
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-15-009
December 2015

Machine Characterizations
for Parameterized
Complexity Classes
Beyond Para-NP

Ronald de Haan and Stefan Szeider

This is the authors’ copy of a paper that appeared in the proceedings of SOFSEM
2015, pp. 217–229, LNCS 8939, Springer, 2015.

www.ac.tuwien.ac.at/tr

Machine Characterizations for Parameterized
Complexity Classes beyond para-NP

Ronald de Haan? and Stefan Szeider?

Institute of Information Systems, Vienna University of Technology, Vienna, Austria

Abstract. Due to the remarkable power of modern SAT solvers, one can effi-
ciently solve NP-complete problems in many practical settings by encoding them
into SAT. However, many important problems in various areas of computer sci-
ence lie beyond NP, and thus we cannot hope for polynomial-time encodings
into SAT. Recent research proposed the use of fixed-parameter tractable (fpt)
reductions to provide efficient SAT encodings for these harder problems. The
parameterized complexity classes ∃k∀∗ and ∀k∃∗ provide strong theoretical ev-
idence that certain parameterized problems are not fpt-reducible to SAT. Origi-
nally, these complexity classes were defined via weighted satisfiability problems
for quantified Boolean formulas, extending the general idea for the canonical
problems for the Weft Hierarchy.
In this paper, we provide alternative characterizations of ∃k∀∗ and ∀k∃∗ in terms
of first-order logic model checking problems and problems involving alternat-
ing Turing machines with appropriate time bounds and bounds on the number
of alternations. We also identify parameterized Halting Problems for alternating
Turing machines that are complete for these classes.
The alternative characterizations provide evidence for the robustness of the new
complexity classes and extend the toolbox for establishing membership results.
As an illustration, we consider various parameterizations of the 3-coloring exten-
sion problem.

1 Introduction

The recent success of modern SAT solvers in many practical settings has placed them
at the heart of an important approach to solving NP-complete problems, where problem
instances are encoded to SAT and subsequently solved using a SAT solver [3,12,17,22].
However, many important computational problems lie above the first level of the Poly-
nomial Hierarchy (PH), and thus this approach does not work to solve these problems,
as polynomial-time reductions to SAT are not possible for these problems, unless the
PH collapses.

Problem instances occurring in practical settings are not random, and often con-
tain some kind of structure, which can be exploited by parameterized algorithms. Re-
cently, the structure in problems instances was used to break the complexity barriers
between the first and second level of the PH, by means of fpt-reductions [9,21]. Such
fpt-reducibility results adopt a new perspective on what amounts to positive results in

? Supported by the European Research Council (ERC), project 239962 (COMPLEX REASON),
and the Austrian Science Fund (FWF), project P26200 (Parameterized Compilation).

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

parameterized complexity. This new perspective (i.e., aiming at fpt-reducibility to SAT
rather than fpt-solvability) greatly extends the power of positive results, as parameters
can be less restrictive, and problems can be solved efficiently on larger classes of in-
stances.

In order to provide suitable negative results, a new parameterized complexity classes
∃k∀∗ has been introduced [13,14], which lies at the basis of a hardness theory that pro-
vides such negative evidence. The class ∃k∀∗ is located above para-co-NP and below
para-ΣP

2 (see Figure 1), and is based on weighted variants of quantified Boolean sat-
isfiability problems. Several problems from various domains have already been shown
hard or complete for the class ∃k∀∗ or its dual ∀k∃∗, including problems in Knowledge
Representation [14], Boolean Optimization [13], and Computational Social Choice [8].

para-ΣP
2 para-ΠP

2

para-NP para-co-NP

para-∆P
2

para-DP
∃k∀∗ ∀k∃∗

W[P]
W[1]

co-W[P]
co-W[1]FPT

Fig. 1: Parameterized complexity classes up to the second level of the polynomial hier-
archy. Arrows indicate inclusion relations. (For a definition of the classes para-DP and
para-∆P

2, we refer to other resources [2,10,20].)

The role that ∃k∀∗ and ∀k∃∗ play in the analysis of parameterizations of problems
complete for the second level of the PH, is analogous to the role that the Weft-hierarchy
plays in the analysis of parameterizations of NP-complete problems. The parameterized
complexity classes para-NP and para-co-NP, on the one hand, and the classes ∃k∀∗ and
∀k∃∗, on the other hand, constitute a borderline between problems that are fpt-reducible
to SAT (or UNSAT) and problems that are not, similarly to the way in which the classes
W[1] and FPT provide a borderline between problems that are fixed-parameter tractable
and problems that are not. Neither W[1] nor ∃k∀∗ and ∀k∃∗ have a direct counterpart in
classical complexity theory, and these classes thus provide a tighter complexity analysis
than parameterized complexity classes that are derived from classical classes [10].

1.1 New Contributions

We provide new characterizations of the parameterized complexity class ∃k∀∗ in terms
of first-order model checking problems and in terms of alternating Turing machines,
with appropriate time bounds. Consequently, dual characterizations hold for the param-
eterized complexity class ∀k∃∗. More specifically, we show the following results.

1. ∃k∀∗ is precisely the class of all parameterized problems that can be expressed in
terms of checking whether a given first-order formula ∃x1, . . . , xk.∀y1, . . . , yn.ψ
is true in a given relational structure, taking the number of existential variables as
the parameter. (Theorem 1)

2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

2. ∃k∀∗ is precisely the class of all parameterized problems that can be decided by a
2-alternating Turing machine that runs in fixed-parameter tractable time, starts in
an existential state, and uses a number of nondeterministic existential steps that is
bounded by a function of the parameter. (Theorem 2)

3. The Halting Problem for 2-alternating Turing machines that start in an existential
state, parameterized by the number of nondeterministic existential steps, is com-
plete for ∃k∀∗. (Theorem 3)

Theorem 1 provides an easy and convenient way for establishing membership re-
sults; we use it also in the proofs of Theorems 2 and 3 and give an example application
to a combinatorial problem in Section 5.

Theorem 2 establishes the robustness of the class ∃k∀∗, in analogy to the character-
ization of the first two classes of the Weft-hierarchy in terms of Turing machines [4,5].

Theorem 3 provides an analogue to the Cook-Levin Theorem for the complexity
class ∃k∀∗, which supports our assumption that ∃k∀∗ 6= para-co-NP, in analogy to the
argumentation that the W[1]-completeness of the Halting Problem for nondeterminis-
tic Turing machines, parameterized by the number of steps, supports the assumption
W[1] 6= FPT (see [6] and cf. the discussion in [5]). Interestingly, our version of the
Halting Problem remains ∃k∀∗-complete, independently of whether the Turing machine
uses a single tape, or an arbitrary number of tapes, in contrast to versions of the Halting
Problem that characterize classes of the Weft-hierarchy, where a single tape captures
W[1], and an arbitrary number of tapes captures W[2] [4,5].

We would like to remark that the membership in W[1] or W[2] for some parameter-
ized problems remained open for a long time, and was finally established by means of
machine characterizations [4]. We expect that our machine characterizations for ∃k∀∗
can be of similar use.

In Section 5 we exemplify our new complexity toolbox by applying it to parame-
terizations of a graph coloring problem, shown to be ΠP

2-complete by Ajtai, Fagin, and
Stockmeyer [1].

We provide proof sketches for the results presented in this paper. For full detailed
proofs we refer to a technical report [15].

2 Preliminaries

Propositional and First-Order Logic A literal is a propositional variable x or a negated
variable ¬x. We use the standard notion of (truth) assignments α : Var(ϕ) → {0, 1}
for Boolean formulas and truth of a formula under such an assignment.

A (relational) vocabulary τ is a finite set of relation symbols. Each relation sym-
bol R has an arity arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure (or sim-
ply structure), consists of a setA called the domain and an interpretationRA ⊆ Aarity(R)

for each relation symbolR ∈ τ . We use the usual definition of truth of a first-order logic
sentence ϕ over the vocubulary τ in a τ -structureA. We letA |= ϕ denote that the sen-
tence ϕ is true in structure A. If ϕ is a first-order formula with free variables Free(ϕ),
and µ : Free(ϕ)→ A is an assignment, we use the notation A, µ |= ϕ to denote that ϕ
is true in structure A under the assignment µ.

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

The Polynomial Hierarchy There are many natural decision problems that are not
contained in the classical complexity classes P or NP. The Polynomial Hierarchy
[18,20,23,24] contains a hierarchy of increasing complexity classes ΣP

i , for all i ≥ 0.
We give a characterization of these classes based on the satisfiability problem of var-
ious classes of quantified Boolean formulas. A quantified Boolean formula is a for-
mula of the form Q1X1Q2X2 . . . QmXmψ, where each Qi is either ∀ or ∃, the Xi are
disjoint sets of propositional variables, and ψ is a Boolean formula over the variables
in
⋃m

i=1Xi. The quantifier-free part of such formulas is called the matrix of the formula.
Truth of such formulas is defined in the usual way. Let γ = {x1 7→ d1, . . . , xn 7→ dn}
be a function that maps some variables of a formula ϕ to truth values. We let ϕ[γ]
denote the application of such a substitution γ to the formula ϕ. For each i ≥ 1,
we let QSATi be the problem to decide whether a given quantified Boolean for-
mula ϕ = ∃X1∀X2∃X3 . . . QiXiψ is true, where Qi is a universal quantifier if i is
even and an existential quantifier if i is odd.

Input formulas to the problem QSATi are called ΣP
i -formulas. For each nonnega-

tive integer i ≤ 0, the complexity class ΣP
i can be characterized as the closure of the

problem QSATi under polynomial-time reductions [23,24]. The ΣP
i -hardness of QSATi

holds already when the matrix of the input formula is restricted to 3CNF for odd i, and
restricted to 3DNF for even i. The class ΣP

0 coincides with P, and the class ΣP
1 coincides

with NP. For each i ≥ 1, the class ΠP
i is defined as co-ΣP

i .

Parameterized Complexity We briefly introduce some core notions from parameterized
complexity theory. For an in-depth treatment we refer to other sources [6,7,11,19]. A
parameterized problem L is a subset of Σ∗ × N for some finite alphabet Σ. For an
instance (I, k) ∈ Σ∗×N, we call I the main part and k the parameter. A parameterized
problem L is fixed-parameter tractable if there exists a computable function f and
a constant c such that there exists an algorithm that decides whether (I, k) ∈ L in
timeO(f(k)||I||c), where ||I|| denotes the size of I . LetL ⊆ Σ∗×N andL′ ⊆ (Σ′)∗×N
be two parameterized problems. An fpt-reduction from L to L′ is a mapping R : Σ∗ ×
N → (Σ′)∗ × N from instances of L to instances of L′ such that there exist some
computable function g : N → N such that for all (I, k) ∈ Σ∗ × N: (i) (I, k) is a yes-
instance of L if and only if (I ′, k′) = R(I, k) is a yes-instance of L′, (ii) k′ ≤ g(k),
and (iii) R is computable in fpt-time. We write L ≤fpt L

′ if there is an fpt-reduction
from L to L′. Similarly, we call reductions that satisfy properties (i) and (ii) but that are
computable in time O(||I||f(k)), for some fixed computable function f , xp-reductions.

Parameterized complexity theory also offers complexity classes for problems that
lie higher in the polynomial hierarchy. Let C be a classical complexity class, e.g., NP.
The parameterized complexity class para-C is then defined as the class of all param-
eterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist an
alphabet Π , a computable function f : N → Π∗, and a problem P ⊆ Σ∗ ×Π∗ such
that P ∈ C and for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if
and only if (x, f(k)) ∈ P . Intuitively, the class para-C consists of all problems that
are in C after a precomputation that only involves the parameter [10]. In particular, the
class para-NP consists of all parameterized problems that can be fpt-reduced to the triv-
ial parameterized variant of the propositional satisfiability problem, i.e., the problem
SAT where the parameter value is a fixed constant for all instances.

4

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

The basic complexity classes ∃k∀∗ and ∀k∃∗ are defined in terms of the following
weighted variant of QSAT2 [13,14].

∃k∀∗-WSAT
Instance: A quantified Boolean formula ϕ = ∃X.∀Y.ψ and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such
that ∀Y.ψ[α] is true?

The class ∃k∀∗ is defined to be the closure of ∃k∀∗-WSAT under fpt-reductions. More-
over, its dual class ∀k∃∗ is defined by ∀k∃∗ = co-∃k∀∗.

We will also consider the variant ∃≤k∀∗-WSAT of ∃k∀∗-WSAT, where the problem
is to decide whether there exists a truth assignment α to X with weight at most k such
that ∀Y.ψ[α] is true. This problem is also ∃k∀∗-complete. A proof of this can be found
in the technical report [15].

Alternating Turing machines We use the same notation as Flum and Grohe [11, Ap-
pendix A.1]. Let m ≥ 1 be a positive integer. An alternating Turing machine (ATM)
with m tapes is a 6-tuple M = (S∃, S∀, Σ,∆, s0, F), where: S∃ and S∀ are disjoint
sets; S = S∃ ∪ S∀ is the finite set of states; Σ is the alphabet; s0 ∈ S is the initial
state; F ⊆ S is the set of accepting states; and ∆ ⊆ S × (Σ ∪ {$,�})m × S ×
(Σ ∪ {$})m × {L,R,S}m is the transition relation. The elements of ∆ are the tran-
sitions). The symbols $,� 6∈ Σ are special symbols. “$” marks the left end of any
tape. It cannot be overwritten and only allows R-transitions.1 “�” is the blank sym-
bol. Intuitively, the tapes of our machine are bounded to the left and unbounded to
the right. The leftmost cell, the 0-th cell, of each tape carries a “$”, and initially, all
other tape cells carry the blank symbol. The input is written on the first tape, starting
with the first cell, the cell immediately to the right of the “$”. A configuration is a tu-
ple C = (s, x1, p1, . . . , xm, pm), where s ∈ S, xi ∈ Σ∗, and 0 ≤ pi ≤ |xi| + 1 for
each 1 ≤ i ≤ k. Intuitively, $xi�� . . . is the sequence of symbols in the cells of tape i,
and the head of tape i scans the pi-th cell. The initial configuration for an input x ∈ Σ∗
is C0(x) = (s0, x, 1, ε, 1, . . . , ε, 1), where ε denotes the empty word. A computation
step of M is a pair (C,C ′) of configurations such that the transformation from C to C ′

obeys the transition relation. We omit the formal details. We write C → C ′ to de-
note that (C,C ′) is a computation step of M. If C → C ′, we call C ′ a successor
configuration of C. A halting configuration is a configuration that has no successor
configuration. A halting configuration is accepting if its state is in F . A step C → C ′

is nondeterministic if there is a configuration C ′′ 6= C ′ such that C → C ′′, and is ex-
istential if C is an existential configuration. A state s ∈ S is called deterministic if for
any a1, . . . , am ∈ Σ ∪ {$,�}, there is at most one (s, (a1, . . . , am), s′, (a′1, . . . , a

′
m),

(d1, . . . , dm)) ∈ ∆. Similarly, we call a non-halting configuration deterministic if its
state is deterministic, and nondeterministic otherwise. A configuration is called existen-
tial if it is not a halting configuration and its state is in S∃, and universal if it is not a
halting configuration and its state is in S∀. Intuitively, in an existential configuration,
there must be at least one possible run that leads to acceptance, whereas in a universal

1 To formally achieve that “$” marks the left end of the tapes, whenever
(s, (a1, . . . , am), s′, (a′1, . . . , a

′
m), (d1, . . . , dm)) ∈ ∆, then for all 1 ≤ i ≤ m we

have that ai = $ if and only if a′i = $ and that ai = $ implies di = R.

5

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

configuration, all possible runs must lead to acceptance. Formally, a run of an ATM M
is a directed tree where each node is labeled with a configuration of M such that: (1) The
root is labeled with an initial configuration. (2) If a vertex is labeled with an existential
configuration C, then the vertex has precisely one child that is labeled with a successor
configuration of C. (3) If a vertex is labeled with a universal configuration C, then for
every successor configuration C ′ of C the vertex has a child that is labeled with C ′.
We often identify nodes of the tree with the configurations with which they are labeled.
The run is finite if the tree is finite, and infinite otherwise. The length of the run is the
height of the tree. The run is accepting if it is finite and every leaf is labeled with an
accepting configuration. If the root of a run ρ is labeled with C0(x), then ρ is a run with
input x. Any path from the root of a run ρ to a leaf is called a computation path. The
language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such that there is an
accepting run of M with initial configurationC0(x). M runs in time t : N→ N if for ev-
ery x ∈ Σ∗ the length of every run of M with input x is at most t(|x|). A step C → C ′

is an alternation if eitherC is existential andC ′ is universal, or vice versa. A run ρ of M
is `-alternating, for an ` ∈ N, if on every path in the tree associated with ρ, there are less
than ` alternations between existential and universal configurations. The machine M is
`-alternating if every run of M is `-alternating.

3 A First-Order Model Checking Characterization

In this section, we characterize the class ∃k∀∗ in terms of first-order model checking.
Consider the following parameterized problem.

∃k∀∗-MC
Instance: A first-order logic sentence ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ over a
vocabulary τ , where ψ is quantifier-free, and a finite τ -structure A.
Parameter: The number k of existentially quantified variables of ϕ.
Question: Does A |= ϕ?

We show that this problem is complete for the class ∃k∀∗. This result does not imply
that ∃k∀∗ ⊆ A[2] (cf. [11]), because the parameter of the problem ∃k∀∗-MC is only
the number of existential variables, not the size of the entire first-order formula.

Theorem 1. ∃k∀∗-MC is ∃k∀∗-complete.
Proof. We show ∃k∀∗-membership by giving an fpt-reduction to ∃k∀∗-WSAT.
Let (ϕ,A) be an instance of ∃k∀∗-MC, where ϕ = ∃x1, . . . , xk.∀y1, . . . , yn.ψ is a
first-order logic sentence over vocabulary τ , and A is a τ -structure with domain A. We
may assume without loss of generality that ψ contains only connectives ∧ and ¬.

We construct an instance (ϕ′, k) of ∃k∀∗-WSAT, where ϕ is of the
form ∃X ′.∀Y ′.ψ′. We define X ′ = {x′i,a : 1 ≤ i ≤ k, a ∈ A }, and Y ′ = { y′j,a : 1 ≤
j ≤ n, a ∈ A }. Intuitively, the variable x′i,a denotes whether the variable xi is assigned
to value a, and similarly, the variable y′j,a denotes whether yj is assigned to value a. In
order to define ψ′, we will use the auxiliary function µ on subformulas of ψ, defined by
letting µ(χ1∧χ2) = µ(χ1)∧µ(χ2), µ(¬χ1) = ¬µ(χ1), and µ(χ) =

∨
1≤i≤u(ψz1,ai

1
∧

· · · ∧ ψzm,ai
m

) if χ = R(z1, . . . , zm) and RA = {(a11, . . . , a1m), . . . , (au1 , . . . , a
u
m)},

where for each z ∈ X ∪ Y and each a ∈ A we let ψz,a = x′i,a if z = xi, and we

6

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

let ψz,a = y′j,a if z = yj . Now, we define ψ′ by letting ψ′ = ψ′unique-X′ ∧ (ψ′unique-Y ′ →
µ(ψ)), where ψ′unique-X′ =

∧
1≤i≤k(

∨
a∈A x

′
i,a ∧

∧
a,a′∈A,a6=a′(¬x′i,a ∨ ¬x′i,a′)),

and ψ′unique-Y ′ =
∧

1≤j≤n(
∨

a∈A y
′
j,a ∧

∧
a,a′∈A,a6=a′(¬y′j,a ∨ ¬y′j,a′)). Intuitively, the

formula ψ′unique-X′ represents whether the variables x′i,a encode a unique assignment for
each variable xi. Similarly, the formula ψ′unique-Y ′ represents whether the variables y′i,a
encode a unique assignment for each variable yi. We claim that (A, ϕ) ∈ ∃k∀∗-MC if
and only if (ϕ′, k) ∈ ∃k∀∗-WSAT.

Hardness can be shown by means of an fpt-reduction from ∃k∀∗-WSAT. A detailed
proof of both membership and hardness can be found in the technical report [15]. ut

4 Alternating Turing Machine Characterizations

Next, we characterize ∃k∀∗ in terms of ATMs. In particular, we consider parameterized
problems related to the halting problem for a particular class of ATMs, and show that
these problems are ∃k∀∗-complete. Moreover, we show that ∃k∀∗ is exactly the class of
parameterized decision problems that can be decided by a certain class of ATMs.

We consider the following restrictions on ATMs. An ∃∀-Turing machine (or simply
∃∀-machine) is a 2-alternating ATM (S∃, S∀, Σ,∆, s0, F), where s0 ∈ S∃. Let `, t ≥ 1
be positive integers. We say that an ∃∀-machine M halts (on the empty string) with
existential cost ` and universal cost t if: (1) there is an accepting run of M with input ε,
and (2) each computation path of M contains at most ` existential configurations and at
most t universal configurations.

Let P be a parameterized problem. An ∃k∀∗-machine for P is a ∃∀-machine M such
that there exists a computable function f and a polynomial p such that: (1) M decides P
in time f(k) · p(|x|); and (2) for all instances (x, k) of P and each computation path R
of M with input (x, k), at most f(k) · log |x| of the existential configurations of R are
nondeterministic. We say that a parameterized problem P is decided by some ∃k∀∗-
machine if there exists a ∃k∀∗-machine for P .

Let m ∈ N be a positive integer. We consider the following parameterized problem.

∃k∀∗-TM-HALTm.
Instance: An ∃∀-machine M with m tapes, and positive integers k, t ≥ 1.
Parameter: k.
Question: Does M halt on the empty string with existential cost k and univer-
sal cost t?

In addition, we consider the parameterized problem ∃k∀∗-TM-HALT∗ =
⋃

m∈N ∃k∀∗-
TM-HALTm, i.e., the variant of the above problem where the number of tapes is given
as part of the input, rather than being a fixed constant.

In the remainder of this section, we show that the class ∃k∀∗ is characterized by
alternating Turing machines in the way specified by the following two theorems.

Theorem 2. ∃k∀∗ is exactly the class of parameterized decision problems that are de-
cided by some ∃k∀∗-machine.

Theorem 3. The problem ∃k∀∗-TM-HALT∗ is ∃k∀∗-complete, and so is the problem
∃k∀∗-TM-HALTm for each m ∈ N.

7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

Proof (Theorems 2 and 3). In order to show these results, concretely, we will prove the
following claims:

1. ∃k∀∗-TM-HALT∗ ≤fpt ∃k∀∗-MC.
2. For any parameterized problem P that is decided by some ∃k∀∗-machine with m

tapes, it holds that P ≤fpt ∃k∀∗-TM-HALTm+1.
3. There is an ∃k∀∗-machine with a single tape that decides ∃≤k∀∗-WSAT.
4. Let A and B be parameterized problem. If there is an ∃k∀∗-machine for B with m

tapes, and if A ≤fpt B, then there is an ∃k∀∗-machine for A with m tapes.
5. ∃k∀∗-TM-HALT2 ≤fpt ∃k∀∗-TM-HALT1.

These claims imply the desired results in the following way.
By Claims 1 and 2, by Theorem 1, and by transitivity of fpt-reductions, we have

that any parameterized problem P that is decided by an ∃k∀∗-machine is fpt-reducible
to ∃k∀∗-WSAT, and thus is in ∃k∀∗. Conversely, let P be any parameterized problem in
∃k∀∗. Then, by ∃k∀∗-hardness of ∃≤k∀∗-WSAT, we know that P ≤fpt ∃≤k∀∗-WSAT.
By Claims 3 and 4, we know that P is decided by some ∃k∀∗-machine with a single
tape. From this we conclude that ∃k∀∗ is exactly the class of parameterized problems P
decided by some ∃k∀∗-machine.

Together, Claims 2 and 3 imply that ∃≤k∀∗-WSAT ≤fpt ∃k∀∗-TM-HALT2. Clearly,
for all m ≥ 2, ∃k∀∗-TM-HALT2 ≤fpt ∃k∀∗-TM-HALTm. This gives us ∃k∀∗-hardness
of ∃k∀∗-TM-HALTm, for all m ≥ 2. ∃k∀∗-hardness of ∃k∀∗-TM-HALT1 follows from
Claim 5, which states that there is an fpt-reduction from ∃k∀∗-TM-HALT2 to ∃k∀∗-
TM-HALT1. This also implies that ∃k∀∗-TM-HALT∗ is ∃k∀∗-hard. Then, by Claim 1,
and since ∃k∀∗-MC is in ∃k∀∗ by Theorem 1, we obtain ∃k∀∗-completeness of ∃k∀∗-
TM-HALT∗ and ∃k∀∗-TM-HALTm, for each m ≥ 1.

For Claims 1–3, we describe the main idea and intuition behind the proof. A full
detailed proof of these claims can be found in the technical report [15].
Proof of Claim 1 (sketch). Given an ∃∀-machine M with m tapes and positive in-
tegers k, t ≥ 1, we construct a structure A and a first-order sentence ∃x1, . . . , xk′ .
∀y1, . . . , yu.ψ such thatA |= ϕ if and only if M halts on the empty string with existen-
tial cost k and universal cost t. In order to do so, firstly, we transform M in such a way
that each computation path contains exactly k existential configurations and exactly t
universal configurations (rather than at most k existential configurations and at most t
universal configurations) by adding a “clock” to it, i.e., by indexing the existential and
universal states with time steps i and allowing M to be “idle” at each time step.

Then, we use the existential variables xi (and the structure A) to guess the first k
many (existential) configurations and transitions of M, and we use universal variables
(and the structure A) to represent the subsequent t many (universal) configurations
and transitions. The position of the tape heads and the tape contents for the first k
many configurations can be represented by formulas whose size depends only on k.
This is not entirely straightforward, but can be done by adapting a technique used by
Flum and Grohe [11, Theorem 7.28] to our setting. In order to represent the position
of the tape heads and the tape contents for the universal configurations, we can use
additional universally quantified variables, since the number of universal variables is not
bounded by the parameter. Finally, it is straightforward to encode into ψ the condition
that the computation path of M that is represented by the variables xi and yi must be an
accepting run.

8

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

Proof of Claim 2 (sketch). Let P be a parameterized problem, and let M be an ∃k∀∗-
machine that decides it, i.e., there exists a computable function f and a polynomial p
such that for any instance (x, k) of P we have that any computation path of M with
input (x, k) has length at most f(k) · p(|x|) and contains at most f(k) · log |x| nonde-
terministic existential configurations. Let (x, k) be an instance of P . We construct an
∃∀-machine M(x,k) and positive integers k′, t ≥ 1 such that M(x,k) accepts the empty
string with existential cost k′ and universal cost t if and only if M accepts (x, k).

In order to do so, we add symbols σ to the alphabet that represent sequences of u
many nondeterministic transitions of M, for u ≤ dlog |x|e. The machine M(x,k) firstly
guesses f(k) of such symbols σ. This can be done using k′ = f(k) many existential
steps. Then, M(x,k) simulates using (deterministic) universal steps the existential steps
of M on input (x, k), where it simulates the nondeterministic existential steps of M
by “reading off” the transitions of the guessed symbols σ. Finally, M(x,k) simulates
the (nondeterministic) universal steps of M. The entire simulation of M on input (x, k)
requires at most t = f(k) · p(|x|) universal steps.
Proof of Claim 3 (sketch). We describe the working of an ∃k∀∗-machine M for
∃≤k∀∗-WSAT. Let (ϕ, k) be an instance of ∃≤k∀∗-WSAT, where ϕ = ∃X.∀Y.ψ,
and X = {x1, . . . , xn}. Firstly, M determines the size of X , and nondeterministically
guesses k many bitstrings of length dlog |X|e, which it appends to the tape contents.
This can be done using fpt-many existential steps, of which at most k · dlog |X|e many
are nondeterministic. These bitstrings represent an assignment α : X → {0, 1} of
weight at most k in the following way: α sets exactly those xi to true for which the tape
contains a bitstring that is the binary representation of index i. Then, M uses polyno-
mially many nondeterministic universal steps to guess an assignment β : Y → {0, 1}.
Finally, it applies the assignment α ∪ β to the formula ψ and simplifies the resulting
formula, using polynomially many deterministic steps. The machine M accepts if and
only if ψ[α ∪ β] evaluates to true.
Proof of Claim 4 (sketch). Let R be the fpt-reduction from A to B, and let M be an al-
gorithm that decidesB and that can be implemented by an ∃k∀∗-machine withm tapes.
Then, the composition of R and M is an algorithm that decides A. It is straightforward
to verify that the composition of R and M can be implemented by an ∃k∀∗-machine
with m tapes.
Proof of Claim 5 (sketch). The claim follows by the following statement, which is
known from the literature [16, Thm 8.9 and Thm 8.10]. Let m ≥ 1 be a (fixed) positive
integer. For each ATM M with m tapes, there exists an ATM M′ with 1 tape such that:
(1) M and M′ are equivalent, i.e., they accept the same language; (2) M′ simulates n
many steps of M using O(n2) many steps; and (3) M′ simulates existential steps of M
using existential steps, and simulates universal steps of M using universal steps. ut

5 Showcase Application to a Combinatorial Problem

In this section, we will exemplify our new complexity toolbox by applying it to vari-
ous parameterizations of a well-known ΠP

2-complete problem, as considered by Ajtai,
Fagin, and Stockmeyer [1].

Let G = (V,E) be a graph. We will denote those vertices v that have degree 1 by
leaves. We call a (partial) function c : V → {1, 2, 3} a 3-coloring (of G). Moreover,

9

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

we say that a 3-coloring c is proper if c assigns a color to every vertex v ∈ V , and if
for each edge e = {v1, v2} ∈ E holds that c(v1) 6= c(v2). Now consider the following
ΠP

2-complete decision problem.

3-COL-EXT
Instance: a graph G = (V,E) with n many leaves, and an integer m.
Question: can any 3-coloring that assigns a color to exactly m leaves of G
(and to no other vertices) be extended to a proper 3-coloring of G?

We consider several parameterizations p for this problem, denoted 3-COL-EXT(p).
p parameter (k)
degree the degree of G, i.e., k = deg(G)
#leaves the number of leaves of G, i.e., k = n
#col.leaves the number of leaves that are pre-colored, i.e., k = m
#uncol.leaves the number of leaves that are not pre-colored, i.e., k = n−m

For most of these parameterizations, the existing parameterized complexity toolbox suf-
fices to determine whether or not an fpt-reduction to SAT exists. The following results
witness this (proofs of these results can be found in the technical report [15]). For pa-
rameterized problems that are in para-NP, an fpt-reduction to SAT exists, whereas this
is not the case for problems that are hard for para-ΠP

2 (unless the PH collapses).

Proposition 1. The problems 3-COL-EXT(degree) and 3-COL-EXT(#uncol.leaves)
are para-ΠP

2-complete. The problem 3-COL-EXT(#leaves) is para-NP-complete.

For the remaining parameterization of the problem 3-COL-EXT the classes para-NP and
para-ΠP

2 seem to be of little help. On the one hand, 3-COL-EXT(#col.leaves) is unlikely
to be hard for the class para-ΠP

2, for the following reason. It is straightforward to con-
struct an xp-reduction from 3-COL-EXT(#col.leaves) to SAT. However, problems that
are hard for para-ΠP

2 do not allow xp-reductions to SAT, unless the PH collapses [14].
Therefore, 3-COL-EXT(#col.leaves) is not para-ΠP

2-hard, unless the PH collapses. On
the other hand, at first sight it is unclear how one can come up with a more efficient
reduction from 3-COL-EXT(#col.leaves) to SAT than the obvious xp-reduction. To
back up this conjecture of the non-existence of an fpt-reduction to SAT for the problem
3-COL-EXT(#col.leaves), we will use the class ∃k∀∗.

In order to give evidence that the problem 3-COL-EXT(#col.leaves) does not allow
an fpt-reduction to SAT, we can show that it is hard for the class ∀k∃∗. In addition, we
can illustrate the use of the characterization of the parameterized complexity class ∃k∀∗
in terms of first-order model checking (Theorem 1), by using the problem ∀k∃∗-MC
(which is the complement of the problem ∃k∀∗-MC) to show ∀k∃∗-membership, char-
acterizing the complexity of 3-COL-EXT(#col.leaves) as ∀k∃∗-complete.

Theorem 4. 3-COL-EXT(#col.leaves) is ∀k∃∗-complete.
Proof. To show membership, we give an fpt-reduction from 3-COL-EXT(#col.leaves)
to ∀k∃∗-MC. Let (G,m) be an instance of 3-COL-EXT(#col.leaves), where V ′ de-
notes the set of leaves of G, and where k = m is the number of edges that can be
pre-colored. Moreover, let V ′ = {v1, . . . , vn} and let V = V ′ ∪ {vn+1, . . . , vu}. We
construct an instance (A, ϕ) of ∀k∃∗-MC. We define the domain A = { av,i : v ∈
V ′, 1 ≤ i ≤ 3 } ∪ {1, 2, 3}. Next, we define CA = {1, 2, 3}, SA = { (av,i, av,i′) : v ∈

10

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

V ′, 1 ≤ i, i′ ≤ 3 }, and FA = { (j, j′) : 1 ≤ j, j′ ≤ 3, j 6= j′ }. Then, we can
define the formula ϕ, by letting ϕ = ∀x1, . . . , xk.∃y1, . . . , yu.(ψ1 → (ψ2 ∧ ψ3 ∧
ψ4)), where ψ1 =

∧
1≤j<j′≤k ¬S(xi, xi′), and ψ2 =

∧
1≤j≤u C(yj), and ψ3 =∧

vj∈V ′,1≤i≤3((
∨

1≤`≤k(x` = avj ,i)) → (yj = i)), and ψ4 =
∧
{vj ,vj′}∈E F (yj , yj′).

It is straightforward to verify that (G,m) ∈ 3-COL-EXT if and only if A |= ϕ.
Intuitively, the assignments to the variables xi correspond to the pre-colorings of

the vertices in V ′. This is done by means of elements av,i, which represent the coloring
of vertex v with color i. The subformula ψ1 is used to disregard any assignments where
variables xi are not assigned to the intended elements. Moreover, the assignments to
the variables yi correspond to a proper 3-coloring extending the pre-coloring. The sub-
formula ψ2 ensures that the variables yi are assigned to a color in {1, 2, 3}, the subfor-
mula ψ3 ensures that this coloring extends the pre-coloring encoded by the assignment
to the variables xi, and the subformula ψ4 ensures that this coloring is proper.

Hardness can be shown by means of an fpt-reduction from ∀k∃∗-WSAT. A proof of
hardness can be found in the technical report [15]. ut

6 Conclusion

The classes ∃k∀∗ and ∀k∃∗ are parameterized complexity classes between the first and
the second level of the PH, that can be used to give evidence that certain parameter-
ized problems do not allow an fpt-reduction to SAT. By definition, ∃k∀∗ and ∀k∃∗ are
characterized in terms of weighted variants of the quantified Boolean satisfiability prob-
lem. We provided characterizations of these classes in terms of a first-order logic model
checking problem, and in terms of alternating Turing machines with appropriate time
bounds and bounds on the number of alternations. Moreover, we showed how one of
these alternative characterizations can be used to show membership in the class ∃k∀∗,
by means of an example problem that is related to extending partial graph 3-colorings to
complete, proper 3-colorings. Our alternative characterizations establish the robustness
of the classes and provide new ways of showing membership.

Further research includes applying the additional characterizations we provided to
show membership in ∃k∀∗ and ∀k∃∗ for further parameterized problems. In addition,
it would be interesting to obtain similar characterizations for the classes ∃∗∀k-W[t],
which are parameterized complexity classes that are defined analogously to ∃k∀∗, and
that can be used to get similar intractability results [14,15].

References

1. Miklós Ajtai, Ronald Fagin, and Larry J. Stockmeyer. The closure of monadic NP. J. of
Computer and System Sciences, 60(3):660–716, 2000.

2. Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-
bridge University Press, 2009.

3. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of Sat-
isfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

4. Marco Cesati. The Turing way to parameterized complexity. J. of Computer and System
Sciences, 67:654–685, 2003.

11

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

5. Yijia Chen and Jörg Flum. A parameterized halting problem. In Hans L. Bodlaender, Rod
Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic Revolution
and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday,
volume 7370 of Lecture Notes in Computer Science, pages 364–397. Springer Verlag, 2012.

6. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

7. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer Verlag, 2013.

8. Ulle Endriss, Ronald de Haan, and Stefan Szeider. Parameterized complexity results for
agenda safety in judgment aggregation. In Proceedings of the 5th International Workshop
on Computational Social Choice (COMSOC-2014). Carnegie Mellon University, June 2014.

9. Johannes Klaus Fichte and Stefan Szeider. Backdoors to normality for disjunctive logic
programs. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence
(AAAI 2013), pages 320–327. AAAI Press, 2013.

10. Jörg Flum and Martin Grohe. Describing parameterized complexity classes. Information
and Computation, 187(2):291–319, 2003.

11. Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

12. Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability solvers. In
Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence,
pages 89–134. Elsevier, 2008.

13. Ronald de Haan and Stefan Szeider. Fixed-parameter tractable reductions to SAT. In Uwe
Egly and Carsten Sinz, editors, Proceedings of the 17th International Symposium on the
Theory and Applications of Satisfiability Testing (SAT 2014) Vienna, Austria, July 14–17,
2014, volume 8561 of Lecture Notes in Computer Science, pages 85–102. Springer, 2014.

14. Ronald de Haan and Stefan Szeider. The parameterized complexity of reasoning problems
beyond NP. In Chitta Baral, Giuseppe De Giacomo, and Thomas Eiter, editors, Principles
of Knowledge Representation and Reasoning: Proceedings of the Fourteenth International
Conference, KR 2014, Vienna, Austria, July 20-24, 2014. AAAI Press, 2014.

15. Ronald de Haan and Stefan Szeider. The parameterized complexity of reasoning problems
beyond NP. Technical Report 1312.1672v3, arXiv.org, 2014.

16. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley Series in Computer Science. Addison-
Wesley-Longman, second edition, 2001.

17. Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical hardness to practical
success. Communications of the ACM, 52(8):76–82, 2009.

18. Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In SWAT, pages 125–129. IEEE Computer Soc.,
1972.

19. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, Oxford, 2006.

20. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
21. Andreas Pfandler, Stefan Rümmele, and Stefan Szeider. Backdoors to abduction. In

Francesca Rossi, editor, Proceedings of the 23rd International Joint Conference on Artifi-
cial Intelligence, IJCAI 2013. AAAI Press/IJCAI, 2013.

22. Karem A. Sakallah and João Marques-Silva. Anatomy and empirical evaluation of mod-
ern SAT solvers. Bulletin of the European Association for Theoretical Computer Science,
103:96–121, 2011.

23. Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–
22, 1976.

24. Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976.

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
9

