
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-15-005
December 2015

Algorithmic Applications
of Tree-CutWidth

Robert Ganian, Eun Jung Kim and
Stefan Szeider

This is the authors’ copy of a paper that appeared at the 40th International Sympo-
siumonMathematical Foundations ofComputer Science, August 24-28, 2015Milano
(Italy).
www.ac.tuwien.ac.at/tr

Algorithmic Applications of Tree-Cut Width

Robert Ganian1?, Eun Jung Kim2, and Stefan Szeider1?

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
2 CNRS, Université Paris-Dauphine, Paris, France

Abstract. The recently introduced graph parameter tree-cut width plays
a similar role with respect to immersions as the graph parameter treewidth
plays with respect to minors. In this paper we provide the first algorithmic
applications of tree-cut width to hard combinatorial problems. Tree-cut
width is known to be lower-bounded by a function of treewidth, but it
can be much larger and hence has the potential to facilitate the efficient
solution of problems which are not known to be fixed-parameter tractable
(FPT) when parameterized by treewidth. We introduce the notion of nice
tree-cut decompositions and provide FPT algorithms for the showcase
problems Capacitated Vertex Cover, Capacitated Dominating
Set and Imbalance parameterized by the tree-cut width of an input
graph G. On the other hand, we show that List Coloring, Precoloring
Extension and Boolean CSP (the latter parameterized by the tree-cut
width of the incidence graph) are W[1]-hard and hence unlikely to be
fixed-parameter tractable when parameterized by tree-cut width.

1 Introduction

In their seminal work on graph minors, Robertson and Seymour have shown that
all finite graphs are not only well-quasi ordered by the minor relation, but also
by the immersion relation3, the Graph Immersion Theorem [19]. This verified
another conjecture by Nash-Williams [17]. As a consequence of this theorem,
each graph class that is closed under taking immersions can be characterized by
a finite set of forbidden immersions, in analogy to a graph class closed under
taking minors being characterized by a finite set of forbidden minors.

In a recent paper [21], Wollan introduced the graph parameter tree-cut width,
which plays a similar role with respect to immersions as the graph parameter
treewidth plays with respect to minors. Wollan obtained an analogue to the
Excluded Grid Theorem for these notions: if a graph has bounded tree-cut width,
then it does not admit an immersion of the r-wall for arbitrarily large r [21,
Theorem 15]. Marx and Wollan [16] proved that for all n-vertex graphs H with
maximum degree k and all k-edge-connected graphs G, either H is an immersion
of G, or G has tree-cut width bounded by a function of k and n.

? Research supported by the FWF Austrian Science Fund (X-TRACT, P26696).
3 A graph H is an immersion of a graph G if H can be obtained from G by applications

of vertex deletion, edge deletion, and edge lifting, i.e., replacing two incident edges
by a single edge which joins the two vertices not shared by the two edges.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

In this paper we provide the first algorithmic applications of tree-cut width
to hard combinatorial problems. Tree-cut width is known to be lower-bounded
by a function of treewidth, but it can be much larger than treewidth if the
maximum degree is unbounded (see Subsection 2.5 for an comparison of tree-cut
width to other parameters). Hence tree-cut width has the potential to facilitate
the efficient solution of problems which are not known or not believed to be
fixed-parameter tractable (FPT) when parameterized by treewidth. For other
problems it might allow the strengthening of parameterized hardness results.

We provide results for both possible outcomes: in Section 4 we provide
FPT algorithms for the showcase problems Capacitated Vertex Cover,
Capacitated Dominating Set and Imbalance parameterized by the tree-cut
width of an input graph G, while in Section 5 we show that List Coloring,
Precoloring Extension and Boolean CSP parameterized by tree-cut width
(or, for the third problem, by the tree-cut width of the incidence graph) are not
likely to be FPT. Table 1 provides an overview of our results. The table shows
how tree-cut width provides an intermediate measurement that allows us to push
the frontier for fixed-parameter tractability in some cases, and to strengthen
W[1]-hardness results in some other cases.

Parameter

Problem tw tree-cut width max-degree and tw

Capacitated Vertex Cover W[1]-hard[4] FPT(Thm 3) FPT

Capacitated Dominating Set W[1]-hard[4] FPT(Thm 5) FPT

Imbalance Open[15] FPT(Thm 4) FPT[15]

List Coloring W[1]-hard[7] W[1]-hard(Thm 6) FPT(Obs 4)

Precoloring Extension W[1]-hard[7] W[1]-hard(Thm 6) FPT(Obs 4)

Boolean CSP W[1]-hard[20] W[1]-hard(Thm 7) FPT[20]

Table 1: Overview of results (tw stands for treewidth).

Our FPT algorithms assume that a suitable decomposition, specifically a so-
called tree-cut decomposition, is given as part of the input. Since the class of graphs
of tree-cut width at most k is closed under taking immersions [21, Lemma 10],
the Graph Immersion Theorem together with the fact that immersions testing
is fixed-parameter tractable [10] gives rise to a non-uniform FPT algorithm for
testing whether a graph has tree-cut width at most k. In a recent unpublished
manuscript, Kim et al. [12] provide a uniform FPT algorithm which constructs a
tree-cut decomposition whose width is at most twice the optimal one. Effectively,
this result allows us to remove the condition that a tree-cut decomposition is
supplied as part of the input from our uniform FPT algorithms.

We briefly outline the methodology used to obtain our algorithmic results. As
a first step, in Section 3 we develop the notion of nice tree-cut decompositions4

and show that every tree-cut decomposition can be transformed into a nice one in
polynomial time. These nice tree-cut decompositions are of independent interest,
since they provide a means of simplifying the complex structure of tree-cut

4 We call them “nice” as they serve a similar purpose as the nice tree decompositions [13],
although the definitions are completely unrelated.

2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

decompositions. In Section 4 we introduce a general three-stage framework for
the design of FPT algorithms on nice tree-cut decompositions and apply it to our
problems. The crucial part of this framework is the computation of the “joins.”
We show that the children of any node in a nice tree-cut decomposition can be
partitioned into (i) a bounded number of children with complex connections to
the remainder of the graph, and (ii) a potentially large set of children with only
simple connections to the remainder of the graph. We then process these by a
combination of branching techniques applied to (i) and integer linear programming
applied to (ii). The specifics of these procedures differ from problem to problem.

2 Preliminaries

2.1 Basic Notation

We use standard terminology for graph theory, see for instance [3]. All graphs
except for those used to compute the torso-size in Subsection 2.4 are simple; the
multigraphs used in Subsection 2.4 have loops, and each loop increases the degree
of the vertex by 2.

Given a graph G, we let V (G) denote its vertex set and E(G) its edge set. The
(open) neighborhood of a vertex x ∈ V (G) is the set {y ∈ V (G) : xy ∈ E(G)}
and is denoted by NG(x). The closed neighborhood NG[v] of x is defined as
NG(v) ∪ {v}. For a vertex subset X, the (open) neighborhood of X is defined
as

⋃
x∈X N(x) \X and denoted by NG(X). The set NG[X] refers to the closed

neighborhood of X defined as NG(X) ∪X. We refer to the set NG(V (G) \X)
as ∂G(X); this is the set of vertices in X which have a neighbor in V (G) \X.
The degree of a vertex v in G is denoted degG(v). When the graph we refer to is
clear, we drop the lower index G from the notation. We use [i] to denote the set
{0, 1, . . . , i}.

2.2 Parameterized Complexity

We refer the reader to [5] for standard notions in parameterized complexity,
such as the complexity classes FPT and W[1], FPT Turing reductions and the
Multi-Colored Clique (MCC) problem.

2.3 Integer Linear Programming

Our algorithms use an Integer Linear Programming (ILP) subroutine. ILP is
a well-known framework for formulating problems and a powerful tool for the
development of fpt-algorithms for optimization problems.

Definition 1 (p-Variable Integer Linear Programming Optimization).
Let A ∈ Zq×p, b ∈ Zq×1 and c ∈ Z1×p. The task is to find a vector x ∈ Zp×1
which minimizes the objective function c× x̄ and satisfies all q inequalities given
by A and b, specifically satisfies A · x̄ ≥ b. The number of variables p is the
parameter.

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Theorem 1 ([14,11,9,8]). p-OPT-ILP can be solved using O(p2.5p+o(p) · L)
arithmetic operations in space polynomial in L, L being the number of bits in the
input.

2.4 Tree-Cut Width

The notion of tree-cut decompositions was first proposed by Wollan [21], see
also [16]. A family of subsets X1, . . . , Xk of X is a near-partition of X if they are

pairwise disjoint and
⋃k
i=1Xi = X, allowing the possibility of Xi = ∅.

Definition 2. A tree-cut decomposition of G is a pair (T,X) which consists of
a tree T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T)} of V (G). A set in
the family X is called a bag of the tree-cut decomposition.

For any edge e = (u, v) of T , let Tu and Tv be the two connected components
in T − e which contain u and v respectively. Note that (

⋃
t∈Tu

Xt,
⋃
t∈Tv

Xt) is a
partition of V (G), and we use cut(e) to denote the set of edges with one endpoint
in each partition. A tree-cut decomposition is rooted if one of its nodes is called
the root, denoted by r. For any node t ∈ V (T) \ {r}, let e(t) be the unique edge
incident to t on the path between r and t. We define the adhesion of t (adhT (t)
or adh(t) in brief) as |cut(e(t))|; if t is the root, we set adhT (t) = 0.

The torso of a tree-cut decomposition (T,X) at a node t, written as Ht, is the
graph obtained from G as follows. If T consists of a single node t, then the torso
of (T,X) at t is G. Otherwise let T1, . . . , T` be the connected components of T − t.
For each i = 1, . . . , `, the vertex set Zi of V (G) is defined as the set

⋃
b∈V (Ti)

Xb.
The torso Ht at t is obtained from G by consolidating each vertex set Zi into a
single vertex zi. Here, the operation of consolidating a vertex set Z into z is to
substitute Z by z in G, and for each edge e between Z and v ∈ V (G) \Z, adding
an edge zv in the new graph. We note that this may create parallel edges.

The operation of suppressing a vertex v of degree at most 2 consists of
deleting v, and when the degree is two, adding an edge between the neighbors
of v. Given a graph G and X ⊆ V (G), let the 3-center of (G,X) be the unique
graph obtained from G by exhaustively suppressing vertices in V (G)\X of degree
at most two. Finally, for a node t of T , we denote by H̃t the 3-center of (Ht, Xt),
where Ht is the torso of (T,X) at t. Let the torso-size tor(t) denote |H̃t|.
Definition 3. The width of a tree-cut decomposition (T,X) of G is
maxt∈V (T){adh(t), tor(t)}. The tree-cut width of G, or tcw(G) in short, is the
minimum width of (T,X) over all tree-cut decompositions (T,X) of G.

We conclude this subsection with some notation related to tree-cut decom-
positions. For t ∈ V (T) \ {r}, we let pT (t) (or p(t) in brief) denote the parent
of t in T . For two distinct nodes t, t′ ∈ V (T), we say that t and t′ are siblings
if p(t) = p(t′). Given a tree node t, let Tt be the subtree of T rooted at t. Let
Yt =

⋃
b∈V (Tt)

Xb, and let Gt denote the induced subgraph G[Yt]. The depth of a

node t in T is the distance of t from the root r. The vertices of ∂(Yt) are called
the borders at node t. A node t 6= r in a rooted tree-cut decomposition is thin if
adh(t) ≤ 2 and bold otherwise.

4

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

a
d

b c

e

f

g

d(2, 0)

a(3, 3)

bc(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1: A graph G and a width-3 tree-cut decomposition of G, including the torso-size
(left value) and adhesion (right value) of each node.

2.5 Relations to Other Width Parameters

Here we review the relations between the tree-cut width and other width param-
eters, specifically treewidth (tw), pathwidth (pw), and treedepth (td) [18]. We
also compare to the maximum over treewidth and maximum degree, which we
refer to as degree treewidth (degtw).

Proposition 1 ([21,16]). There exists a function h such that tw(G) ≤
h(tcw(G)) and tcw(G) ≤ 4degtw(G)2 for any graph G.

Below, we provide an explicit bound on the relationship between treewidth and
tree-cut width, and show that it is incomparable with pathwidth and treedepth.

Proposition 2. For any graph G it holds that tw(G) ≤ 2tcw(G)2 + 3tcw(G).

Proposition 3. There exists a graph class H1 of bounded pathwidth and treedepth
but unbounded tree-cut width, and there exists a graph class H2 of bounded tree-cut
width but unbounded pathwidth and treedepth.

tree-cut widthpathwidth

treedepth

treewidth

degree treewidth

>>

>>

Fig. 2: Relationships between selected graph parameters (A>B means that every graph
class of bounded A is also of bounded B, but there are graph classes of bounded B
which are not of bounded A).

3 Nice Tree-Cut Decompositions

In this section we introduce the notion of a nice tree-cut decomposition and
present an algorithm to transform any tree-cut decomposition into a nice one
without increasing the width. A tree-cut decomposition (T,X) rooted at r
is nice if it satisfies the following condition for every thin node t ∈ V (T):
N(Yt) ∩

⋃
b is a sibling of t Yb = ∅.

The intuition behind nice tree-cut decompositions is that we restrict the
neighborhood of thin nodes in a way which facilitates dynamic programming.

5

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Lemma 1. There exists a cubic-time algorithm which transforms any rooted
tree-cut decomposition (T,X) of G into a nice tree-cut decomposition of the same
graph, without increasing its width or number of nodes.

The proof of Lemma 1 is based on the following considerations. Let (T,X) be
a rooted tree-cut decomposition of G whose width is at most w. We say that a
node t, t 6= r, is bad if it violates the above condition, i.e., adh(t) ≤ 2 and there
is a sibling b of t such that N(Yt) ∩ Yb 6= ∅. For a bad node t, we say that b is a
bad neighbor of t if N(Yt) ∩Xb 6= ∅ and b is either a sibling of t or a descendant
of a sibling of t.

Rerouting(t): let t be a bad node and let b be a bad neighbor of t of
maximum depth (resolve ties arbitrarily). Then remove the tree edge e(t)
from T and add a new tree edge {b, t}.

Top-down Rerouting: as long as (T,X) is not a nice tree-cut decompo-
sition, pick any bad node t of minimum depth. Perform Rerouting(t).

The proof of Lemma 1 then follows by showing that Rerouting does not increase
the width of the decomposition and that Top-down Rerouting terminates
after performing at most a quadratic number of Rerouting calls.

The following Theorem 2 builds upon Lemma 1 by additionally giving a
bound on the size of the decomposition.

Theorem 2. If tcw(G) = k, then there exists a nice tree-cut decomposition
(T,X) of G of width k with at most 2|V (G)| nodes. Furthermore, (T,X) can be
computed from any width-k tree-cut decomposition of G in cubic time.

4 FPT Algorithms

In this section we will introduce a general dynamic programming framework for
the design of FPT algorithms on nice tree-cut decompositions. The framework is
based on leaf-to-root processing of the decompositions and can be divided into
three basic steps:

• Data Table: definition of a data table DT (t) (D(t) in brief) for a problem
P associated with each node t of a nice tree-cut decomposition (T,X).

• Initialization and Termination: computation of D(t) in FPT time for
any leaf t, and solution of P in FPT time if D(r) is known for the root r.

• Inductive Step: an FPT algorithm for computing D(t) for any node t when
D(t′) is known for every child t′ of t.

Let t be a node in a nice tree-cut decomposition. We use Bt to denote the set
of thin children t′ of t such that N(Yt′) ⊆ Xt, and we let At contain every child
of t not in Bt. The following lemma is a crucial component of our algorithms,
since it bounds the number of children with nontrivial edge connections to other
parts of the decomposition.

6

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Lemma 2. Let t be a node in a nice tree-cut decomposition of width k. Then
|At| ≤ 2k + 1.

In the remainder of this section we employ this high-level framework on the
design of FPT algorithms for the following problems: Capacitated Vertex
Cover, Imbalance, and Capacitated Dominating Set.

4.1 Capacitated Vertex Cover

The Capacitated Vertex Cover is a generalization of the classical Vertex
Cover problem. Unlike its uncapacitated variant, Capacitated Vertex Cover
is known to be W[1]-hard when parameterized by treewidth [4].

A capacitated graph is a graph G = (V,E) together with a capacity function
c : V → N0. Then we call C ⊆ V a capacitated vertex cover of G if there exists a
mapping f : E → C which maps every edge to one of its endpoints so that the
total number of edges mapped by f to any v ∈ C does not exceed c(v). We say
that f witnesses C.

tcw-Capacitated Vertex Cover (tcw-CVC)
Instance: A capacitated graph G on n vertices together with a width-k
tree-cut decomposition (T,X) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a capacitated vertex cover C of G
containing at most d vertices.

Data Table, Initialization and Termination. Informally, we store for each
node t two pieces of information: the “cost” of covering all edges inside G[Yt],
and how much more it would cost to additionally cover edges incident to Yt. We
formalize below.

For any graph G = (V,E) and U ⊆ V , we let cvc(G,U) denote the minimum
cardinality of a capacitated vertex cover C ⊆ U of G; if no such capacitated
vertex cover exists, we instead let cvc(G,U) = ∞. For any node t in a nice
tree-cut decomposition of a capacitated graph G = (V,E), we then use at to
denote cvc(G[Yt], Yt).

Let Et denote the set of all edges with both endpoints in Yt and let Kt

denote the set of edges with exactly one endpoint in Yt. Then Qt = {H =
(Yt ∪ N(Yt), Et ∪ E′) | E′ ⊆ Kt }. Finally, we define βt : Qt → N0 such that
βt(H) = cvc(H,Yt)− at (whereas ∞ acts as an absorbing element).

Definition 4. D(t) = (at, βt).

Next, we show that the number of possible functions βt is bounded.

Lemma 3. Let k be the width of a nice tree-cut decomposition (T,X) of G and
let t be any node of T . Then βt(H) ∈ [k] ∪ {∞} for every H ∈ Qt.
Lemma 4. Let t be a leaf in a nice tree-cut decomposition (T,X) of a capacitated
graph G, and let k be the width of (T,X). Then D(t) can be computed in time
2O(k·log k).

7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Observation 1 Let (G, d) be an instance of tcw-CVC and let r be the root of
a nice tree-cut decomposition of G. Then (G, d) is a yes-instance if and only if
ar ≤ d.

Inductive Step. Our next and final goal is to show how to compute D(t) of
a node t once we have D(t′) for each child t′ of t. We call this problem CVC
Join, and we use a two-step approach to solve it. First, we reduce the problem
to a simplified version, which we call Reduced CVC Join and which has the
following properties: At is empty, adh(t) = 0, and G[Xt] is edgeless.

Lemma 5. There is an FPT Turing reduction from CVC Join to 2O(k2) in-
stances of Reduced CVC Join which runs in time 2O(k2) · (|Bt|+ 1).

Lemma 6. There exists an algorithm which solves Reduced CVC Join in
time kO(k2) · (|Bt|+ 1).

Proof (Sketch). We develop an ILP formulation by partitioning Bt into types,
which contain nodes with the same βt and the same neighborhood in Xt. We use
variables to express how edges are assigned between types and Xt. ut
Corollary 1. There exists an algorithm which solves CVC Join in time kO(k2) ·
(|Bt|+ 1).

Theorem 3. tcw-CVC can be solved in time kO(k2) · n+ |T |3.

Proof. We use Theorem 2 to transform (T,X) into a nice tree-cut decomposition
with at most 2n nodes. We then use Lemma 4 to compute D(t) for each leaf t
of T , and proceed by computing D(t) for nodes in a bottom-to-top fashion by

Corollary 1. The total running time is dominated by
∑
t∈T (kO(k2) · (|Bt|+ 1)),

which is bounded by n · kO(k2) since each node t′ appears in at most a single set
Bt. Once we obtain D(r), we can correctly output by Observation 1. ut

4.2 Imbalance

The Imbalance problem was introduced by Biedl et al. [1]. The problem is FPT
when parameterized by degtw [15]. In this subsection we prove that Imbalance
remains FPT even when parameterized by the more general tree-cut width.

Given a linear order R of vertices in a graph G, let CR(v) and BR(v) denote
the number of neighbors of v which occur, respectively, before (“to the left
of”) v in R and after (“to the right of”) v in R. The imbalance of a vertex v,
denoted imbR(v), is then defined as the absolute value of BR(v)−CR(v), and
the imbalance of R, denoted imbR, is equal to

∑
v∈V (G) imbR(v).

tcw-Imbalance (tcw-IMB)
Instance: A graph G = (V,E) with |V | = n, and a width-k tree-cut
decomposition (T,X) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a linear order R of V such that
imbR ≤ d.

8

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Data Table, Initialization and Termination. Let A ⊆ B be sets and let
fA, fB be linear orders of A,B respectively. We say that fA is a linear suborder of
fB if the elements of A occur in the same order in fA as in fB (similarly, fB is a
linear superorder of fA). The information we remember in our data tables can be
informally summarized as follows. First, we remember the minimum imbalance
which can be achieved by any linear order in Yt. Second, for each linear order
f of vertices which have neighbors outside of Yt and for a restriction on the
imbalance on these vertices, we remember how much the imbalance grows when
considering only linear superorders of f which satisfy these restrictions. The
crucial ingredient is that the restrictions mentioned above are “weak” and we
only care about linear superorders of f which do not increase over the optimum
“too much”; this allows the second, crucial part of our data tables to remain
bounded in k.

For brevity, for v ∈ Yt we let nt(v) denote |NV \Yt
(v)|, i.e., the number of

neighbors of v outside Yt. Let f be a linear order of ∂(Yt) and let τ be a mapping
such that τ(v ∈ ∂(Yt)) ∈ {−∞,−nt(v),−nt(v) + 1, . . . , nt(v),∞}. We then call a
tuple of the form (f, τ) an extract (of Yt), and let L denote the set of all extracts
(for nodes with adhesion at most k). The extract α = (f, τ) is realized in Yt (by
R) if there exists a linear order R of Yt such that

1. R is a linear superorder of f , and
2. for each v ∈ ∂(Yt):

– if τ(v) ∈ Z then imbR(v) = τ(v),
– if τ(v) = −∞ then BR(v)−CR(v) < −nt(v)− 1,
– if τ(v) =∞ then BR(v)−CR(v) > nt(v) + 1.

The cost of a realized extract α, denoted c(α), is the minimum value of∑
v∈Yt

imbR(v) over all R which realize α (notice that edges with only one
endpoint in Yt do not contribute to c(α)). If α is not realized in Yt, we let
c(α) = ∞. We store the following information in our data table: the cost of
a minimum extract realized in Yt, and the cost of every extract whose cost is
not much larger than the minimum cost. We formalize below; let et denote the
number of edges with one endpoint in Yt.

Definition 5. D(t) = (at, βt) where at = minα∈L c(α) and βt : L → N0 ∪ {∞}
such that βt(α) = c(α)− at if c(α)− at ≤ 4et and βt(α) =∞ otherwise.

Notice that we are deliberately discarding information about the cost of
extracts whose cost exceeds the optimum by over 4et.

Observation 2 The cardinality of L is bounded by kO(k), and hence the num-
ber of possible functions βt is bounded by kO(k2). Additionally, these may be
enumerated in the same time.

Lemma 7. Let t be a leaf in a nice tree-cut decomposition (T,X) of a graph G,
and let k be the width of (T,X). Then D(t) can be computed in time kO(k).

Observation 3 Let (G, d) be an instance of tcw-IMB and let r be the root of
a nice tree-cut decomposition of G. Then (G, d) is a yes-instance if and only if
ar ≤ d.

9

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Inductive Step. What remains is to show how to compute D(t) for a node
t once D(t′) is known for each child t′ of t. Once again, we use the two-step
approach of first reducing to a “simpler” problem and then applying a suitable
ILP encoding. We call the problem we reduce to Reduced IMB Join.

Lemma 8. There is an FPT Turing reduction from IMB Join to kO(k2) in-
stances of Reduced IMB Join which runs in time kO(k2) · (|Bt|+ 1).

Proof (Sketch). We branch over all linear orders of f(k)-many “important vertices”
in At, over all possible extracts in D(t), and over all extracts in At which are
compatible with the above. This gives sufficient information to compute the
imbalance of vertices in Xt along with constraints on the placement of βt, which
yield an instance of Reduced IMB Join. ut
Lemma 9. There exists an algorithm which solves Reduced IMB Join in time
kO(k4) · (|Bt|+ 1).

Proof (Sketch). The k absolute values can be translated into 2k-many ILP
instances by branching on whether they end up being positive or negative.
Vertices in Xt separate the linear order into k + 1 “regions”, and we can again
partition Bt into types. Variables express how many children of type i have a
border vertex placed in region j. ut

The proof of the theorem below is then analogous to the proof of Theorem 3.

Theorem 4. tcw-IMB can be solved in time kO(k4) · n+ |T |3.

4.3 Capacitated Dominating Set

Capacitated Dominating Set is a generalization of the classical Dominating
Set problem by the addition of vertex capacities. It is known to be W[1]-hard
when parameterized by treewidth [4].

Let G = (V,E) be a capacitated graph with a capacity function c : V (G)→ N0.
We say that D ⊆ V (G) is a capacitated dominating set of G if there exists a
mapping f : V \D → D which maps every vertex to one of its neighbors so that
the total number of vertices mapped by f to any v ∈ D does not exceed c(v).

tcw-Capacitated Dominating Set (tcw-CDS)
Instance: A capacitated graph G on n vertices together with a width-k
tree-cut decomposition (T,X) of G, and an integer d.
Parameter : k.
Task : Decide whether there exists a capacitated dominating set D of
G containing at most d vertices.

The methods used to solve tcw-CDS are similar to those used to prove
Theorem 3 and 4, and hence we only provide a high-level description of our
approach here. For tcw-CDS, the table D(t) stores information about whether
vertices in Xt occur in a dominating set, the residual capacities in ∂(Yt), and the
size of a minimum capacitated dominating set which has these properties. The
following steps are then analogous to those above.

10

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

Theorem 5. tcw-CDS can be solved in time kO(k2) · n+ |T |3.

5 Lower Bounds

We show that List Coloring [6] and Precoloring Extension [2] are W[1]-
hard parameterized by tree-cut width, strengthening the known W[1]-hardness
results with respect to treewidth [7].

tcw-List Coloring
Instance: A graph G = (V,E), a width-k tree-cut decomposition (T,X)
of G, and for each vertex v ∈ V a list L(v) of permitted colors.
Parameter: k.
Task : Decide whether there exists a proper vertex coloring c such that
c(v) ∈ L(v) for each v ∈ V .

The tcw-Precoloring Extension problem may be defined analogously as
List Coloring; the only difference is that in Precoloring Extension lists
are restricted to either contain a single color or all possible colors.

Observation 4 List Coloring and Precoloring Extension parameterized
by degtw are FPT.

Theorem 6. tcw-List Coloring and tcw-Precoloring Extension are W[1]-
hard.

We also show that the Constraint Satisfaction Problem (CSP) is
W[1]-hard when parameterized by the tree-cut width of the incidence graph, even
when restricted to the Boolean domain; this is not the case for degtw [20].

tcw-CSP
Instance: A CSP instance I = (X,D, C) together with a width-k tree-
cut decomposition (T,X) of the incidence graph GI of I.
Parameter: k.
Task : Decide whether I is satisfiable.

Theorem 7. tcw-Boolean CSP is W[1]-hard.

The proofs of Theorems 6 and 7 are based on a reduction from MCC.

6 Concluding Notes

We have provided the first algorithmic applications of the new graph parameter
tree-cut width, considering a variety of hard combinatorial problems. In some
cases we could establish fixed-parameter tractability, in some cases we could
establish W[1]-hardness, staking off the potentials and limits of this parameter
(see Table 1). The FPT algorithms make use of our new notion of nice tree-cut
decompositions, which we believe to be of independent interest. We hope that
our results and methods stimulate further work on problems parameterized by
tree-cut width, which will result in a more refined parameterized complexity
landscape; natural candidate problems include further graph layout problems or
the General Factor Problem.

11

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

References

1. T. Biedl, T. Chan, Y. Ganjali, M. T. Hajiaghayi, and D. R. Wood. Balanced
vertex-orderings of graphs. DAM, 148(1):27 – 48, 2005.

2. M. Biró, M. Hujter, and Z. Tuza. Precoloring extension. i. interval graphs. Discrete
Mathematics, 100(1-3):267–279, 1992.

3. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer
Verlag, New York, 2nd edition, 2000.

4. M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger. Capacitated domination
and covering: A parameterized perspective. In IWPEC, Lecture Notes in Computer
Science, pages 78–90. Springer Verlag, 2008.

5. R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer Verlag, 2013.

6. P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. Congressus Numer-
antium, 26:125–157, 1979.

7. M. R. Fellows, F. V. Fomin, D. Lokshtanov, F. Rosamond, S. Saurabh, S. Szeider,
and C. Thomassen. On the complexity of some colorful problems parameterized by
treewidth. Information and Computation, 209(2):143–153, 2011.

8. M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In ISAAC, Lecture Notes in
Computer Science, pages 294–305. Springer, 2008.

9. A. Frank and É. Tardos. An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica, 7(1):49–65, 1987.

10. M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan. Finding topological
subgraphs is fixed-parameter tractable. In STOC’11—Proceedings of the 43rd ACM
Symposium on Theory of Computing, pages 479–488. ACM, New York, 2011.

11. R. Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12(3):415–440, 1987.

12. E. Kim, S.-I. Oum, C. Paul, I. Sau, and D. Thilikos. FPT 2-approximation for
constructing tree-cut decomposition. Manuscript, 2014.

13. T. Kloks. Treewidth: Computations and Approximations. Springer Verlag, Berlin,
1994.

14. H. Lenstra. Integer programming with a fixed number of variables. Math. Oper.
Res., 8:538–548, 1983.

15. D. Lokshtanov, N. Misra, and S. Saurabh. Imbalance is fixed parameter tractable.
Information Processing Letters, 113(19-21):714–718, 2013.

16. D. Marx and P. Wollan. Immersions in highly edge connected graphs. SIAM J.
Discrete Math., 28(1):503–520, 2014.

17. C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proc. Cambridge
Philos. Soc., 59:833–835, 1963.

18. J. Nešetřil and P. O. de Mendez. Tree-depth, subgraph coloring and homomorphism
bounds. European J. Combin., 27(6):1024–1041, 2006.

19. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-
width. J. Algorithms, 7(3):309–322, 1986.

20. M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth revisited.
J. of Computer and System Sciences, 76(2):103–114, 2010.

21. P. Wollan. The structure of graphs not admitting a fixed immersion. J.
Comb. Theory, Ser. B, 110:47–66, 2015. Preliminary version available at
http://arxiv.org/abs/1302.3867, 2013.

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
5

