ(J)
with L0 ⊆ J∗, and that produces a model M such
that FQSat2(ϕ,M). Let J∗ ∈WinnerRA,Φ,Γ(J). The func-
tion g outputs {xi : 1 ≤ i ≤ v, zxi ∈ J∗ }.

J J1 J2 J3 J4 . . . Jw

χ 1 1 1 1 . . . 1
ψ′ 0 0 0 1 . . . 1
zx1 0 0 1 . . . 1
z¬x1 0 0 1 . . . 1

...
...

...
...

...
zxv 0 0 1 . . . 1
z¬xv 0 0 1 . . . 1
y1 1 0 0 . . . 0
y2 0 1 0 . . . 0
...

...
. . .

...
. . .

yw−1 0 . . . 0 1 0
yw 0 . . . 0 0 1

Figure 4: construction of the profile in the proof of
Proposition 16.

The intuition behind this reduction is the following. The
profile is constructed in such a way that every Ranked-
Agenda winner contains χ. If there is an assignment α to
the variables {x1, . . . , xv} such that ∀Y.ψ[α] is true, then
there exists a winner containing all literals ¬yj , the vari-
ables zl for those literals l that are satisfied by α, and the
formula ¬ψ′, because any set containing χ, the literals ¬yj ,
and those variables zl would be inconsistent with ψ′, since
such a set implies ψ (and thus forces ¬ψ to be unsatisfi-
able). Moreover, any winner containing ¬ψ′ is of such a
form, and thus corresponds to an assignment α with the
property that ∀Y.ψ[α] is true.

Corollary 17. WinDet(RA) is Σp
2-complete. Hard-

ness holds even with the restriction that Γ = >, and u = 0.

4. CONCLUSION
We studied the computational complexity of the winner
determination problem for (the judgment aggregation ana-
logues of) the Kemeny rule, the Slater rule and the Young
rule, as well as two variants of the Ranked-Agenda rule.
These computational tasks we formalized in the form of a
search problem and a decision problem. We showed that the
complexity for the Kemeny, Slater and Young rules lies at
the Θp

2-level of the PH, and we showed that the complexity
of the Ranked-Agenda rule, lies at the ∆p

2-level of the PH,
in case of a fixed tie-breaking rule, and lies at the Σp

2-level
of the PH in case ties can be broken in arbitrary ways.

Future research should include investigating the computa-
tional complexity of the winner determination problem for
other complete and consistent judgment aggregation pro-
cedures. One example of such a procedure is one based on
the distance measure introduced by Duddy and Piggins [11].
Another direction for further research is to investigate the
contribution of various aspects of the problem to its com-
putational complexity, by analyzing the problems using the
framework of parameterized complexity theory.

Acknowledgments
Ronald de Haan is supported by the European Research
Council (ERC), project 239962, and the Austrian Science
Fund (FWF), project P26200.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

REFERENCES
[1] N. Alon, D. Falik, R. Meir, and M. Tennenholtz.

Bundling attacks in judgment aggregation. In
Proceedings of the Twenty-Seventh AAAI Conference
on Artificial Intelligence (AAAI 2013). AAAI Press,
2013.

[2] S. Arora and B. Barak. Computational Complexity – A
Modern Approach. Cambridge University Press, 2009.

[3] D. Baumeister, G. Erdélyi, O. J. Erdélyi, and
J. Rothe. Computational aspects of manipulation and
control in judgment aggregation. In P. Perny,
M. Pirlot, and A. Tsoukiàs, editors, Proceedings of the
Third International Conference on Algorithmic
Decision Theory (ADT 2013), Brussels, Belgium,
November 13–15, 2013, volume 8176 of Lecture Notes
in Computer Science, pages 71–85. Springer Verlag,
2013.

[4] D. Baumeister, G. Erdélyi, and J. Rothe. How hard is
it to bribe the judges? A study of the complexity of
bribery in judgment aggregation. In Proceedings of the
Second International Conference on Algorithmic
Decision Theory (ADT 2011), Piscataway, NJ, USA,
October 26–28, 2011, volume 6992 of Lecture Notes in
Computer Science, pages 1–15. Springer Verlag, 2011.

[5] S. J. Brams and P. C. Fishburn. Voting procedures. In
K. J. Arrow, A. K. Sen, and K. Suzumura, editors,
Handbook of Social Choice and Welfare, volume 1,
chapter 4, pages 173–236. Elsevier Science Publishers,
North-Holland, 2002.

[6] F. Brandt, V. Conitzer, and U. Endriss.
Computational social choice. In G. Weiss, editor,
Multiagent Systems, pages 213–283. MIT Press, 2013.

[7] Z.-Z. Chen and S. Toda. The complexity of selecting
maximal solutions. Information and Computation,
119:231–239, June 1995.

[8] V. Conitzer, J. Lang, and L. Xia. How hard is it to
control sequential elections via the agenda? In
C. Boutilier, editor, IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17,
2009, pages 103–108, 2009.

[9] F. Dietrich and C. List. Arrow’s Theorem in judgment
aggregation. Social Choice and Welfare, 29(1):19–33,
2007.

[10] F. Dietrich and C. List. Judgment aggregation under
constraints. In T. Boylan and R. Gekker, editors,
Economics, Rational Choice and Normative
Philosophy, Routledge Frontiers of Political Economy.
Taylor & Francis, 2008.

[11] C. Duddy and A. Piggins. A measure of distance
between judgment sets. Social Choice and Welfare,
39(4):855–867, 2012.

[12] U. Endriss. Judgment aggregation. In F. Brandt,
V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia,
editors, Handbook of Computational Social Choice.
Cambridge University Press, 2015. Forthcoming.

[13] U. Endriss, U. Grandi, and D. Porello. Complexity of
judgment aggregation. J. Artif. Intell. Res.,
45:481–514, 2012.

[14] O. Goldreich. P, NP, and NP-Completeness: The
Basics of Complexity Theory. Cambridge University
Press, 2010.

[15] U. Grandi. Binary Aggregation with Integrity
Constraints. PhD thesis, University of Amsterdam,
2012.

[16] U. Grandi and U. Endriss. Lifting integrity constraints
in binary aggregation. Artificial Intelligence,
199–200:45–66, 2013.

[17] D. Grossi and G. Pigozzi. Judgment Aggregation: A
Primer. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool, 2014.

[18] J. Krajicek. Bounded arithmetic, propositional logic
and complexity theory. Cambridge University Press,
1995.

[19] M. W. Krentel. Generalizations of OptP to the
Polynomial Hierarchy. Theoretical Computer Science,
97(2):183–198, 1992.

[20] J. Lang, G. Pigozzi, M. Slavkovik, and L. van der
Torre. Judgment aggregation rules based on
minimization. In Proceedings of the 13th Conference
on Theoretical Aspects of Rationality and Knowledge
(TARK-2011), 2011.

[21] J. Lang and M. Slavkovik. How hard is it to compute
majority-preserving judgment aggregation rules? In
21st European Conference on Artificial Intelligence
(ECAI 2014). IOS Press, 2014.

[22] C. List and P. Pettit. Aggregating sets of judgments:
An impossibility result. Economics and Philosophy,
18(1):89–110, 2002.

[23] C. List and C. Puppe. Judgment aggregation: A
survey. In P. Anand, P. Pattanaik, and C. Puppe,
editors, Handbook of Rational and Social Choice.
Oxford University Press, 2009.

[24] M. K. Miller and D. Osherson. Methods for
distance-based judgment aggregation. Social Choice
and Welfare, 32(4):575–601, 2009.

[25] G. Pigozzi. Belief merging and the discursive dilemma:
An argument-based account of paradoxes of judgment
aggregation. Synthese, 152(2):285–298, 2006.

[26] D. Porello and U. Endriss. Ontology merging as social
choice. In Proceedings of the 12th International
Workshop on Computational Logic in Multiagent
Systems (CLIMA-2011), volume 6814 of Lecture Notes
in Artificial Intelligence, pages 157–170. Springer
Verlag, July 2011.

[27] L. J. Stockmeyer. The polynomial-time hierarchy.
Theoretical Computer Science, 3(1):1–22, 1976.

[28] C. Wrathall. Complete sets and the polynomial-time
hierarchy. Theoretical Computer Science, 3(1):23–33,
1976.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
01
0

