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Abstract
The existential positive fragment of first-order logic is the set of formulas built from conjunction,
disjunction, and existential quantification. On sentences from this fragment, we study three fun-
damental computational problems: logical equivalence, entailment, and the problem of deciding,
given a sentence and a positive integer k, whether or not the sentence is logically equivalent to
a k-variable sentence. We study the complexity of these three problems, and give a description
thereof with respect to all relational signatures. In particular, we establish for the first time
that, over a signature containing a relation symbol of binary (or higher) arity, all three of these
problems are complete for the complexity class Πp

2 of the polynomial hierarchy.
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1 Introduction

1.1 Background and Motivation
The undecidability of the Entscheidungsproblem—given a first-order sentence, decide if it
is valid—immediately implies the undecidability of the fundamental problems of testing
equivalence and testing entailment on input pairs of first-order sentences. Nonetheless,
certain fragments of relational first-order logic have been shown to admit equivalence and
entailment problems that are decidable. Somewhat recently, these two problems were shown
to be decidable for conjunctive positive logic, the fragment of formulas built from conjunction
(∧) and both quantifiers (∀,∃) [6]. These two problems have indeed been long known to be
decidable in the more restrictive fragment of primitive positive logic, which consists of those
formulas built from conjunction (∧) and existential quantification (∃); indeed, in this fragment
these problems admit a relatively tame complexity grading, being both NP-complete [3].
From the decidability of these problems in primitive positive logic, it can be readily verified
that these two problems remain decidable in existential positive logic, which consists of those
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2 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

formulas built from conjunction (∧), disjunction (∨), and existential quantification (∃). In
the database and knowledge representation literature, the problem of entailment is often
referred to as query containment or subsumption, and along with equivalence is considered a
basic reasoning task.

We here study, in existential positive logic, the complexity of equivalence and entailment,
as well as a third basic problem, which we now turn to describe; let us assume, in the rest of
this section, that all sentences under discussion are existential positive. A recent study on
the complexity of model checking in existential positive logic [5] revealed that the number
of variables needed to express a sentence is the crucial parameter determining complexity;
specifically, it was shown that on a set F of bounded-arity sentences, model checking on
F is fixed-parameter tractable if there exists a constant k such that each sentence in F
is logically equivalent to a k-variable sentence (a sentence in which at most k variables
are present); otherwise, model checking is not fixed-parameter tractable (under standard
complexity-theoretic assumptions). From the perspective of this result, the computational
problem of determining exactly how many variables are needed to express a sentence is
very well-motivated. Here, we study the following decision version of this problem: given
a sentence and a constant k, decide if the sentence is logically equivalent to a k-variable
sentence. For the purposes of discussion, let us call this the minimization problem. This
problem has been studied and shown to be NP-complete in primitive positive logic [7].

1.2 Results
In this paper, we characterize the complexity of minimization, equivalence, and entailment in
existential positive logic, over fixed relational signatures. We establish the following results;
recall that Πp

2 is a complexity class located at the second level of the polynomial hierarchy,
and contains both NP and coNP.

We begin by studying the case where a symbol of binary or higher arity is present.

I Results 1 (at least binary arity). On a signature containing a relation symbol of at least
binary arity, all three of the problems are Πp

2-complete.

Note that the equivalence problem was shown to be Πp
2-complete by Sagiv and Yannaka-

kis [11], however, no analysis of the signature was performed in that work. Our result thus
strengthens theirs by showing that the same level of hardness can be achieved even (for
example) in the case of a signature with a single binary relation symbol.

Hardness for Πp
2 is proved for all three problems via a unified argument that reduces

from a quantified version of the classical graph colorability problem. For the minimization
problem, we in fact show that the problem exhibits this maximal Πp

2-complete complexity
even when k is fixed as any sufficiently large integer.

On a unary signature, by which we mean a signature containing only unary relation
symbols, each sentence is logically equivalent to a 1-variable sentence, and hence the minim-
ization problem becomes trivial. We do, though, persist in studying the other two problems
on unary signatures, where we demonstrate the following phenomena.

I Results 2 (unary arity). The following hold for the equivalence and entailment problems.
On a unary signature of infinite size, these two problems continue to be Πp

2-complete.
On the other hand, on a unary signature of finite size, these two problems are solvable
in polynomial time with a constant number of queries to an NP oracle (and thus are
not Πp

2-hard unless the polynomial hierarchy collapses), yet we give a hardness criterion,
which, in the case of a signature with two distinct symbols, shows that these problems
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S. Bova and H. Chen 3

are coDP-hard. The class coDP contains a language if it is the union of an NP language
and a coNP language; coDP-hardness thus implies both NP-hardness and coNP-hardness.
Finally, as we discuss in the paper, these two problems are readily verified to be in P on
a unary signature with at most one symbol.

To sum up, we obtain a comprehensive complexity profile of the studied problems with
respect to all relational signatures, as depicted in the following table, where σ is a relational
signature; for precise statements, refer to Section 4, and for more information on the finite
unary case, refer to Section 7.2.

EPσ-Entail, EPσ-≡ EPkσ-Expr
σ unary, |σ| ≤ 1 in P trivial (for all k ≥ 1)
σ unary finite, |σ| > 1 coDP-hard, in PNP[const] trivial (for all k ≥ 1)
σ unary infinite Πp

2-complete trivial (for all k ≥ 1)
σ 3 R, R at least binary Πp

2-complete Πp
2-complete (for all k ≥ 6)

The present article, in part, extends some of the material of an article that appeared in
the proceedings of the 17th International Conference on Database Theory (ICDT 2014) and
that focused on the problems EPkσ-Expr [2].

2 Preliminaries

For an integer k ≥ 0, we use k to denote the set {1, . . . , k}, with the convention that 0 = ∅.
In this paper, we focus on relational first-order logic. A signature σ is a set of relation

symbols, each of which has an associated natural number called its arity.

2.1 Structures
A structure A (over signature σ) is specified by a nonempty set A called the universe of the
structure and denoted by the corresponding non-bold letter, and a relation RA ⊆ Ar for
each arity r relation symbol R ∈ σ. A structure is finite if its universe is finite.

A collection of structures is said to be similar if they share the same signature. Let A,B
be similar structures on the signature σ. The union of A and B is the structure A ∪ B
with universe A ∪ B and with RA∪B = RA ∪ RB for each arity r relation symbol R ∈ σ.
A homomorphism from A to B is a mapping h : A→ B such that for each symbol R ∈ σ,
it holds that h(RA) ⊆ RB, by which is meant that for each tuple (a1, . . . , ak) ∈ RA, one
has (h(a1), . . . , h(ak)) ∈ RB. We will sometimes simply write A→ B to indicate that there
exists a homomorphism from A to B. We say that A and B are homomorphically equivalent
if A→ B and B→ A both hold.

The structure B is a substructure of the structure A if B ⊆ A and RB ⊆ RA for all
relation symbols R. When B is a substructure of A, there exists a homomorphism h from A
to B, and h fixes each element b ∈ B, the mapping h is said to be a retraction from A to
B; when there exists a retraction from A to B, it is said that A retracts to B. A core of
the structure A is a structure C such that A retracts to C, but A does not retract to any
proper substructure of C. We will make use of the following well-known facts on cores [9]:
(1) each finite structure has a core; (2) all cores of a finite structure are isomorphic. From
these facts, it is reasonable to speak of the core of a finite structure, which we do, and we
use core(A) to denote a representative from the set of all cores of a finite structure A.

We define the Gaifman graph of a structure B to be the undirected graph G(B) with
vertex set B and having an edge {b, b′} if and only if b and b′ co-occur in a tuple of B.
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4 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

A tree decomposition of an undirected graph G with vertex set B is a pair (T, β) consisting
of a tree T and a map β : V T → ℘(B) defined on the vertex set V T of T such that, for each
vertex t ∈ V T , it holds that β(t) is a non-empty subset of B, called the bag of t, and the
following conditions hold:

For each b ∈ B, the vertices {t | b ∈ β(t)} form a connected subtree of T .
For each edge {b, b′} of G, there exists a vertex t ∈ V T such that {b, b′} ⊆ β(t).

The width of a tree decomposition (T, β) is defined as (maxt∈V T |β(t)|)− 1. The treewidth of
an undirected graph G, denoted by tw(G), is the minimum width over all tree decompositions
of G; the treewidth of a structure B, denoted by tw(B), is defined as tw(G(B)).

2.2 Formulas
An atom (over signature σ) is an equality of variables (x = y) or is a predicate application
R(x1, . . . , xr), where x1, . . . , xr are variables, and R ∈ σ is an arity r relation symbol. A
formula (over signature σ) is built from atoms (over σ), conjunction (∧), disjunction (∨),
universal quantification (∀), and existential quantification (∃). A sentence is a formula
having no free variables. We let FO denote the set of first-order formulas. For each set L
of first-order formulas and each integer k ≥ 1, we let Lk denote the subset of L containing
formulas that use at most k variables, and Lσ denote the subset of L containing formulas
over signature σ.

An existential positive formula (over signature σ) is a formula built from atoms (over σ)
using conjunction, disjunction, and existential quantification; we let EP denote the set of
existential positive formulas. A primitive positive formula (over signature σ) is a formula
built from atoms (over σ) using conjunction and existential quantification; we let PP denote
the set of primitive positive formulas.

We use the following standard terminology and notation from logic. For a structure A
and a sentence φ over the same signature, we write A |= φ if the sentence φ is true in the
structure A. When A is a structure, f is a mapping from variables to the universe of A, and
ψ is a formula over the signature of A, we write A, f |= ψ to indicate that ψ is satisfied by
A and f . Let φ and ψ be sentences over the same signature σ. Then, φ entails ψ (denoted
φ |= ψ) if, for all structures A over σ, it holds that A |= φ implies A |= ψ; also, φ and ψ are
logically equivalent (denoted φ ≡ ψ) if φ |= ψ and ψ |= φ.

We use the following terminology and notation. Let σ be a signature, let φ be a primitive
positive formula over σ, and let A be a finite structure over σ. By the existential closure of
a formula, we mean the sentence obtained by existentially quantifying the free variables of
the formula.

C[φ] denotes the canonical structure induced by the existential closure of φ, as follows.
Let φc be the existential closure of the prenex form of φ. Let elim=(φc) be obtained by
eliminating equalities from φc using the following syntactic transformations: for each
equality x = y on distinct variables, replace all instances of y with x in the quantifier free
part, and remove the quantifier ∃y from the prefix; remove equalities of the form x = x.
Define C[φ] to be the structure having a universe element for each existentially quantified
variable in elim=(φc), and where, for each R ∈ σ, the relation RC[φ] contains (x1, . . . , xk)
if and only if R(x1, . . . , xk) appears in the quantifier free part of elim=(φc).
Q[A] denotes the canonical query of A, defined as follows. If A = {a1, . . . , an}, then

Q[A] = ∃a1 . . . ∃an
∧

R∈σ

∧

(a′1,...,a′k)∈RA

R(a′1, . . . , a′k).
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S. Bova and H. Chen 5

We will use the following known fact.
I Proposition 1. (Chandra-Merlin [3]) Let φ be a sentence and let A be a finite structure,
such that φ = Q[A] or A = C[φ]. Then, for any structure B, it holds that A → B if and
only if B |= φ.
It is straightforward to verify that the existential closure of any primitive positive formula
φ is logically equivalent to Q[C[φ]], and that every finite structure A is homomorphically
equivalent to C[Q[A]].

3 Existential Positive Logic

In this section, we define the problems under study, establish some basic facts on existential
positive logic, and place the problems in the complexity class Πp

2. In related work, Sagiv
and Yannakakis [11] showed containment in Πp

2 of the problem EP-Equiv; here, using the
formalism of first-order logic, we give a treatment that places all three of the studied problems
in Πp

2.

I Definition 2. We define the following computational problems:
EP-Entail: Given a pair (φ, ψ) of sentences in EP, decide whether φ |= ψ.
EP-Equiv: Given a pair (φ, ψ) of sentences in EP, decide whether φ ≡ ψ.
EP-Expr: Given a sentence φ ∈ EP and an integer k ≥ 1, decide whether φ is logically
equivalent to a sentence in EPk.

Moreover, for every signature σ and every integer m ≥ 1, we define the following
computational problems as restrictions of the above problems:

EPσ-Entail is the restriction of EP-Entail to instances where φ, ψ ∈ EPσ.
EPσ-≡ is the restriction of EP-Equiv to instances where φ, ψ ∈ EPσ.
EPmσ -Expr is the restriction of EP-Expr to instances where φ ∈ EPσ and k = m.

Note that throughout this paper, the only notion of reduction that we use is many-one
polynomial-time reduction.

I Definition 3. A sentence φ in EP is in disjunctive form if φ =
∨
i∈n φi, where, for all i ∈ n,

φi is a sentence in PP; such a disjunctive form is irredundant if there do not exist distinct
i, j ∈ n such that φi |= φj .

We will make use of the following syntactic transformations, which preserve logical
equivalence:

∃x(θ ∨ θ′) ≡ ∃xθ ∨ ∃xθ′; (E1)
θ ∧ (θ′ ∨ θ′′) ≡ (θ ∧ θ′) ∨ (θ ∧ θ′′); (E2)

∃xθ ≡ θ, if x not free in θ; (E3)
θ ∨ θ′ ≡ θ′, if θ |= θ′. (E4)

Given an arbitrary existential positive sentence, an equivalent existential positive sentence
in disjunctive form is computable by iterated syntactic replacements exploiting the facts
(E1) and (E2) above; also, given an existential positive sentence in disjunctive form, an
equivalent existential positive sentence in irredundant disjunctive form is computable by
iterated syntactic replacements exploiting the fact (E4) above.

The proof that our computational problems are contained in the complexity class Πp
2

relies on the following lemma.
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6 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

I Lemma 4. Let φ and ψ be sentences in EP. Let
∨
i∈m φi and

∨
j∈n ψj be disjunctive forms

in EP logically equivalent to φ and ψ, respectively. The following hold.
1. φ |= ψ if and only if, for all i ∈ m, there exists j ∈ n such that φi |= ψj.
2. If the above disjunctive forms are irredundant and φ ≡ ψ, then m = n and there exists a

bijection π : m→ m such that for all i ∈ m it holds that φi ≡ ψπ(i).
3. Let k ≥ 1 be an integer. Then, φ is logically equivalent to a sentence in EPk if and only

if, for all i ∈ m, there exists i′ ∈ m such that φi |= φi′ and φi′ is logically equivalent to a
sentence in PPk.

Proof. For (1), the backwards direction is clear. For the forwards direction, let i ∈ m. We
have C[φi] |= φ, from which it follows that C[φi] |= ψ. We must then have that there exists
j ∈ n such that C[φi] |= ψj , from which the result follows from Proposition 1.

For (2), let i ∈ m. By (1), there exists j ∈ n such that φi |= ψj . We claim that φi ≡ ψj .
This is because there exists i′ ∈ m such that ψj |= φi′ ; if i 6= i′, then this implies that the
disjunctive form for φ is not irredundant, a contradiction. Since the disjunctive form for ψ is
irredundant, there is a unique j ∈ n satisfying the condition φi ≡ ψj , and we thus obtain an
injection π : m→ n, as well as that m ≤ n. By symmetric reasoning, we obtain that n ≤ m
and so m = n and the injection π is a bijection.

For (3), first let φ ∈ EP. If φ is logically equivalent to a sentence in EPk, say φ′, then
the disjunctive form of φ′ obtained using the above transformations (E1), (E2) and (E3) is
such that each disjunct is a primitive positive sentence in PPk. This implies that there is an
irredundant disjunctive form

∨
j∈n ψj logically equivalent to φ where each disjunct is in PPk.

By (1), for any i ∈ m, there exists j ∈ n such that φi |= ψj . Since there is a sub-disjunction
of

∨
i∈m φi that is irredundant, by (2) there exists i′ ∈ m such that φi′ and ψj are logically

equivalent. We then have φi |= φi′ , as desired.
Now suppose that ρ : m → m is a mapping such that for each i ∈ m, it holds that

φi |= φρ(i) and each φρ(i) is logically equivalent to a sentence in PPk. Then φ is logically
equivalent to

∨
i∈m φρ(i). J

We remark that entailment and finite entailment coincide in existential positive logic;
this can be seen from the proof of Lemma 4(1).

The conditions in Lemma 4(1) and Lemma 4(3) allow to establish containment in Πp
2 for

the problems under consideration.
I Proposition 5. The problems EP-Entail, EP-Equiv, and EP-Expr are in the complexity
class Πp

2.

Proof. Let φ be a sentence in EP built using variables x1, . . . , xn; in polynomial time, it
may be transformed to prenex form, so let us assume that φ is in prenex form. Let atoms(φ)
be the set of all atoms occurring in φ. For each mapping f : atoms(φ) → {0, 1}, let φf be
the primitive positive sentence defined as the existential closure of

∧
α∈atoms(φ),f(α)=1 α. Let

eval(φ, f) denote the result of evaluating the Boolean expression (over ∧ and ∨) obtained by
replacing, in the quantifier free part of φ, every occurrence of α by f(α), for all α ∈ atoms(φ).
We observe two facts. First, if eval(φ, f) = 1, then φf |= φ. Second, let A be any structure.
Let g : {x1, . . . , xn} → A be such that the quantifier free part of φ is true in A under
g. Let {α1, . . . , αk} be the subset of atoms from atoms(φ) that are true in in A under g.
Let f : atoms(φ) → {0, 1} be such that f(α) = 1 if and only if α ∈ {α1, . . . , αk}. Clearly,
A |= φf . Moreover, eval(φ, f) = 1. The two observed facts imply that the disjunctive
existential positive sentence df(φ) defined by

∨
f φf , where f ranges over all mappings

f : atoms(φ)→ {0, 1} such that eval(φ, f) = 1, is logically equivalent to φ.
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S. Bova and H. Chen 7

We prove that EP-Entail is in Πp
2. Let (φ, ψ) be an instance of EP-Entail. We can

assume without loss of generality that φ and ψ are in prenex form. By the above, φ ≡ df(φ)
and ψ ≡ df(ψ). By Lemma 4(1), φ |= ψ if and only if the following condition holds: for all
disjuncts φf in df(φ), there exists a disjunct ψg in df(ψ) such that φf |= ψg. To decide this
condition, one can check whether for all assignments f : atoms(φ)→ {0, 1}, there exist an
assignment g : atoms(ψ)→ {0, 1} and a map h from C[ψg] to C[φf ] such that if eval(φ, f) = 1,
then eval(ψ, g) = 1 and h is a homomorphism from C[ψg] to C[φf ]. This is justified by the
above discussion and Proposition 1. Therefore, EP-Entail is in Πp

2.
To prove that EP-Equiv is in Πp

2, note that the problem EP-Entailed = {(ψ, φ) |
(φ, ψ) ∈ EP-Entail} is in Πp

2 by the proof just given, and that EP-Equiv = EP-Entail ∩
EP-Entailed. The result then follows because Πp

2 is closed under intersection.
Finally, we prove that EP-Expr is in Πp

2. Let φ and k be an instance of EP-Expr.
We have φ ≡ df(φ). Note that, by Lemma 4(3), φ is logically equivalent to a sentence
in EPk if and only if, for all f : atoms(φ) → {0, 1} such that eval(φ, f) = 1, there exists
g : atoms(φ) → {0, 1} such that eval(φ, g) = 1, such that φf |= φg and φg is logically
equivalent to a sentence in PPk. By [7, Theorem 5], φg is logically equivalent to a sentence in
PPk if and only if C[φg] has a homomorphically equivalent substructure S with tw(S) < k.

So, to check the given instance, one can check whether for all f : atoms(φ)→ {0, 1}, there
exist g : atoms(φ)→ {0, 1}, a substructure S of C[φg], a mapping h : C[φg]→ S and a tree
decomposition of S such that: if eval(φ, f) = 1, then eval(φ, g) = 1, h is a homomorphism
from C[φg] to S, and S has a tree decomposition witnessing tw(S) < k. Note that if there is
such a tree decomposition, there is one that has size polynomial in S. J

We also note that entailment and equivalence have the same complexity, although in the
sequel we find it more transparent to prove complexity results directly for both problems.
I Proposition 6. For any signature σ, EPσ-Entail and EPσ-≡ are interreducible.

Proof. Let σ be any signature. Observe that EPσ-Entail reduces to EPσ-≡ via the
mapping (φ, ψ) 7→ (φ, φ ∧ ψ), and EPσ-≡ reduces to EPσ-Entail via the mapping (φ, ψ) 7→
(φ ∨ ψ, φ ∧ ψ). J

4 Complexity Results

I Theorem 7. Let σ be a signature that contains a relation symbol of at least binary arity.
For each k ≥ 6, the problem EPkσ-Expr is Πp

2-complete.

Proof. Containment in Πp
2 follows from Proposition 5. For Πp

2-hardness, the case where σ
contains a binary relation symbol is proved in Theorem 17 in Section 5; the higher-arity case
is treated in Section 6. J

Note that if σ is a signature that contains only unary relation symbols, then each sentence
in EPσ is logically equivalent to a sentence in EP1

σ, so the problem EPkσ-Expr is trivial for
all k ≥ 1.

I Theorem 8. Let σ be a signature that contains a relation symbol of at least binary arity,
or contains infinitely many unary relation symbols. The problems EPσ-Entail and EPσ-≡
are Πp

2-complete.

Proof. Containment in Πp
2 follows from Proposition 5. For Πp

2-hardness, the case where σ
contains infinitely many unary relation symbols is proved in Theorem 19; the case where
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8 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

σ contains a binary relation symbol is proved in Theorem 18; and, the higher-arity case is
treated in Section 6. J

We refer the reader to Section 7.2 for a discussion of the complexity of EPσ-Entail
and EPσ-≡ where the signature σ consists of at least two but finitely many unary relation
symbols.

Finally, if σ is empty, then EPσ-Entail and EPσ-≡ are trivial. If σ = {U} is a signature
that consists of one unary relation symbol, then the problems EPσ-Entail and EPσ-≡ are
in P. Indeed, note that any sentence φ in EPσ is logically equivalent to either ∃x(U(x)) or
∃x(x = x). Moreover, it is possible to decide whether φ is logically equivalent to ∃x(x = x)
by evaluating the Boolean expression (over ∧ and ∨) obtained as follows: first replace in φ
atoms U(x) by 0 and atoms x = y by 1, and then remove all the quantifiers ∃x.

5 The Binary Case

In this section, we prove the hardness results for the case of signatures containing a relation
symbol of binary arity. We do this by first presenting the source problem (a Πp

2-complete
problem) from which we will reduce (Section 5.1); then, we present an encoding of labelled
digraphs as digraphs which will be used (Section 5.2). Following this, we present the reduction
to be used (Section 5.3), and then confirm that the reduction yields the desired hardness
result (Section 5.4).

5.1 Source Problem
When B is a structure, define Πk-QCSP(B) to be the problem of deciding, given a Πk prenex
sentence Φ whose quantifier-free part is a conjunction of atoms without equality, whether
or not B |= Φ; define Σk-QCSP(B) similarly, with respect to Σk sentences. For q ≥ 2, we
define the structure Kq, the clique on q vertices, to be the structure with universe q and that
interprets the binary relation symbol E by EKq = {(i, j) ∈ q2 | i 6= j}. Our Πp

2 hardness
results will be proved by showing reductions from the problems Π2-QCSP(Kq), where q ≥ 3.
I Proposition 9. (follows from [1]) Let q ≥ 3. For each even k ≥ 2, the problem Πk-QCSP(Kq)
is Πp

k-complete; and, for each odd k ≥ 3, the problem Σk-QCSP(Kq) is Σpk-complete.

Proof. (idea) Let B be the structure with universe {0, 1} and with a single relation, RB =
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Under the bounds on k given in the proposition statement, one
has that Πk-QCSP(B) and Σk-QCSP(B) are Πp

k-complete and Σp
k-complete, respectively;

this follows from [4, Theorem 7.2]. We use the construction of [1, Proposition 5.1] to give a
reduction from those problems to the present problems. The only modification needed is the
following. Each universally quantified variable in an instance of Πk-QCSP(B) or Σk-QCSP(B)
is translated to a universally quantified variable followed by two existentially quantified
variables. Such existentially quantified variables can be shifted right without changing the
truth-value of the sentence. By the assumed bounds on k, each block of universally quantified
variables has a block of existentially quantified variables to its right, so we indeed obtain a
reduction that preserves the quantifier prefix (in the sense of being Πk or Σk). J

I Remark. An inspection of the proof of Proposition 9 yields that the hardness results hold
on instances Φ where the quantifier-free part ΦG has the property that EC[ΦG] is symmetric
and irreflexive. In the sequel, we will assume that ΦG has this property. Indeed, one can
always replace EC[ΦG] with its symmetric closure, without affecting the truth-value of Φ on
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S. Bova and H. Chen 9

a structure Kq; and note that any instance where this relation is not irreflexive is false on a
structure Kq.

5.2 Auxiliary Structures
We call a structure a labelled digraph if it is over a signature that consists of a binary relation
symbol E and zero or more unary relation symbols; we call a structure a digraph if it is over
a signature consisting of just a binary relation symbol E. A digraph or labelled digraph is
symmetric if it interprets E as a symmetric relation. In previous work [5], a way to encode a
given labelled digraph B as a digraph B∗ was given, and is as follows; we refer to [5, Figure 1]
for a pictorial illustration. Let L1, . . . , Ln denote the unary symbols of the signature of B.
For each b ∈ B, define a gadget digraph Gb which has universe

Gb = {bs, bc, bd, bs1, bt1, bs2, bt2, . . . , bsn, btn, bt} ∪ {bui | b ∈ LB
i } ∪ {bvi | b ∈ LB

i }

and edge relation

EGb = {(bc, bs), (bc, bd), (bs, bd), (bd, bs1)} ∪ {(bsi, bti) | i ∈ {1, . . . , n}}∪

{(bti, bs(i+1)) | i ∈ {1, . . . , n− 1}} ∪ {(btn, bt)} ∪ {(bui, bsi), (bvi, bti), (bvi, bui) | b ∈ LB
i }.

For a subset C ⊆ B, we define C∗ =
⋃
b∈C Gb; the digraph B∗ has universe B∗ and edge

relation
EB∗ = (

⋃

b∈B
EGb) ∪ {(bt, b′s) | (b, b′) ∈ EB}.

The key feature of this construction is that it preserves homomorphisms.

I Lemma 10. (follows from [5, Lemma 17]) Let A,B be labelled digraphs over the same
signature. There exists a homomorphism A→ B if and only if there exists a homomorphism
h : A∗ → B∗; moreover, when the latter condition holds, the image of h is of the form C∗

where C ⊆ B.

Tools for understanding the treewidth of structures of the form B∗ are provided in the
following lemmas, which relate the treewidth of such a structure to the treewidth of the
structure B+, defined as follows. When B is a labelled digraph, the structure B+ has universe
B+ = {bs, bt | b ∈ B} and edge relation EB+ = {(bs, bt) | b ∈ B} ∪ {(bt, b′s) | (b, b′) ∈ EB}.

I Lemma 11. ([5, Lemma 19]) Let B be a labelled digraph. It holds that tw(B∗) ≤
max(tw(B+), 5).

I Lemma 12. Let B be a labelled digraph. It holds that tw(B+) ≤ tw(B∗).

Proof. Given a tree decomposition (T, β) of G(B∗), a tree decomposition (T, β′) of G(B+)
having lower or equal width can be obtained by defining β′(t) = f(β(t)), where, for each
b ∈ B, the mapping f sends Gb\{bt} to bs, and sends bt to bt. Clearly, it holds for each vertex
t of T that |β′(t)| ≤ |β(t)|. It is straightforward to verify that (T, β′) is a tree decomposition
of G(B+); note that the connectivity condition is satisfied because Gb \ {bt} is connected in
G(B∗), for each b ∈ B. J

I Lemma 13. Let B be a symmetric labelled digraph. It holds that tw(B) < tw(B+).
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10 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

Consider an undirected graph on vertex set V . We say that two subsets C,C ′ of V touch
if they have a vertex in common or there is an edge between them. A set of mutually touching
connected vertex sets is a bramble. We say that a subset S of V covers a brambleM if it
non-trivially intersects each set in M. The order of a bramble M is the least number of
vertices that covers it. We will use the tree-width duality theorem [8], which says that, for
k ≥ 0, a graph has tree-width ≥ k if and only if it has a bramble of order > k.

Proof. We prove that for each brambleM of G(B), there exists a brambleM+ of G(B+)
of strictly higher order, which suffices by the tree-width duality theorem.

When C is a subset of B, we use Cs to denote the set {cs | c ∈ C}, and Ct to denote
the set {ct | c ∈ C}. LetM = {C1, . . . , Cn} be a bramble of G(B). DefineM+ to be the
set system {Cs1 , Ct1} ∪

⋃
i≥2,i∈n{Csi ∪ (Ci \ C1)t, (Ci \ C1)s ∪ Cti}. We claim thatM+ is a

bramble of G(B+). We demonstrate this by verifying that each pair of distinct sets inM+

touch. The following cases are exhaustive, up to symmetry; here, i denotes an element of n
with i ≥ 2.

Cs1 , C
t
1. These touch since for any c1 ∈ C1, we have (cs1, ct1) ∈ EB+ , and so {cs1, ct1} is an

edge in G(B+).
Csi ∪ (Ci \C1)t, (Ci \C1)s∪Cti . These touch since for any ci ∈ Ci, we have (csi , cti) ∈ EB+ ,
and so {csi , cti} is an edge in G(B+).
Cs1 , C

s
i ∪ (Ci \ C1)t. If C1 ∩ Ci is non-empty, then so is Cs1 ∩ Csi . Otherwise, there is an

edge in G(B) between a vertex c1 ∈ C1 and a vertex ci ∈ Ci \ C1, and so (ct1, csi ) ∈ EB+ ,
implying that the two given sets touch in G(B+).
Cs1 , (Ci \ C1)s ∪ Cti . If C1 ∩ Ci is non-empty, then let c ∈ C1 ∩ Ci; we have cs ∈ Cs1 ,
ct ∈ Cti , and as (cs, ct) ∈ EB+ , the edge {cs, ct} is present in G(B+). Otherwise, there
exist vertices c1 ∈ C1 and ci ∈ Ci \ C1 that are adjacent in G(B), and so (cti, cs1) ∈ EB+ ,
implying that {cs1, cti} is an edge in G(B+).

It remains to show that the order of M+ is strictly higher than that of M. To show
this, we prove that for any cover S+ ofM+, there exists a cover S ofM with |S| < |S+|.
Let S+ be a cover ofM+, and define S to be the subset of B obtained from removing the
s, t superscripts from S+ \ Ct1. Since Ct1 ∈ M+, the cover S+ must contain an element of
Ct1, from which it follows that |S| < |S+|. We now verify that S coversM. We have that
S covers C1, since S+ covers Cs1 . When i ≥ 2, we have that S covers Ci, since S+ covers
Csi ∪ (Ci \ C1)t, which implies that S covers Ci ∪ (Ci \ C1) = Ci. J

5.3 Reduction
In this technical section, we prepare the elements for the proof of the main hardness result
(Theorem 17 in Section 5). More specifically, Lemma 15 implements a polynomial-time
mapping of the source problem to the target problem, whereas Lemma 14 and Lemma 16
assist in proving its correctness.

Let ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). Relative to this instance,
we define the following objects.

Let τ be the signature {E} ∪ {Uy1 , . . . , Uym} ∪ {U1, . . . , Uq}, where the Uyi and the Uj
are unary relation symbols.
We define the following formulas of signature τ .

φK = (
∧

i∈q
Ui(i)) ∧ (

∧

i,j∈q,i6=j
E(i, j))
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S. Bova and H. Chen 11

For each i ∈ m, j ∈ q,

λyi→j = Uyi(j)

φyi→j = λyi→j ∧
∧

k∈q,k 6=j
(E(yi, k) ∧ E(k, yi))

For each f : {y1, . . . , ym} → q,

λf =
∧

i∈m
λyi→f(yi)

φf =
∧

i∈m
φyi→f(yi)

Observe that, for each mapping f : {y1, . . . , ym} → q,

φf = λf ∧
∧

i∈m,k∈q,f(yi)6=k
(E(yi, k) ∧ E(k, yi)), (†)

up to a permutation of the conjuncts. In the sequel, we formally view φG as a formula of
signature τ , so that, for instance, φG∧φK∧φf is a formula of signature τ , and C[φG∧φK∧φf ]
is a structure of signature τ .

I Lemma 14. Let ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). If a mapping
f : {y1, . . . , ym} → q has an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → q such that Kq, f

′ |=
φG, then the following hold.
1. C[φG ∧ φK ∧ φf ]∗ maps homomorphically to C[φK ∧ λf ]∗.
2. If q ≥ 5, then tw(C[φK ∧ λf ]∗) ≤ q.
Proof. For the first part, it is sufficient to prove that C[φG∧φK ∧φf ] maps homomorphically
to C[φK ∧ λf ]; the statement then follows by Lemma 10. Note that the universes of the
structures are C[φK ∧ λf ] = q and C[φG ∧ φK ∧ φf ] = {y1, . . . , ym, x1, . . . , xn} ∪ q.

Let f ′ : {y1, . . . , ym, x1, . . . , xn} → q be an extension of f : {y1, . . . , ym} → q such
that Kq, f

′ |= φG. Let h : {y1, . . . , ym, x1, . . . , xn} ∪ q → q be the extension of f ′ defined
by h(j) = j for all j ∈ q. We claim that h is a homomorphism from C[φG ∧ φK ∧ φf ]
to C[φK ∧ λf ]. By hypothesis, h maps homomorphically C[φG] into C[φK ]. Clearly, h
maps homomorphically C[φK ∧ λf ] into C[φK ∧ λf ]. By (†), it suffices to show that h is a
homomorphism from C[

∧
i∈m,k∈q,f(yi)6=k(E(yi, k) ∧ E(k, yi))] to C[φK ]. Suppose that the

tuples (yi, k), (k, yi) occur in the first structure. Then, by definition, f(yi) 6= k. Therefore
(h(yi), h(k)) = (f(yi), k) ∈ EC[φK ], and (h(k), h(yi)) = (k, f(yi)) ∈ EC[φK ].

For the second part, assume q ≥ 5. Then, by Lemma 11, it is sufficient to prove that
tw(C[φK∧λf ]+) ≤ q. We establish tw(C[φK∧λf ]+) ≤ q by providing a tree decomposition of
width q of C[φK∧λf ]+. It is straightforward to check that a path of q vertices v1, . . . , vq, where
the bag on vj is {ks | k ∈ q} ∪ {jt} for all j ∈ q, gives the required tree decomposition. J

I Lemma 15. There exists a polynomial-time algorithm that, given an instance

φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG

of Π2-QCSP(Kq), computes two sentences φ′, φ′′ ∈ EP{E}, where E is a binary relation
symbol, such that φ′ is logically equivalent to the disjunctive form

∨

f :{y1,...,ym}→q
Q[C[φK ∧ λf ]∗], (F1)
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12 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

φ′′ is logically equivalent to the disjunctive form
∨

f :{y1,...,ym}→q
Q[C[φG ∧ φK ∧ φf ]∗], (F2)

and the following hold:
1. The disjunctive forms (F1) and (F2) are irredundant.
2. For all f : {y1, . . . , ym} → q, C[φK ∧ λf ]∗ maps homomorphically to C[φG ∧ φK ∧ φf ]∗;

and consequently, φ′′ |= φ′.
3. If Kq |= φ, then φ′ and φ′′ are logically equivalent.
Proof. Let φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). The algorithm,
given φ, constructs in polynomial-time the existential positive sentences

φ′ = Q[C[φK ]∗] ∧
∧

i∈m

∨

j∈q
Q[C[λyi→j ]∗];

φ′′ = Q[C[φG]∗] ∧Q[C[φK ]∗] ∧
∧

i∈m

∨

j∈q
Q[C[φyi→j ]∗].

We claim that:

φ′ ≡
∨

f :{y1,...,ym}→q
Q[C[φK ∧ λf ]∗]]; (G1)

φ′′ ≡
∨

f :{y1,...,ym}→q
Q[C[φG ∧ φK ∧ φf ]∗]. (G2)

It is sufficient to observe the following logical equivalences. For (G1),

φ′ = Q[C[φK ]∗] ∧
∧

i∈m

∨

j∈q
Q[C[λyi→j ]∗]

≡ Q[C[φK ]∗] ∧
∨

f :{y1,...,ym}→q
Q[C[λf ]∗]

≡
∨

f :{y1,...,ym}→q
(Q[C[φK ]∗] ∧Q[C[λf ]∗])

≡
∨

f :{y1,...,ym}→q
Q[(C[φK ] ∪C[λf ])∗]

≡
∨

f :{y1,...,ym}→q
Q[C[φK ∧ λf ]∗].

For (G2), we similarly have

φ′′ = Q[C[φG]∗] ∧Q[C[φK ]∗] ∧
∧

i∈m

∨

j∈q
Q[C[φyi→j ]∗]

≡ Q[C[φG]∗] ∧Q[C[φK ]∗] ∧
∨

f :{y1,...,ym}→q
Q[C[φf ]∗]

≡
∨

f :{y1,...,ym}→q
(Q[C[φG]∗] ∧Q[C[φK ]∗] ∧Q[C[φf ]∗])

≡
∨

f :{y1,...,ym}→q
Q[(C[φG] ∪C[φK ] ∪C[φf ])∗]

≡
∨

f :{y1,...,ym}→q
Q[C[φG ∧ φK ∧ φf ]∗].
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S. Bova and H. Chen 13

To prove the stated properties, we observe preliminarily that φf contains all conjuncts of
λf by (†), thus C[φK ∧ λf ] is a substructure of C[φG ∧ φK ∧ φf ].

We prove the first property. By Proposition 1, it is sufficient to check that if f and g are
distinct mappings from {y1, . . . , ym} to q, then C[φK ∧ λf ] does not map homomorphically
to C[φK ∧ λg]. By Lemma 10, this implies that C[φK ∧ λf ]∗ does not map homomorphically
to C[φK ∧ λg]∗, which settles irredundancy of (F1); in turn it follows, by the substructure
observation, that C[φG ∧ φK ∧ φf ]∗ does not map homomorphically to C[φG ∧ φK ∧ φg]∗,
which settles irredundancy of (F2). Assume for a contradiction that h maps C[φK ∧ λf ]
homomorphically to C[φK ∧ λg]. By definition of φK , it holds that UC[φK ]

i = {i} for all
i ∈ q, therefore h acts identically on q. Let j ∈ m be such that f(yj) = k 6= k′ = g(yj). By
definition of λf and λg, it holds that UC[φf ]

yj = {k} and UC[φg ]
yj = {k′}. Therefore, h(k) = k′,

a contradiction.
We prove the second property. It suffices to prove the first part; that φ′′ |= φ′ is then a

consequence by appeal to Proposition 1. Let f be any mapping from {y1, . . . , ym} to q. By
the observation that C[φK∧λf ] is a substructure of C[φG∧φK∧φf ], we have that C[φK∧λf ]
maps homomorphically to C[φG ∧ φK ∧ φf ]; the statement then follows by Lemma 10.

We prove the third property. Assume Kq |= φ. Let f be any mapping of {y1, . . . , ym} to q.
Then, there exists an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → q of f such that Kq, f

′ |= φG.
Then, by Lemma 14(1), C[φG ∧ φK ∧ φf ]∗ maps homomorphically to C[φK ∧ λf ]∗, which
implies that Q[C[φK ∧ λf ]∗] |= Q[C[φG ∧ φK ∧ φf ]∗]. Therefore, by Lemma 4(1), φ′ |= φ′′.
Then, by the second property proved above, φ′ ≡ φ′′. J

I Lemma 16. Let ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). Let f :
{y1, . . . , ym} → q be a mapping, and suppose that tw(core(C[φG ∧ φK ∧ φf ]∗)) ≤ q. Then, f
has an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → q such that Kq, f

′ |= φG.

In the proof, we will use the following notation: when B is a structure on signature σ, and
σ′ ⊆ σ, use redσ′(B) to denote the reduct of B on σ′, that is, the structure on σ′ naturally
obtained from B by forgetting the interpretations of the symbols not in σ′.

Proof. Set A = C[φG ∧ φK ∧ φf ]. Since each core of A∗ is the image of an endomorphism
of A∗, then by Lemma 10, each core of A∗ has universe of the form S∗ where S ⊆ A. Let
S ⊆ A be a subset with this property, and let S be the substructure of A induced on S.
By assumption, tw(S∗) ≤ q. By Lemma 12, tw(S+) ≤ q. By Lemma 13, tw(S) < q. It
follows that redE(S) has a homomorphism to Kq because, by the remark in Section 5.1
and the construction, redE(S) is irreflexive. Since A has a homomorphism to S, we have
that redE(A) has a homomorphism to redE(S), and by transitivity of the homomorphism
relation, we have that redE(A) has a homomorphism h to Kq. Observe that redE(A) =
C[φG ∧ (

∧
i,j∈q,i6=j E(i, j)) ∧∧

i∈m,k∈q,f(yi)6=k(E(yi, k) ∧ E(k, yi))].
By relabelling the elements of Kq if necessary, it can be assumed that h is the identity

map on q. Therefore, since Kq, h |=
∧
i∈m,k∈q,f(yi)6=k(E(yi, k) ∧ E(k, yi)), we have that

h is an extension of f . Indeed, for all i ∈ m and k ∈ q such that f(yi) 6= k, we have
(h(yi), h(k)) = (h(yi), k) ∈ EKq , which implies h(yi) 6= k.

Since Kq, h |= φG, we obtain the result. J

5.4 Hardness Results
I Theorem 17. Let σ be a signature that contains a relation symbol E of binary arity. For
each k ≥ 6, the problem EPkσ-Expr is Πp

2-hard.
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14 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

Proof. Assume q ≥ 5. We show that there is a reduction from Π2-QCSP(Kq) to EPq+1
σ -Expr,

where σ = {E} and E is a binary relation symbol; this suffices by Proposition 9.
Let φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). The reduction uses

the algorithm in Lemma 15 to compute in polynomial-time the sentence φ′′ ∈ EPσ defined
there. We prove that Kq |= φ if and only if φ′′ is logically equivalent to a sentence in EPq+1

σ .
Assume that Kq |= φ. By Lemma 15(3), we have that φ′′ is logically equivalent to φ′.

Now look at the formula shown to be logically equivalent to φ′ in that lemma (Lemma 15).
For each f : {y1, . . . , ym} → q, by Lemma 14(2) and the assumption that q ≥ 5, we have
tw(C[φK ∧ λf ]∗) ≤ q, and therefore by [7, Theorem 5], Q[C[φK ∧ λf ]∗] is logically equivalent
to a primitive positive sentence in PPq+1. Therefore, φ′′ is logically equivalent to a sentence
in EPq+1

σ .
Assume that Kq 6|= φ. Let f : {y1, . . . , ym} → q be a mapping such that for all mappings

f ′ : {y1, . . . , ym, x1, . . . , xn} → q extending f it holds that Kq, f
′ 6|= φG. Then, by Lemma 16,

tw(core(C[φG ∧ φK ∧ φf ]∗)) > q. Therefore, by [7, Theorem 5], Q[C[φG ∧ φK ∧ φf ]∗] is
not logically equivalent to a primitive positive sentence in PPq+1. Since, by Lemma 15(1),
the disjunctive form in (F2) is irredundant, so by Lemma 4(3), φ′′ is a “No” instance of
EPq+1

σ -Expr. J

I Theorem 18. Let σ be a signature that contains a relation symbol E of binary arity. The
problems EPσ-Entail and EPσ-≡ are Πp

2-hard.

Proof. By Proposition 9, it is sufficient to show that there are reductions from Π2-QCSP(Kq)
to EPσ-Entail and from Π2-QCSP(Kq) to EPσ-≡, where σ = {E} and E is a binary relation
symbol.

Let φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφG be an instance of Π2-QCSP(Kq). We give one reduction
that works for both problems. The reduction uses the algorithm in Lemma 15 to compute in
polynomial time the pair of existential positive sentences (φ′, φ′′) specified there. We prove
that the reduction is correct for both EPσ-Entail and EPσ-≡.

Assume that Kq |= φ. By Lemma 15(3), φ′ ≡ φ′′. Now assume that Kq 6|= φ. Let
f : {y1, . . . , ym} → q be such that for all extensions f ′ : {y1, . . . , ym, x1, . . . , xn} → q of f it
holds that Kq, f

′ 6|= φG. Then C[φG∧φK∧φf ] does not map homomorphically to C[φK∧λf ],
and by Lemma 10, C[φG∧φK∧φf ]∗ does not map homomorphically to C[φK∧λf ]∗. Moreover,
for all g : {y1, . . . , ym} → q distinct from f , C[φK ∧ λf ] does not map homomorphically to
C[φK ∧ λg] by Lemma 15(1), therefore C[φG ∧ φK ∧ φf ] does not map homomorphically to
C[φK ∧ λg], so that by Lemma 10 again, C[φG ∧ φK ∧ φf ]∗ does not map homomorphically
to C[φK ∧ λg]∗. Therefore, by Lemma 4(1), φ′ 6|= φ′′. J

6 The Higher-Arity Case

In this section, E is a binary relation symbol and σ is a signature that contains a relation
symbol of at least binary arity. We fix a relational symbol R ∈ σ of arity r ≥ 2, and relative
to this choice, we define the following objects.

For every sentence φ ∈ EP{E}, let φE R denote the sentence in EPσ obtained by replacing
in φ subformulas of the form E(x, y) by R(x, y, . . . , y).
For every sentence φ ∈ EPσ, let φR E denote the sentence in EP{E} obtained by replacing
in φ subformulas of the form R(x, y, . . . , y) by E(x, y).
For every structure A over {E}, let AE R denote the structure over σ, with universe A,
obtained by interpreting R over {(a, a′, a′, . . . , a′) | (a, a′) ∈ EA} and every S ∈ σ \ {R}
over the empty set.
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S. Bova and H. Chen 15

For every structure A over σ, let AR E denote the structure over {E}, with universe A,
obtained by interpreting E over {(a, a′) | (a, a′, a′, . . . , a′) ∈ RA}.

Proof of Higher-Arity Case of Theorem 7

Let k ≥ 6. We prove that the problem EPkσ-Expr is Πp
2-hard. By Theorem 17, it is sufficient

to give a reduction from EPk{E}-Expr, where E is a binary relation symbol, to EPkσ-Expr.
The reduction, given an instance φ of EPk{E}-Expr, returns the instance φE R of EPkσ-

Expr. We check that φ is logically equivalent to an existential positive sentence in EPk if
and only if φE R is logically equivalent to an existential positive sentence in EPk.

If φ is logically equivalent to an existential positive sentence in EPk, then let
∨
i∈n φi

be an existential positive sentence in disjunctive form logically equivalent to φ such that
φ ∈ PPk for all i ∈ n; such sentence exists by Lemma 4(3). Then, for every structure A over
the signature σ,

A |= φE R if and only if AR E |= φ

if and only if AR E |=
∨

i∈n
φi

if and only if (AR E)E R |=
∨

i∈n
(φi)E R

if and only if A |=
∨

i∈n
(φi)E R.

Therefore, φE R is logically equivalent to a sentence in EPk.
Conversely, assume that φE R is logically equivalent to an existential positive sentence

in EPk. We claim that φE R is logically equivalent to an existential positive sentence of the
form ∨

i∈n
(χi)E R,

where, χi in PPk{E} for all i ∈ n. Now, let A be any structure over the signature {E}. Then,

A |= φ if and only if AE R |= φE R

if and only if AE R |=
∨

i∈n
(χi)E R

if and only if (AE R)R E |=
∨

i∈n
χi

if and only if A |=
∨

i∈n
χi.

Therefore, φ is logically equivalent to a sentence in EPk.
We prove the claim. Let φE R be given. Using (E1)-(E4), we compute an irredund-

ant disjunctive form logically equivalent to φE R; by construction, such sentence has
the form

∨
i∈n(φi)E R, where φi is a sentence in PP{E} for all i ∈ n. Let i ∈ n. By

Lemma 4(3), (φi)E R is logically equivalent to a sentence in PPkσ. Then, by [7, Theorem 5],
tw(core(C[(φi)E R])) < k. Note that the canonical query of core(C[(φi)E R]) has the form
(ψi)E R for some sentence ψi in PP{E}. Then, by [7, Theorem 7], (ψi)E R is logically
equivalent to a sentence in PPkσ of the form (χi)E R for some χi ∈ PPk{E}; this is because
the syntactic replacements used to derive (χi)E R from (ψi)E R are: ∃x(θ ∧ θ′) ≡ ∃xθ ∧ θ′,
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16 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

if x is not free in θ′; ∃xθ ≡ ∃yθ[x/y], if y is not free in θ and x is free for y in θ, where,
θ[x/y] is obtained by replacing free occurrences of x in θ by y.

Proof of Higher-Arity Case of Theorem 8

We prove that the problems EPσ-Entail and EPσ-≡ are Πp
2-hard. By Theorem 18, it is

sufficient to give a reduction from EP{E}-Entail to EPσ-Entail, and from EP{E}-≡ to
EPσ-Entail.

We give one reduction that works for both problems. The reduction, given an instance
(φ, ψ) of EP{E}-Entail (respectively, EP{E}-≡), returns the instance (φE R, ψE R) of
EPσ-Entail (respectively, EPσ-≡).

We check correctness. It is sufficient to prove that φ |= ψ if and only if φE R |= ψE R.
Let A be any structure over {E}. Then,

A |= φ implies AE R |= φE R

implies AE R |= ψE R

implies A |= ψ.

Conversely, let A be any structure over σ. Then,

A |= φE R implies AR E |= (φE R)R E
implies AR E |= φ

implies AR E |= ψ

implies A |= ψE R,

which settles the theorem.

7 The Unary Case

7.1 Infinite Unary Signature
I Theorem 19. Let σ be a signature that contains infinitely many unary relation symbols.
The problems EPσ-Entail and EPσ-≡ are Πp

2-hard.

Proof. We give a single reduction to both problems from the Πp
2-complete problem Πp

2-QBF,
which is the problem of deciding, given a sentence in propositional logic consisting of a Πp

2
quantifier prefix followed by a quantifier-free formula, whether or not the sentence is true.

Let Φ = ∀y1 . . . ∀ym∃x1 . . . ∃xnφ be an instance of Πp
2-QBF. Let S0, S1, S0

1 , S
1
1 , . . . , S

0
m, S

1
m

be pairwise distinct unary relation symbols in σ. Define

α =
∨

i∈m
(∃zS0

i (z) ∧ ∃zS1
i (z))

and
β = (∃zS0(z)) ∧ (∃zS1(z)) ∧

∧

i∈m
(∃zS0

i (z) ∨ ∃zS1
i (z)).

Let φ∗ be the quantifier-free existential positive formula on σ obtained from φ by pushing
negations to the variable level, and mapping the resulting propositional literals according to

yi 7→ S1
i (yi),¬yi 7→ S0

i (yi) and xj 7→ S1(xj),¬xj 7→ S0(xj)
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S. Bova and H. Chen 17

for all i ∈ m and j ∈ n. The reduction outputs the pair (ψ,ψ′) whose components are defined
by

ψ = α ∨ β and ψ′ = α ∨ (β ∧ ∃y1 . . . ∃ym∃x1 . . . ∃xnφ∗).
It holds that ψ′ |= ψ. We claim that ψ |= ψ′ if and only if Φ is true, which suffices to

give the theorem.
(⇒) Let f : {y1, . . . , ym} → {0, 1} be any assignment. Let Bf be a structure such that

(S0)Bf = {0}, (S1)Bf = {1}, and such that Sji = {j} if f(yi) = j, and Sji = ∅ otherwise (for
all i ∈ m, j ∈ {0, 1}). We have Bf |= ¬α ∧ β; by the assumption that ψ |= ψ′, it follows
that Bf |= ∃y1 . . . ∃ym∃x1 . . . ∃xnφ∗. By the definitions of φ∗ and Bf , we have that Bf , f |=
∃x1 . . . ∃xnφ∗. This implies that there is an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → {0, 1}
of f such that Bf , f

′ |= φ∗, and it follows from the definitions of φ∗ and Bf that f ′ satisfies
φ.

(⇐) Let B be an arbitrary structure on σ. If there exists i ∈ m such that both (S0
i )B

and (S1
i )B are non-empty, then B |= α and thus B |= ψ and B |= ψ′. Otherwise, it holds

that B 6|= α, which we assume for the rest of the proof.
If there exists i ∈ m such that (S0

i )B = (S1
i )B = ∅, then B 6|= β and both B 6|= ψ and

B 6|= ψ′ hold. Otherwise, for all i ∈ m, exactly one of (S0
i )B and (S1

i )B is non-empty; define
f : {y1, . . . , ym} → {0, 1} so that f(yi) = j if and only if (Sji )B is non-empty. Assume
that B |= ψ. Then B |= β, implying that (S0)B and (S1)B are both non-empty. Since by
assumption Φ is true, the assignment f has an extension f ′ : {y1, . . . , ym, x1, . . . , xn} → {0, 1}
satisfying φ. Define an assignment f∗ : {y1, . . . , ym, x1, . . . , xn} → B where f ′(xi) = j implies
f∗(xi) ∈ (Sj)B (for all i ∈ n), and where f ′(yi) = j implies f∗(yi) ∈ (Sji )B (for all i ∈ m);
the latter property can be enforced due to the definition of f and the fact that f ′ extends f .
We have B, f∗ |= φ∗ and thus B |= (β∧∃y1 . . . ∃ym∃x1 . . . ∃xnφ∗), implying that B |= ψ′. J

7.2 Finite Unary Signature
Let us suppose throughout this section that σ is a signature that consists of finitely many
unary relation symbols.

We first describe complexity upper bounds, focusing on the entailment problem (this is
justified by appeal to Proposition 6). Relative to a signature σ, let us define a profile as a
subset of ℘(σ) (the power set of σ). When B is a structure on signature σ and b ∈ B, define
σB,b as the set {U ∈ σ | b ∈ UB}. Let us define the profile of B as the set {σB,b | b ∈ B}.

We show that deciding whether or not a structure B satisfies an EP formula depends
only on the profile of B. Say that a profile P ′ dominates a profile P if for each element
S ∈ P , there exists a superset S′ of S that is contained in P ′. Observe that the profile of B′
dominates that of B if there exists a function f : B → B′ such that, for all b ∈ B, it holds
that σB,b ⊆ σB′,f(b).

I Lemma 20. Suppose that σ consists of finitely many unary relation symbols. Let B and
B′ be structures over σ. If the profile of B′ dominates that of B via f : B → B′, then for
each existential positive formula φ and any assignment h : V → B defined on the variables
over which formulas are written,

B, h |= φ implies B′, f(h) |= φ

Proof. This is proved straightforwardly by induction on the structure of the formula φ. J

In particular, observe that, if two structures have the same profile, then for any existential
positive sentence φ, one of the structures satisfies φ if and only if the other one does. For a
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18 The Complexity of Equivalence, Entailment, and Minimization in EP-Logic

fixed signature σ there are finitely many profiles, and each is realized by a structure of size
at most ℘(σ). We thus obtain the following.
I Proposition 21. Suppose that σ consists of finitely many unary relation symbols. The
problem EPσ-Entail is in PNP via a polynomial-time algorithm that makes a constant
number of queries (in parallel) to an NP oracle.
Indeed, we obtain that the number of queries needed is bounded by two times the number of
profiles (as, for a particular structure B, checking that B |= φ implies B |= ψ requires two
NP queries). One can, however, exhibit tighter bounds in terms of the number of queries
required. For instance, let P be a profile and let P ′ be the subset of P that contains a subset
S ∈ P if and only if no strict superset of S appears in P . The profiles P and P ′ dominate
each other, and thus by the lemma above, checking if a structure with profile P satisfies a
sentence is equivalent to checking if a structure with profile P ′ satisfies the sentence. The
profile P ′ is an antichain in the sense that no two of its elements are comparable (in the
⊆ ordering). We have thus argued that, on an instance (φ, ψ) of EPσ-Entail, one needs
only to check that, for each profile P that is an antichain, BP |= φ implies BP |= ψ, where
BP is a structure whose profile is P ; this can be carried out in polynomial time with 2 ·A
queries to an NP oracle, where A denotes the number of profiles that are antichains. Clearly,
for every non-empty unary signature, the number of profiles that are antichains is strictly
less than the number of profiles; for instance, {{U1}, {U1, U2}} and {{U1}} are profiles of
σ = {U1, U2}, but the first is not an antichain as {U1} ⊂ {U1, U2}.

We now turn to discuss complexity lower bounds. As usual, let SAT denote the problem
of deciding, given a propositional formula φ, whether or not φ is satisfiable. Recall that
DP is the complexity class that contains a language if it is equal to the intersection of an
NP language and a coNP language. The problem SAT-UNSAT, defined as {(φ, φ′) | φ ∈
SAT and φ′ /∈ SAT}, is known to be DP-complete [10, Theorem17.1]. Let SIS (short for
“SAT implies SAT”) be defined as the problem {(φ, φ′) | φ ∈ SAT implies φ′ ∈ SAT}. We
have that SIS is the complement of SAT-UNSAT, in the sense that, by definition, a pair
(φ, φ′) of formulas is in SIS if and only if it is not in SAT-UNSAT; hence, the problem SIS is
coDP-complete. ForM ≥ 2, letM -SIS denote the problem {(x1, . . . , xm) | x1, . . . , xm ∈ SIS}.
We will exhibit reductions from these problems.

Let us say that a set T ⊆ ℘(σ) containing antichains is a system of profiles if it does not
contain two distinct profiles P, P ′ such that P dominates P ′; and, for each P ∈ T , it holds
that |P | > 1.

I Example 22. Suppose that |σ| ≥ 2; for concreteness, suppose that σ ⊇ {U1, U2}. Then,
the one-element set {{{U1}, {U2}}} is a system of profiles. Moreover, in the case that
σ = {U1, U2}, it can be verified that this is the only non-empty system of profiles, since
{{U1}, {U2}} is the only antichain in ℘(σ) of size strictly greater than 1. Now suppose
that |σ| ≥ 3; for concreteness, suppose that σ ⊇ {U1, U2, U3}. Then, the three-element set
{{{U1}, {U2, U3}}, {{U2}, {U1, U3}}, {{U3}, {U1, U2}}} is a system of profiles.

For a signature σ, let Mσ denote the maximum size over all systems of profiles. We have the
following result.

I Theorem 23. Suppose that σ consists of finitely many unary relation symbols. The problem
Mσ-SIS reduces to EPσ-Entail.

Proof. Fix T to be an antichain of profiles of size Mσ. For each subset S ⊆ σ, let θS denote
the formula (∃x∧

U∈S U(x)), and for each profile P on σ, let θP denote the formula
∧
S∈P θS .

Observe that a structure B satisfies θP if and only if its profile dominates the profile P .
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S. Bova and H. Chen 19

Set M = Mσ, and let ((φ1, ψ1), . . . , (φM , ψM )) be an instance of M -SIS. Let P1, . . . , Pm
be a listing of the profiles in T . For each i ∈ m, fix V 0

i , V
1
i ∈ Pi to be distinct elements of Pi.

For each i ∈ m, define φ∗i to be the EP sentence obtained from φi by propagating all negations
to the atomic level; substituting each positive literal x with θV 1

i
(x) and each negative literal

¬x with θV 0
i

(x); and, existentially quantifying all variables in front of the resulting formula.
For each i ∈ m, define ψ∗i to be the EP sentence obtained from ψi analogously. Observe that
when, for an index i ∈ m, a structure B has profile Pi, it holds that B |= φ∗i if and only if φi
is satisfiable, and likewise B |= ψ∗i if and only if ψi is satisfiable.

The reduction, given the named instance of M -SIS, outputs the pair (φ, ψ) defined by
φ = (

∨
Q θQ)∨ (

∨
i∈m(θPi

∧φ∗i )) and ψ = (
∨
Q θQ)∨ (

∨
i∈m(θPi

∧ψ∗i )), where in each sentence
the first disjunction is over the profiles Q that strictly dominate T ; we say that a profile Q
strictly dominates T if there is a P ∈ T such that Q dominates P and Q /∈ T . We claim that
φ |= ψ if and only if the instance of M -SIS is a yes instance.

(⇒): Let i ∈ m be arbitrary; we show that (φi, ψi) ∈ SIS. Let Bi be a structure with
profile Pi. To satisfy a disjunct in φ, a structure must satisfy either a sentence θQ, for a
profile Q that strictly dominates T , or a sentence θPi

. Of these sentences, Bi satisfies only
θPi , and so by definition of φ, we have that Bi |= φ if and only if Bi |= φ∗i . Likewise, we
have that Bi |= ψ if and only if Bi |= ψ∗i . Under the assumption, Bi |= φ implies Bi |= ψ,
and hence the satisfiability of φi implies the satisfiability of ψi.

(⇐): Let B be an arbitrary structure with profile Q. We consider three cases. If the
profile Q does not dominate any profile Pi in T , then B 6|= φ. If the profile Q is equal to
a profile Pi ∈ T , then, by the discussion in the previous paragraph, the conditions B |= φ

and B |= φ∗i are equivalent; likewise, the conditions B |= ψ and B |= ψ∗i are equivalent. As
observed, the first pair of conditions occurs exactly when φi is satisfiable; this implies (by
hypothesis) that ψi is satisfiable, which occurs exactly when the second pair of conditions
occurs. Finally, if the profile Q strictly dominates T , then θQ appears as a disjunct of both
φ and ψ, and both B |= φ and B |= ψ hold. J

Note that, in particular, if |σ| ≥ 2, we obtain that SIS reduces to EPσ-Entail, as such a
σ has a system of profiles of size 1 (see Example 22).
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