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Abstract
The model checking problem for temporal logics is an important problem with applications in
key areas of computer science. Indispensable for the state-of-the-art in solving this problem in
large-scale settings is the technique of bounded model checking. We investigate the theoretical
possibilities of this technique using parameterized complexity. In particular, we provide a com-
plete parameterized complexity classification for the model checking problem for symbolically
represented Kripke structures for various fragments of the temporal logics LTL, CTL and CTL?.
We argue that a known result from the literature for a restricted fragment of LTL can be seen
as an fpt-time encoding into SAT, and show that such encodings are not possible for any of the
other fragments of the temporal logics that we consider. As a by-product of our investigation,
we develop a parameterized complexity class that can be seen as a parameterized variant of the
Polynomial Hierarchy.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.4.1 Mathematical
Logic – Temporal Logic, D.2.4 Software/Program Verification – Model Checking

Keywords and phrases temporal logic, bounded model checking, fpt-reductions to SAT

1 Introduction

The model checking problem for temporal logics is an important problem with applications
in key areas of computer science and engineering, among others in the verification of software
and hardware systems (see, e.g., [2, 9, 11]). The problem consists of checking whether an
abstract model of an automated system, given in the form of a labelled relational structure
(a Kripke structure), satisfies a formal specification of desired behavior given as a temporal
logic formula. Underlining the importance of temporal logic model checking in computer
science, the ACM 2007 Turing Award was given for foundational research on the topic
[8]. Indispensable for the state-of-the-art in solving this problem in industrial-size settings
is the algorithmic technique of symbolic model checking using propositional satisfiability
(SAT) solvers (called bounded model checking), where the SAT solvers are employed to find
counterexamples [3, 4, 5, 10]. This approach works well in cases where the Kripke structure is
large, but the temporal logic specification is small. Therefore, one could expect the framework
of parameterized complexity theory to be well-suited for analyzing the method of bounded
model checking from a theoretical point of view. Unfortunately, parameterized complexity
has not been able to help identify those settings in which this technique can be applied. First
of all, existing parameterized complexity analyses [12, 16, 17, 24, 25] have only considered
the problem for settings where the Kripke structure is spelled-out explicitly (or consists of
a small number of explicitly spelled-out components), which is highly impractical in many
cases occurring in practice. In fact, the so-called state explosion problem is a major obstacle
for developing practically useful techniques [7]. For this reason, the Kripke structures are
often described symbolically, for instance using propositional formulas, which allows for
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exponentially more succinct encodings of the structures. Moreover, whereas parameterized
complexity analysis is traditionally focused on fixed-parameter tractability for positive results,
the technique of bounded model checking revolves around encoding the problem as an instance
of SAT. Therefore, the parameterized complexity analyses are bound to concentrate on very
restrictive cases in order to obtain fixed-parameter tractability, unaware of some of the more
liberal settings where bounded model checking can be applied.

In this paper, we investigate the possibilities and boundaries of the technique of bounded
model checking from a theoretical point of view, using the framework of parameterized
complexity. We do so by performing a parameterized complexity analysis of the model
checking problem for fragments of various temporal logics, where we take the size of the
temporal logic formula as parameter and where the Kripke structures are represented
symbolically (and can thus be of size exponential in the size of their description) but enjoy a
property that restricts the size of possible counterexamples. Namely, in order to give the
method of bounded model checking a fighting chance, we require the size of the largest
loop-free path (the recurrence diameter) to be polynomially bounded.

Rather than concentrating on fixed-parameter tractability for positive results, in our
analysis we focus on the frontier of fpt-reducibility to SAT. Fpt-reductions to SAT have
recently been identified as a way to increase the impact and usefulness of parameterized
complexity for problems from various domains that are beyond NP (see, e.g., [18]). The
problem of temporal logic model checking is PSPACE-complete in general, and therefore
identifying settings where small parameter values can be exploited to achieve a reduction
to SAT (or its co-problem UNSAT), can be considered as a positive result. Such positive
results are captured by membership in para-NP or para-co-NP. On the other hand, to give
evidence that no fpt-reduction to SAT exists, in certain cases we can show hardness for the
known parameterized complexity class para-PSPACE. In other cases, to show hardness we
need a new parameterized complexity class, PH(level), which is of independent interest
and can be seen as a parameterized variant of the Polynomial Hierarchy (PH).

Contributions We consider the model checking problem for three of the most widespread
temporal logics, LTL, CTL and CTL? (a precise definition of these logics can be found
in Section 3). Moreover, for each of these logics, we consider also the fragments where
several temporal operators (namely, U and/or X) are disallowed. We give a complete
complexity classification of the problem of checking whether a given Kripke structure, specified
symbolically using a propositional formula, satisfies a given temporal logic specification,
parameterized by the size of the temporal logic formula. Firstly, we show that the problem
is para-PSPACE-complete for all logics and all fragments if the recurrence diameter of the
structure is unrestricted. Next, we identify a known result from the literature on bounded
model checking as a para-co-NP-membership result for the logic LTL where both operators
U and X are disallowed, and we extend this to a completeness result. Then, we show that
the problem is para-PSPACE-complete for LTL (and so also for its generalization CTL?)
when you allow at least one of the operators U and X. The main technical obstacle that we
had to overcome to show para-PSPACE-hardness for these cases was to encode satisfiability
of quantified Boolean formulas without having explicit quantification available in the logic.
Finally, we show that in all remaining cases (all fragments of CTL, and the fragment of
CTL? without the operators U and X) the problem is complete for PH(level). The prime
difficulty for these completeness results was to identify the parameterized complexity class
PH(level), and to characterize it in various ways. In short, we show that the only case
(given these fragments of temporal logics) where the technique of bounded model checking
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R. de Haan and S. Szeider 3

can be applied is the fragment of LTL without the operators U and X. An overview of all
the completeness results that we develop in this paper can be found in Table 1.

logic L LTL CTL CTL?

L para-PSPACE-complete PH(level)-complete para-PSPACE-complete
L\X para-PSPACE-complete PH(level)-complete para-PSPACE-complete
L\U para-PSPACE-complete PH(level)-complete para-PSPACE-complete
L\U,X para-co-NP-complete PH(level)-complete PH(level)-complete
Table 1 Parameterized complexity results for the problem Symbolic-MC?[L] for the different

(fragments of) logics L. For the problem Symbolic-MC[L], all cases are para-PSPACE-complete.

In addition, as mentioned, we introduce the parameterized complexity class PH(level),
which is based on the satisfiability problem of quantified Boolean formulas parameterized by
the number of quantifier alternations. We show that this class can also be characterized by
means of an analogous parameterized version of first-order logic model checking, as well as by
alternating Turing machines that alternate between existential and universal configurations
only a small number of times (depending only on the parameter).

Related work Computational complexity analysis has been a central aspect in the study of
temporal logic model checking problems, and naturally these problems have been analyzed
from a parameterized complexity point of view. For instance, LTL model checking parameter-
ized by the size of the logic formula features as an example for fixed-parameter tractability in
the textbook by Flum and Grohe [16]. For the temporal logic CTL, parameterized complexity
has also been used to study the problems of model checking and satisfiability [12, 17, 24, 25].
Fixed-parameter tractable reductions to SAT have also recently been considered for other
problem domains, and from a theoretical point of view [14, 18, 19, 20, 21, 27]. As the SAT
encoding techniques used for bounded LTL model checking result in an incomplete solving
method in general, limits on the cases in which this particular encoding can be used as a
complete solving method have been studied [6, 10, 22].

Outline We begin with reviewing relevant notions from (parameterized) complexity theory
in Section 2. Then, in Section 3, we introduce the different temporal logics that we consider,
we review known complexity results for their model checking problems, and we interpret a
known result for bounded model checking for the fragment of LTL without U and X operators
using notions from parameterized complexity. Next, in Section 4, we introduce the new
parameterized complexity class PH(level). In Section 5 we provide the parameterized
complexity results that indicate that bounded model checking cannot be applied for all other
fragments of temporal logics that we consider. Finally, we conclude in Section 6. Due to
space restrictions, we refer to the appendix for full proofs of statements marked with a star.

2 Preliminaries

Polynomial Space The class PSPACE consists of all decision problems that can be solved by
an algorithm that uses a polynomial amount of space (memory). Alternatively, one can char-
acterize the class PSPACE as all decision problems for which there exists a polynomial-time
reduction to the problem QSat, that is defined using quantified Boolean formulas as follows.
A quantified Boolean formula (in prenex form) is a formula of the form Q1x1Q2x2 . . . Qnxn.ψ,
where all xi are propositional variables, each Qi is either an existential or a universal quanti-
fier, and ψ is a (quantifier-free) propositional formula over the variables x1, . . . , xn (called
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the matrix). Truth for such formulas is defined in the usual way. The problem QSat consists
of deciding whether a given quantified Boolean formula is true.

Alternatively, the semantics of quantified Boolean formulas can be defined using QBF
models [28]. Let ϕ = Q1x1 . . . Qnxn.ψ be a quantified Boolean formula. A QBF model
for ϕ is a tree of (partial) truth assignments where (1.) each truth assignment assigns
values to the variables x1, . . . , xi for some 1 ≤ i ≤ n, (2.) the root is the empty assignment,
and for all assignments α in the tree, assigning truth values to the variables x1, . . . , xi for
some 1 ≤ i ≤ n, the following conditions hold: (3.) if i < n, every child of α agrees with α
on the variables x1, . . . , xi, and assigns a truth value to xi+1 (and to no other variables);
(4.) if i = n, then α satisfies ψ, and α has no children; (5.) if i < n and Qi = ∃, then α has
one child α′ that assigns some truth value to xi+1; and (6.) if i < n and Qi = ∀, then α has
two children α1 and α2 that assign different truth values to xi+1. It is straightforward to
show that a quantified Boolean formula ϕ is true if and only if there exists a QBF model
for ϕ. Note that this definition of QBF models is a special case of the original definition [28].

Fixed-parameter tractable reductions to SAT We assume the reader to be familiar with
basic notions from parameterized complexity theory, such as fixed-parameter tractability
and fpt-reductions. For more details, we refer to textbooks on the topic [13, 16, 26]. We
briefly highlight some notions that are useful for investigating fpt-reductions to SAT. The
propositional satisfiability problem (SAT), consists of deciding whether a given propositional
formula in CNF is satisfiable. When we consider SAT as a parameterized problem, we consider
the trivial (constant) parameterization. The parameterized complexity class para-NP consists
of all problems that can be (many-to-one) fpt-reduced to SAT. More generally, for each
classical complexity class K, the parameterized class para-K is defined as the class of all
parameterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist
an alphabet Π, a computable function f : N → Π∗, and a problem P ⊆ Σ∗ × Π∗ such
that P ∈ K and for all instances (x, k) ∈ Σ∗ × N of L we have that (x, k) ∈ L if and only
if (x, f(k)) ∈ P [15]. Intuitively, the class para-K consists of all problems that are in K after
a precomputation that only involves the parameter. For all classical complexity classes K,K ′
it holds that K ⊆ K ′ if and only if para-K ⊆ para-K ′. Therefore, in particular, problems
that are para-PSPACE-hard are not in para-NP, unless NP = PSPACE.

3 Model Checking for Temporal Logics

In this section, we review the definition of the temporal logics that we consider in this
paper, and we introduce the problem of model checking for symbolically represented Kripke
structures. In addition, we argue why the polynomial bound on the recurrence diameter of
the Kripke structures is necessary to obtain an fpt-reduction to SAT. Finally, we identify a
para-co-NP-membership result from the literature on bounded model checking.

3.1 Temporal Logics
We begin with defining the semantical structures for all temporal logics. In the remainder
of the paper, we let P be a finite set of propositions. A Kripke structure is a tupleM =
(S,R, V, s0), where S is a finite set of states, R ⊆ S × S is a binary relation on the set of
states called the transition relation, V : S → 2P is a valuation function that assigns each
state to a set of propositions, and where s0 ∈ S is the initial state. An example of a Kripke
structure is given in Figure 1. We say that an finite sequence s1 . . . s` of states si ∈ S is
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R. de Haan and S. Szeider 5

a finite path in M if (si, si+1) ∈ R for each 1 ≤ i < `. Similarly, we say that an infinite
sequence s1s2s3 . . . of states si ∈ S is an infinite path inM if (si, si+1) ∈ R for each i ≥ 1.

•
¬p1,¬p2

•
¬p1, p2

•
p1,¬p2

•
p1, p2

Figure 1 An example Kripke structureM1 for the set P = {p1, p2} of propositions.

Now, we can define the syntax of the logic LTL. LTL formulas over the set P of
atomic propositions are formed according to the following grammar (here p ranges over P ),
given by ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ). We consider the usual abbreviations,
such as ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2). In addition, we let the abbreviation Gϕ denote ¬F¬ϕ.
Intuitively, the formula Xϕ expresses that ϕ is true in the next (time) step, Fϕ expresses
that ϕ becomes true at some point in the future, Gϕ expresses that ϕ is true at all times
from now on, and ϕ1Uϕ2 expresses that ϕ2 becomes true at some point in time, and until
then the formula ϕ1 is true at all points. Formally, the semantics of LTL formulas are
defined for Kripke structures, using the notion of (infinite) paths. LetM = (S,R, V, s0) be a
Kripke structure, and s1 = s1s2s3 . . . be a path inM. Moreover, let si = sisi+1si+2 . . . for
each i ≥ 2. Truth of LTL formulas ϕ on paths s (denoted s |= ϕ) is defined inductively as
follows (for the sake of brevity, we omit the straightforward Boolean cases):

si |= Xϕ iff si+1 |= ϕ

si |= Fϕ iff for some j ≥ 0, si+j |= ϕ

si |= ϕ1Uϕ2 iff there is some j ≥ 0 such that si+j |= ϕ2 and si+j′ |= ϕ for each 0 ≤ j′ < j

Then, we say that an LTL formula ϕ is true in the Kripke structureM (denotedM |= ϕ)
if for all infinite paths s starting in s0 it holds that s |= ϕ. For instance, considering the
exampleM1 from Figure 1, it holds thatM1 |= FGp2.

Next, we can define the syntax of the logic CTL?, which consists of two different types
of formulas: state formulas and path formulas. When we refer to CTL? formulas without
specifying the type, we refer to state formulas. Given the set P of atomic propositions, the
syntax of CTL? formulas is defined by the following grammar (here Φ denotes CTL? state
formulas, ϕ denotes CTL? path formulas, and p ranges over P ), given by Φ ::= p | ¬Φ | (Φ ∧
Φ) | ∃ϕ, and ϕ ::= Φ | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | Fϕ | (ϕUϕ). Again, we consider the usual
abbreviations, such as ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), for state formulas as well as for path
formulas. Moreover, we let the abbreviation Gϕ denote ¬F¬ϕ, and we let the abbreviation ∀ϕ
denote ¬∃¬ϕ. Path formulas have the same intended meaning as LTL formulas. State
formulas, in addition, allow explicit quantification over paths, which is not possible in LTL.

Formally, the semantics of CTL? formulas are defined inductively as follows. LetM =
(S,R, V, s0) be a Kripke structure, s ∈ S be a state in M and s1 = s1s2s3 . . . be a path
inM. Again, let si = sisi+1si+2 . . . for each i ≥ 2. The truth of CTL? state formulas Φ on
states s (denoted s |= Φ) is defined as follows (again, we omit the Boolean cases): s |= ∃ϕ
if and only if there is some path s inM starting in s such that s |= ϕ. The truth of CTL?
path formulas ϕ on paths s (denoted s |= ϕ) is defined as follows:

si |= Xϕ iff si+1 |= ϕ

si |= Fϕ iff for some j ≥ 0, si+j |= ϕ

si |= ϕ1Uϕ2 iff there is some j ≥ 0 such that si+j |= ϕ2 and si+j′ |= ϕ for each 0 ≤ j′ < j

Then, we say that a CTL? formula Φ is true in the Kripke structureM (denotedM |= Φ)
if s0 |= Φ. For example, again taking the structureM1, it holds thatM1 |= ∃(Xp1 ∧ ∀Gp2).
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Next, the syntax of the logic CTL is defined similarly to the syntax of CTL?. Only the
grammar for path formulas ϕ differs, namely ϕ ::= XΦ | FΦ | (ΦUΦ). In particular, this
means that every CTL state formula, (CTL formula for short) is also a CTL? formula. The
semantics for CTL formulas is defined as for their CTL? counterparts.

For each of the logics L ∈ {LTL,CTL,CTL?}, we consider the fragments L\X, L\U
and L\U,X. In the fragment L\X, the X-operator is disallowed. Similarly, in the frag-
ment L\U, the U-operator is disallowed. In the fragment L\U,X, neither the X-operator
nor the U-operator is allowed. Note that the logic LTL\X is also known as UTL, and the
logic LTL\U,X is also known as UTL\X (see, e.g., [22]).

We review some known complexity results for the model checking problem of the different
temporal logics. Formally, we consider the problem MC[L], for each of the temporal logics L,
where the input is a Kripke structureM and an L formula ϕ, and the question is to decide
whetherM |= ϕ. Note that in this problem the Kripke structureM is given explicitly in
the input. As parameter, we will always take the size of the logic formula. It is well-known
that the problems MC[LTL] and MC[CTL?] are PSPACE-complete, and that the problem
MC[CTL] is polynomial-time solvable (see, e.g., [2]). It is also well-known that the problems
MC[LTL] and MC[CTL?] are fixed-parameter tractable when parameterized by the size of
the logic formula (see, e.g., [2, 16]).

3.2 Symbolically Represented Kripke Structures

A challenge occurring in practical verification settings is that the Kripke structures are too
large to handle. Therefore, these Kripke structures are often not written down explicitly, but
rather represented symbolically by encoding them succinctly using propositional formulas.

Let P = {p1, . . . , pm} be a finite set of propositional variables. A symbolically represented
Kripke structure over P is a tuple M = (ϕR, α0), where ϕR(x1, . . . , xm, x

′
1, . . . , x

′
m) is a

propositional formula over the variables x1, . . . , xm, x
′
1, . . . , x

′
m, and where α0 ∈ {0, 1}m

is a truth assignment to the variables in P . The Kripke structure associated with M
is (S,R, V, α0), where S = {0, 1}m consists of all truth assignments to P , where (α, α′) ∈ R
if and only if ϕR[α, α′] is true, and where V (α) = { pi : α(pi) = 1 }.

I Example 1. Let P = {p1, p2}. The Kripke structureM1 from Figure 1 can be symbolically
represented by (ϕR, α0), where ϕR(x1, x2, x

′
1, x
′
2) = [(¬x1 ∧ ¬x2) → (x′1 ∨ x′2)] ∧ [(¬x1 ↔

x2)→ (x′1 ∧ x′2)] ∧ [(x1 ∧ x2)→ (x′1 ∧ x′2)], and α0 = (0, 0). a

We can now consider the symbolic variant Symbolic-MC[L] of the model checking
problem, for each of the temporal logics L. Here the input is a symbolically represented
Kripke structureM, and an L formula ϕ, and the question is to decide whetherM |= ϕ.
Similarly to the case of MC[L], we will also consider Symbolic-MC[L] as a parameterized
problem, where the parameter is |ϕ|. Interestingly, for the logics LTL and CTL?, the
complexity of the model checking problem does not change when Kripke structures are
represented symbolically: Symbolic-MC[LTL] and Symbolic-MC[CTL?] are PSPACE-
complete (see [23]). However, for the logic CTL, the complexity of the problem does show
an increase. In fact, the problem is already PSPACE-hard for very simple formulas.

I Proposition? 2. Symbolic-MC[LTL] is PSPACE-hard even when restricted to the case
where ϕ = Gp. Symbolic-MC[CTL] and Symbolic-MC[CTL?] are PSPACE-hard even
when restricted to the case where ϕ = ∀Gp.
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R. de Haan and S. Szeider 7

3.3 A Fixed-Parameter Tractable SAT-encoding for LTL\U,X
The result of Proposition 2 seems to indicate that the model checking problem for the temporal
logics LTL, CTL and CTL? is highly intractable when Kripke structures are represented
symbolically, even when the logic formulas are extremely simple. However, in the literature
further restrictions have been identified that allow the problem to be solved by means of an
encoding into SAT, which allows the use of practically very efficient SAT solving methods.
In the hardness proof of Proposition 2, the Kripke structure has only a single path, which
contains exponentially many different states. Intuitively, such exponential-length paths are
the cause of PSPACE-hardness. To circumvent this source of hardness, and to go towards the
mentioned setting where the problem can be solved by means of a SAT encoding, we need to
restrict the recurrence diameter. The recurrence diameter rd(M) of a Kripke structureM is
the length of the longest simple (non-repeating) path inM. We consider the following variant
of Symbolic-MC[L], where the recurrence diameter of the Kripke structures is restricted.

Symbolic-MC?[L]
Input: a symbolically represented Kripke structureM, rd(M) in unary, and an L formula ϕ.
Parameter: |ϕ|.
Question: M |= ϕ?

This restricted setting has been studied by Kroening et al. [22]. In particular, they showed
that the model checking problem for LTL\U,X allows an encoding into SAT that is linear
in rd(M), even when the Kripke structureM is represented symbolically, and can thus be
of exponential size. Using the result of Kroening et al., we obtain para-co-NP-completeness.

I Proposition 3. Symbolic-MC?[LTL\U,X] is para-co-NP-complete.

Proof (sketch). Kroening et al. [22] use the technique of bounded model checking [3, 5, 10],
where SAT solvers are used to find a ‘lasso-shaped’ path in a Kripke structure that satisfies
an LTL formula ϕ. They show that for LTL\U,X formulas, the largest possible length of
such lasso-shaped paths that needs to be considered (also called the completeness threshold)
is linear in rd(M). However, the completeness threshold depends linearly on the size of a
particular type of generalized Büchi automaton expressing ϕ, which in general is exponential
in the size of ϕ. Therefore, this SAT encoding does not run in polynomial time, but it does
run in fixed-parameter tractable time when the size of ϕ is the parameter. Their encoding of
the problem of finding a counterexample to SAT can be seen as an encoding of the model
checking problem to UNSAT. A para-co-NP-hardness proof can be found in the appendix. J

In the remainder of this paper, we will give parameterized complexity results that give
evidence that this is the only case in this setting where such an fpt-reduction to SAT is
possible. In order to do so, we first make a little digression to introduce a new parameterized
complexity class, that can be seen as a parameterized variant of the Polynomial Hierarchy.

4 A Parameterized Variant of the Polynomial Hierarchy

In order to completely characterize the parameterized complexity of the problems Symbolic-
MC?[L], we need to introduce another parameterized complexity class, that is a parameterized
variant of the Polynomial Hierarchy (PH). The PH consists of an infinite hierarchy of classes
Σp
i and Πp

i (see, e.g., [1, Chapter 5]). For each i ≤ 0, the complexity class Σp
i consists

of closure of the problem QSati under polynomial-time reductions, where QSati is the
restriction of the problem QSat where the input formula starts with an existential quantifier
and contains at most i quantifier alternations. The class Πp

i is defined as co-Σp
i .
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In other words, for each level of the PH, the number of quantifier alternations is bounded by
a constant. If we allow an unbounded number of quantifier alternations, we get the complexity
class PSPACE (see, e.g., [1, Theorem 5.10]). Parameterized complexity theory allows a
middle way: neither letting the number of quantifier alternations be bounded by a constant,
nor removing all bounds on the number of quantifier alternations, but bounding the number of
quantifier alternations by a function of the parameter. We consider the parameterized problem
QSat(level), where the input is a quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QkXkψ,
where each Xi is a sequence of variables. The parameter is k, and the question is whether ϕ
is true. We define the parameterized complexity class PH(level) to be the closure of
QSat(level) under fpt-reductions. The class PH(level) lies above each level para-Σp

i of
(the parameterized version of) the PH and below the class para-PSPACE. Also, for each i > 1,
the following inclusions hold: para-NP ∪ para-co-NP ⊆ para-Σp

i ∪ para-Πp
i ⊆ PH(level) ⊆

para-PSPACE. Moreover, these inclusions are all strict, unless the PH collapses.

4.1 Alternative Characterizations
We can also characterize the class PH(level) using Alternating Turing machines (ATMs),
which generalize regular (non-deterministic) Turing machines (see, e.g., [16, Appendix A.1]).
We will use this characterization below to show membership in PH(level). The states of
an ATM are partitioned into existential and universal states. Intuitively, if the ATM M is
in an existential state, it accepts if there is some successor state that accepts, and if M is
in a universal state, it accepts if all successor states accept. We say that M is `-alternating
for a problem Q, for ` ≥ 0, if for each input x of Q, for each run of M on x, and for each
computation path in this run, there are at most ` transitions from an existential state to
a universal state, or vice versa. The class PH(level) consists of all problems that can be
solved by an ATM whose number of alternations is bounded by a function of the parameter.

I Proposition? 4. Let Q be a parameterized problem. Then Q ∈ PH(level) if and only if
there exist a computable function f : N→ N and an ATM M such that: (1) M solves Q in
fixed-parameter tractable time, and (2) for each slice Qk of Q, M is f(k)-alternating.

Next, to illustrate the robustnest of the class PH(level), we characterize this class using
first-order logic model checking (which has also been used to characterize the classes of the
well-known Weft-hierarchy, see, e.g. [16]). Consider the problem MC[FO], where the input
consists of a relational structure A, and a first-order formula ϕ = ∃X1∀X2∃X3 . . . QkXkψ in
prenex form, where Qk = ∀ if k is even and Qk = ∃ if k is odd. The question is whether A |= ϕ.
The problem MC[FO] is PH(level)-complete when parameterized by k.

I Proposition? 5. MC[FO] parameterized by the number k of quantifier alternations in the
first-order formula is PH(level)-complete.

5 Completeness for PH(level) and para-PSPACE

In this section, we provide a complete parameterized complexity classification for the problem
Symbolic-MC?[L]. We already considered the case for L = LTL\U,X in Section 3.3, which
was shown to be para-co-NP-complete. We give (negative) parameterized complexity results
for the other cases. An overview of the results can be found in Table 1 on page 3. Firstly, we
show that for the case of LTL, allowing at least one of the temporal operators U or X leads
to para-PSPACE-completeness.

I Theorem 6. Symbolic-MC?[LTL\U] is para-PSPACE-complete.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
2



R. de Haan and S. Szeider 9

•
a1, e

′
2

•
al, e1 •

ar, e1

•
e2, a

′
1 • e2, a

′
1 •e2, a

′
1 •

e2, a
′
1

•
e′1, a

′
l • e

′
1, a
′
r • e′1, a′l • e′1, a′r •e′1, a

′
l •e′1, a

′
r •e′1, a

′
l •

e′1, a
′
r

•e′2, a1 •e
′
2, a1 • • • • • • • • • • • • • •

•
e′1, g

...
...

•e1, al, f •
e1, ar, f
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...
...
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y = (1, 1, 0), x = (0, 1, 0)

Figure 2 (The reachable part of) the structureM in the proof of Theorem 6.

Proof. Membership follows from the PSPACE-membership of Symbolic-MC[LTL]. We
show hardness by showing that the problem is already PSPACE-hard for a constant parameter
value. We do so by giving a reduction from QSat. Let ϕ0 = ∀x1.∃x2 . . . Qnxn.ψ be a
quantified Boolean formula. We may assume without loss of generality that (n mod 4) = 1,
and thus that Qn = ∀. We construct a Kripke structure M symbolically represented
by (ϕR, α0), whose reachability diameter is polynomial in the size of ϕ0, and an LTL
formula ϕ that does not contain the U operator, in such a way that ϕ0 is true if and only
ifM 6|= ¬ϕ. (So technically, we are reducing to the co-problem of Symbolic-MC?[LTL\U].
Since PSPACE is closed under complement, this suffices to show PSPACE-hardness.)

The idea is to construct a full binary tree (of exponential size), with bidirectional
transitions between each parent and child, and to label the nodes of this tree in such a way
that a constant-size LTL formula can be used to force paths to be a transversal of this tree
corresponding to a QBF model of the formula ϕ0. The idea of using LTL formulas to force
paths to be transversals of exponential-size binary trees was already mentioned by Kroening
et al. [22]. We construct the Kripke structureM as depicted in Figure 2. (For a detailed
treatment of how to construct ϕR and α0 to get this structureM, we refer to the appendix.)
It is straightforward to check that the recurrence diameter rd(M) ofM is bounded by 2n as
the longest simple path inM is from some leaf in the tree to another leaf.

More concretely, the intuition behind the construction ofM is as follows. Every transition
from the i-th level to the (i+ 1)-th level (where the root is at the 0-th level) corresponds to
assigning a truth value to the variable xi+1. We use variables x = (x1, . . . , xn) to keep track of
the truth assignment in the current position of the tree, and variables y = (y1, . . . , yn) to keep
track of what level in the tree the current position is (at level i, exactly the variables y1, . . . , yi
are set to true). At the even levels i, we use the variables a1, al, ar (and a′1, a′l, a′r) to ensure
that (in a single path) both possible truth assignments to the (universally quantified)
variable xi+1 are used. At the odd levels i, we use the variables e1, e2 (and e′1, e′2) to ensure
that one of both possible truth assignments to the (existentially quantified) variable xi+1
is used. We need the copies a′1, e′1, . . . to be able to enforce the intended (downward and
upward) traversal of the tree. Then, the variable f is used to signal that a leaf has been
reached, and the variable g is used to signal that the path is in the sink state. For a detailed
specification of how to construct the LTL formula ϕ in such a way that it enforces such a
traversal of the structureM, we refer to the appendix.

We can then show that ϕ0 is true if and only ifM 6|= ¬ϕ. By construction ofM and ϕ,
all paths starting in the initial state of M that satisfy ϕ naturally correspond to a QBF
model of ϕ0, and all QBF models of ϕ0 correspond to such a path. Assume that ϕ0 is
true. Then there exists a QBF model of ϕ0. Then there exists a path satisfying ϕ, and
thusM 6|= ¬ϕ. Conversely, assume thatM 6|= ¬ϕ. Then there exists a path that satisfies ϕ.
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•
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•
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•
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•
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•
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•
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•
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•lk · · · • lk . . . • lk· · ·•lk. . .

Figure 3 (The reachable part of) the structureM in the proof of Theorem 8.

Therefore, there exists a QBF model of ϕ0, and thus ϕ0 is true. J

I Theorem 7. Symbolic-MC?[LTL\X] is para-PSPACE-complete.

Proof. Membership follows from the PSPACE-membership of Symbolic-MC[LTL]. We
show para-PSPACE-hardness by modifying the reduction in the proof of Theorem 6. The idea
is to simulate the X operator using the U operator. Given an instance of QSat, we construct
the Kripke structure M and the LTL formula ϕ as in the proof of Theorem 6. Then, we
modifyM and ϕ as follows. Firstly, we add a fresh variable x0 to the set of propositions P , we
ensure that x0 is false in the initial state α0, and we modify ϕR so that in each transition, the
variable x0 swaps truth values. Then, it is straightforward to see that any LTL formula of the
form Xϕ′ is equivalent to the LTL formula (x0 → x0Uϕ′) ∧ (¬x0 → ¬x0Uϕ′), on structures
where x0 shows this alternating behavior. Using this equivalence, we can recursively replace
all occurrences of the X operator in the LTL formula ϕ. This leads to an exponential blow-up
in the size of ϕ, but since ϕ is of constant size, this blow-up is permissible. J

Next, we show that for the case of CTL, the problem is complete for PH(level), even
when both temporal operators U and X are disallowed.

I Theorem 8. Symbolic-MC?[CTL] is PH(level)-complete. Moreover, hardness already
holds for Symbolic-MC?[CTL\U,X].

Proof. In order to show hardness, we give an fpt-reduction from QSat(level). Let ϕ =
∃X1∀X2 . . . QkXkψ be an instance of QSat(level). We construct a Kripke structureM
over a set P of propositional variables represented symbolically by (ϕR, α0), with polynomial
recurrence diameter, and a CTL formula Φ such that ϕ is true if and only ifM |= Φ.

The idea is to letM consist of a (directed) tree of exponential size, as depicted in Figure 3.
The tree consists of k levels (where the root is at the 0-th level). All nodes on the i-th level
are labelled with proposition li. Moreover, each node is associated with a truth assignment
over the variables in X =

⋃
1≤i≤kXi. For each node n at the i-th level (for 0 ≤ i < k) with

corresponding truth assignment αn, and for each truth assignment α to the variables in Xi+1,
there is a child node of n (at the (i+ 1)-th level) whose corresponding assignment agrees
with α on the variables in Xi+1. Also, the truth assignment corresponding to each child
of n agrees with αn on the variables in X1, . . . , Xi. Moreover, we may assume without loss
of generality that there is a propositional variable zψ in P that in each state is set to 1 if
and only if this state sets the propositional formula ψ (over X) to true. (See Lemma 10
in the appendix for a justification of this assumption.) For a detailed treatment of how to
construct ϕR and α0 to get this structureM, we refer to the appendix. Clearly, the longest
simple path inM is a root-to-leaf path, which has length k.

Then, using this structureM, we can express the quantified Boolean formula ϕ in CTL
as follows. We define Φ = ∃F(l1 ∧ ∀F(l2 ∧ ∃F(l3 ∧ · · ·QkF(lk ∧ zψ) · · · )). By construction
of Φ, we get that those subtrees ofM that naturally correspond to witnesses for the truth of
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R. de Haan and S. Szeider 11

this CTL formula Φ exactly correspond to the QBF models for ϕ. From this, we directly get
that ϕ is true if and only ifM |= Φ.

Membership in PH(level) can be proved by showing that the problem can be decided in
fpt-time by an ATM that is f(k)-alternating. More details can be found in the appendix. J

Finally, we complete the parameterized complexity classification of the problem Symbolic-
MC? by showing membership in PH(level) for the case of CTL?\U,X.

I Theorem? 9. Symbolic-MC?[CTL?\U,X] is PH(level)-complete.

Future research includes investigating the complexity for the case where the Kripke
structures are specified using binary decision diagrams (BDDs) instead of (CNF) formulas,
and investigating the parameterized complexity of symbolic model checking for different
fragments of temporal specifications (e.g., fragments defined using automata).

6 Conclusion

An essential technique for solving the fundamental problem of temporal logic model checking
is the SAT-based approach of bounded model checking. Even though its good performance
in settings with large Kripke structures and small temporal logic specifications provides
a good handle for a parameterized complexity analysis, the theoretical possibilities of the
bounded model checking method have not been structurally investigated. We contributed
to closing this gap by providing a complete parameterized complexity classification of the
model checking problem for fragments of the temporal logics LTL, CTL and CTL?, where
the Kripke structures are represented symbolically, and have a restricted recurrence diameter.
In particular, we showed that the known case of LTL\U,X is the only case that allows an
fpt-reduction to SAT, by showing completeness for the classes PH(level) and para-PSPACE
for all other cases. We hope that providing a clearer theoretical picture of the settings where
the powerful technique of bounded model checking can be applied helps guide engineering
efforts for developing algorithms for the problem of temporal logic model checking.
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R. de Haan and S. Szeider 13

A Additional Proofs
Proof of Proposition 2. We give a polynomial-time reduction from QSat. Let ϕ =
∃x1.∀x2. . . .∃xm−1.∀xm.ψ be a quantified Boolean formula. We construct a symbolically
represented Kripke structureM as follows. We consider the following set of variables:

Z = {xi, yi : 1 ≤ i ≤ m } ∪ {d, t}.

The initial state α0 is the all-zeroes assignment to Z.
We construct the formula ϕR representing the transition relation ofM. We let:

ϕR(Z,Z ′) = ϕR,0(Z,Z ′) ∨
∧

1≤j≤4
ϕR,j(Z,Z ′),

where we define the formulas ϕR,j(Z,Z ′) below. The intuition behind the construction ofM
is that any path will correspond to a strategy for choosing the valuation of the existentially
quantified variables. We use the variables yi to indicate which variables xi have already been
assigned a value. In fact, we ensure that in every reachable state, the variables yi that are
set to true are a consecutive sequence y1, . . . , yi for some 1 ≤ i ≤ m. We use the following
formula ϕR,1(Z,Z ′) to do this:

ϕR,1(Z,Z ′) =
∧

1≤i<m
¬y′i → ¬y′i+1.

Moreover, we ensure for any transition from state α to state α′, that α and α′ differ on at
most one variable yi, using the following formula ϕR,2(Z,Z ′):

ϕR,2(Z,Z ′) =
∧

1≤i≤m
[¬(yi ↔ y′i)→

∧

i<i′≤m
(yi′ ↔ y′i′)].

Furthermore, below we will use the following auxiliary formulas, that ensure that for any
transition, the number of variables yi that are true strictly increases (if not all yi are set to
true) or decreases (if not all yi are set to false), respectively:

ϕy-incr(Z,Z ′) = (¬y1 → y′1) ∧ ∧
1≤i<m

(yi ∧ ¬yi+1)→ y′i+1,

ϕy-decr(Z,Z ′) = (ym → ¬y′m) ∧ ∧
1≤i<m

(yi ∧ ¬yi+1)→ ¬y′i.

Next, we ensure that in all reachable states, whenever yi is false, xi also has to be false. We
do so using the following formula ϕR,3(Z,Z ′):

ϕR,3(Z,Z ′) =
∧

1≤i<m
¬y′i → ¬x′i.

Because of the above restrictions, we can restrict our attention to states α for which holds
(1) that y1, . . . , yi are true, for some 1 ≤ i ≤ m, and all remaining variables yj are false, and
(2) that all variables xj for i < j ≤ m are false. We will denote these states by tuples (w, e, t),
where w ∈ {0, 1}i, e ∈ {↑, ↓} and t ∈ {0, 1}. A tuple (w, d, t) with |w| = i denotes the state α
that sets y1, . . . , yi to true, sets x1, . . . , xi according to w, sets d to true if and only if e = ↑,
and sets the variable t according to the value in the tuple.

The idea behind how we continue constructing ϕR is that we piece together all possible
instantiations of the gadgets in Figure 4. This results in a large directed acyclic graph
containing states (w, e, t), with the property that any path that visits a state (w, ↓, 0)
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•
(w, ↓, 0)

•
(w, ↑, 0)

•
(w0, ↓, 0)

•
(w0, ↑, 0)

•
(w1, ↓, 0)

•
(w1, ↑, 0)

a
a

b
b

(a) Gadget for words w of odd length < m.

•
(w, ↓, 0)

•
(w, ↑, 0)

•
(w0, ↓, 0)

•
(w0, ↑, 0)

•
(w1, ↓, 0)

•
(w1, ↑, 0)

c

d

b

(b) Gadget for words w of even length < m.

•
(w, ↓, 0)

•
(w, ↑, 0)

e

(c) Gadget for words w
of length m that sat-
isfy ψ.

•
(w, ↓, 0)

•
(w, ↓, 1)

•
(w, ↑, 0)

f g

(d) Gadget for words w of length
m that do not satisfy ψ.

Figure 4 Gadgets for the proof of Proposition 2. The labels on the relations indicate what part
of ϕR,4 is used to encode the relations.

ultimately also visits the state (w, ↑, 0). This property allows us to use the gadgets in the
following way. The gadget for a word w of odd length i < m enforces that whenever a path
visits the state (w, ↓, 0), it must also visit the state (wb, ↓, 0) for some b ∈ {0, 1}. Intuitively,
this simulates existential quantifiers. This property allows us to use the gadgets in the
following way. The gadget for a word w of even length i < m enforces that whenever a path
visits the state (w, ↓, 0), it must also visit both states (wb, ↓, 0) for b ∈ {0, 1}. Intuitively, this
simulates universal quantifiers. Moreover, the gadgets for words w of length m enforce that
on the way from (w, ↓, 0) to (w, ↑, 0) the state (w, ↓, 1) is visited if and only if w corresponds
to a truth assignment to the variables in X that does not satisfy ψ.

We make sure that ϕR encodes exactly the transitions from α1 = (w1, e1, t1) to α2 =
(w2, e2, t2) from the gadgets described above by means of the following (sub)formulas of ϕR.
We distinguish seven cases. The labels on the arrows in Figure 4 indicate which case applies
to which relation in the gadgets.

(a) The string w1 is of odd length less thanm and e1 = ↓ and t1 = 0. We ensure that w2 = w1b

for some b ∈ {0, 1}, that e2 = ↓ and that t2 = 0.
(b) It holds that e1 = ↑, t1 = 0 and the string w1 either (i) is of even length less than m

or (ii) is of odd length less than m and ends with 1. We ensure that w2 is the string w1
without the last symbol, that e2 = ↑, and that t2 = 0.

(c) The string w1 is of even length less than m and e1 = ↓ and t1 = 0. We ensure
that w2 = w10, that e2 = ↓ and that t2 = 0.

(d) It holds that e1 = ↑, t1 = 0 and the string w1 is of odd length less than m and ends
with 0. We ensure that w2 is the string w1 where the last symbol is replaced by a 1,
that e2 = ↓, and that t2 = 0.

(e) The string w1 is of length m, e1 = ↓ and t1 = 0. Moreover, w1 satisfies ψ. We ensure
that w2 = w1, that e2 = ↑ and that t2 = 0.

(f) The string w1 is of length m, e1 = ↓ and t1 = 0. Moreover, w1 does not satisfy ψ. We
ensure that w2 = w1, that e2 = ↓ and that t2 = 1.

(g) The string w1 is of length m, e1 = ↓ and t1 = 1. We ensure that w2 = w1, that e2 = ↑
and that t2 = 0.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
2



R. de Haan and S. Szeider 15

Formally, we construct the formula ϕR,4(Z,Z ′) as follows:

ϕR,4(Z,Z′) =
∧

1≤i≤m,i odd
[[¬ym ∧ d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [d′ ∧ ¬t′ ∧ y′i+1 ∧

∧
1≤i′≤i

(xi ↔ x′i)]] (a);

∧
∧

1≤i≤m,i even
[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [¬d′ ∧ ¬t′ ∧ ¬y′i ∧

∧
1≤i′<i

(xi ↔ x′i)]] (b.i);

∧
∧

1≤i≤m,i odd
[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1 ∧ xi]→ [¬d′ ∧ ¬t′ ∧ ¬y′i ∧

∧
1≤i′<i

(xi ↔ x′i)]] (b.ii);

∧
∧

1≤i≤m,i even
[[¬ym ∧ d ∧ ¬t ∧ yi ∧ ¬yi+1]→ [d′ ∧ ¬t′ ∧ y′i+1 ∧ ¬x′i+1 ∧

∧
1≤i′≤i

(xi ↔ x′i)]] (c);

∧
∧

1≤i≤m,i odd
[[¬ym ∧ ¬d ∧ ¬t ∧ yi ∧ ¬yi+1 ∧ ¬xi]→

[d′ ∧ ¬t′ ∧ y′i ∧ ¬y′i+1 ∧ x′i ∧
∧

1≤i′<i

(xi ↔ x′i)] (d);

∧ [d ∧ ¬t ∧ ψ ∧
∧

1≤i≤m

yi]→ [¬d′ ∧ ¬t′ ∧
∧

1≤i≤m

(y′i ∧ (xi ↔ x′i))] (e);

∧ [d ∧ ¬t ∧ ¬ψ ∧
∧

1≤i≤m

yi]→ [d′ ∧ t′ ∧
∧

1≤i≤m

(y′i ∧ (xi ↔ x′i))] (f);

∧ [d ∧ t ∧ ¬ψ ∧
∧

1≤i≤m

yi]→ [¬d′ ∧ ¬t′ ∧
∧

1≤i≤m

(y′i ∧ (xi ↔ x′i))] (g);

Finally, we make sure that the state (ε, ↑, 0) has a self-loop, by means of the following
formula ϕR,0:

ϕR,0(Z,Z ′) =
∧

z∈Z\{d}
¬z ∧

∧

z′∈Z′\{d′}
¬z′.

We let the temporal logic formula whose truth is to be checked be Gt in the case of LTL,
and ∀Gt in the case of CTL or CTL? (these formulas are equivalent).

We claim that ϕ has a QBF model if and only if M = (ϕR, α0) |= Gt. This holds
because there is a correspondence between QBF models for ϕ and paths inM that satisfy
the proposition t in each state. Each such path inM can be transformed into a QBF model
for ϕ by removing the direction of the arrows, removing self-loops, merging states (w, ↓, 0)
and (w, ↑, 0) into a single truth assignment corresponding to the word w. Because such a
path does not visit any state where t is true, the leaves of the resulting tree satisfy ψ, and
therefore the resulting tree is a QBF model for ϕ. Vice versa, each QBF model can be used
similarly to obtain a path inM that satisfies Gt. J

Proof of Proposition 3 (continued). We show para-co-NP-hardness by showing that the
problem Symbolic-MC?[LTL\U,X] is co-NP-hard already for formulas of constant size.
We do so by a reduction from UNSAT. Let ψ be a propositional formula over the vari-
ables x1, . . . , xn. We construct an instance of Symbolic-MC?[LTL\U,X] as follows. We
consider the set P = {y0, y1, x1, . . . , xn} of propositional variables. We represent assign-
ments α : P → {0, 1} as binary vectors (c0, c1, b1, . . . , bn) of length n+ 2, where c0 indicates
the value α(y0), where c1 indicates the value α(y1), and where bi indicates the value α(yi)
for each 1 ≤ i ≤ n.

We then construct the symbolically represented Kripke structureM given by (ϕR, α0)
as follows. This structure M is depicted in Figure 5. We let α0 = 0, i.e., the all-zeroes
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•
(0, 0, α0)

•
(0, 1, α1)

...
•

(0, 1, α`)

•
(0, 1, α`+1)...
•

(0, 1, αu)

•
(1, 1, α`+1)...
•

(1, 1, αu)

Figure 5 (The reachable part of) the structure M in the proof of Proposition 3. The assign-
ments α1, . . . , α` are the ones not satisfying ψ, and the assignments α`+1, . . . , αu are the ones
satisfying ψ.

assignment. Then we define ϕR as follows:

ϕR,4(y0, y1, x, y
′
0, y
′
1, x
′) =

(¬y1 → (¬y′0 ∧ y′1)) (a);

∧ (y1 →
∧

1≤i≤n
(xi ↔ x′i)) (b);

∧ ((y1 ∧ ψ(x1, . . . , xn)→ (y′0 ∧ y′1)) (c);

∧ ((y1 ∧ ¬ψ(x1, . . . , xn)→ (¬y′0 ∧ y′1)) (d).

The transition relation given by ϕR allows a transition from α0 to the state (0, 1, α) for any
truth assignment α to the variables x1, . . . , xn. Then, if this assignment α satisfies ψ, a
transition is allowed to the looping state (1, 1, α). Otherwise, if α does not satisfy ψ, the only
transition from state (0, 1, α) is to itself. Finally, we define the LTL formula to be ϕ = G¬y0.

The reduction clearly runs in polynomial time. Moreover, rd(M) = 2, and the LTL
formula ϕ is of constant size, and contains only the temporal operator G.

We claim thatM |= ϕ if and only if ψ is unsatisfiable. Firstly, assume thatM |= ϕ. We
proceed indirectly, and assume that ψ is satisfiable. Let α be the truth assignment to the
variables x1, . . . , xn that satisfies ψ. Then the path α0, (0, 1, α), (1, 1, α), (1, 1, α), . . . is an
infinite path inM that does not satisfy G¬y0, which is a contradiction with our assumption
thatM |= ϕ. Therefore, we can conclude that ψ is unsatisfiable.

Conversely, assume that ψ is unsatisfiable. We show that M |= ϕ. By construction
of ϕR, the only way in which a path in M can reach a state not satisfying ¬y0 is with a
transition from (0, 1, α) to (1, 1, α), for some truth assignment α to the variables x1, . . . , xn.
However, such a transition only occurs inM if α satisfies ψ. This is a contradiction with
our assumption that ψ is unsatisfiable, and thereforeM |= ϕ. J
Proof of Proposition 4. First of all, we observe that the class of parameterized problems
that can be solved in fpt-time by an f(k)-alternating ATM is closed under fpt-reductions.
Next, we describe how an instance ϕ = ∃X1∀X2 . . . ∀Xkψ of the problem QSat(level)
can be solved by a (fixed) ATM M that is k-alternating. Using nondeterminism in its first
existential phase, M guesses truth values for the variables in X1. Then, using nondeterminism
in the subsequent universal phase, M guesses truth values for the variables in X2. Similarly,
using alternating existential and universal phases, M guesses truth values for all variables in
all other Xi. Then, using deterministic computation, M verifies whether the guessed truth
values satisfy ψ, and accepts the input if and only if ψ is satisfied. Clearly, ϕ is true if and
only if M accepts ϕ.
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R. de Haan and S. Szeider 17

For the other direction, let Q be an arbitrary parameterized problem that is decided
in fpt-time by an ATM M that is f(k)-alternating. We assume without loss of generality
that f(k) is even. We give an fpt-reduction from Q to QSat(level), using standard ideas
from the proof of the Cook-Levin Theorem. We assume without loss of generality that for each
nondeterministic step that M takes, there are only two possible transitions. If this were not
the case, we could straightforwardly transform M so that it satisfies this property. Let y be an
arbitrary instance for Q, with |y| = n. We know that M runs in fpt-time, i.e., in time g(k)nc,
for some computable function g and some constant c. Therefore, we know in particular that in
each phase (existential or universal), M makes at most g(k)nc many nondeterministic (binary)
choices. We introduce f(k) many sets X1, . . . , Xf(k), where each set Xi contains g(k)nc
many propositional variables xi,1, . . . , xi,g(k)nc . The interpretation of these variables is that
variable xi,j specifies which transition to take in the j-th nondeterministic step in the i-th
phase of the computation. Using (the truth values of) these variables in X1, . . . , Xf(k), we can
then in fpt-time decide whether M ends up in an accepting state using these transitions (when
given input y). Therefore, we can in fpt-time construct a Boolean circuit C over the variables
in X1, . . . , Xf(k) that captures this simulation procedure. Then, the quantified Boolean
circuit ∃X1∀X2 . . . ∀Xf(k)C is true if and only if y ∈ Q. Finally, we can easily transform this
to a quantified Boolean formula of the right form, for instance by using a standard Tseitin
transformation to transform C into an equivalent universally quantified DNF formula ∃Zψ.
The result of the reduction is then the quantified Boolean formula ∃X1∀X2 . . . ∀Xf(k)∀Y ψ,
which is an instance of QSat(level), and which is true if and only if y ∈ Q. J
Proof of Proposition 5. We fpt-reduce QSat(level) and MC[FO] to each other. The
reduction from QSat(level) to MC[FO] is very straightforward. We construct a relational
structure A with two elements 0, 1 in its domain, and two unary predicates T and F ,
where TA = {1} and FA = {0}. Then we transform the quantified Boolean formula ϕ to a
first-order formula ϕ′ by transforming each positive literal x to the first-order atom T (x) and
transforming each negative literal ¬x to the atom F (x). It is easy to verify the correctness
of this reduction.

Next, for the other direction, we describe the fpt-reduction from MC[FO] to QSat(level).
Let ϕ = ∃X1∀X2 . . . ∀Xkψ, together with the relational structure A with domain A, be
an instance of MC[FO] (we assume without loss of generality that k is even). We replace
each first-order variable x ∈ Xi with |A| many propositional variables xa, for a ∈ A.
Let X ′i denote the set of propositional replacement variables xa for x ∈ Xi. Then, for
each i, we construct a formula χi that ensures that for each x ∈ Xi there is exactly
one xa that is true. Next, we transform ψ into a propositional formula ψ′ as follows. Each
occurrence of an atom R(x1, . . . , xr) in ψ, where RA = {(a1,1, . . . , a1,r), . . . , (a`,1, . . . , a`,r),
we replace by the disjunction

∨
1≤i≤`(x

ai,1
1 ∧· · ·∧xai,r

r ). Finally, we construct the propositional
formula ψ′′ = χ1 ∧ (χ2 → (χ3 ∧ (χ4 → · · · (χk → ψ′)) · · · ). The final result of the reduction
is the quantified Boolean formula ∃X ′1∀X ′2 . . . ∀X ′kψ′′. The correctness of this reduction can
be verified straightforwardly. J

I Lemma 10. Given a symbolically represented Kripke structureM given by (ϕR, α0) over
the set P of propositional variables, and a propositional formula ψ over P , we can construct
in polynomial time a Kripke structureM′ given by (ϕ′R, α′0) over the set P ∪ {z} of variables
(where z 6∈ P ) such that:

there exists an isomorphism ρ between the states in the reachable part ofM and the states
in the reachable part ofM′ that respects the initial states and the transition relations,
each state s in the reachable part ofM agrees with ρ(s) on the variables in P , and
for each state s in the reachable part ofM it holds that ρ(s) |= z if and only if s |= ψ.
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Proof. Intuitively, the required Kripke structure M′ can be constructed by adding the
variable z to the set P of propositions, and modifying the formula ϕR specifying the
transition relation and the initial state α0 appropriately. In the new initial state α′0, the
variable z gets the truth value 1 if and only if α0 |= ψ. Moreover, the transition relation
specified by ϕ′R ensures that in any reached state α, the variable z gets the truth value 1 if
and only if α |= ψ.

Concretely, we defineM′ = (ϕ′R, α′0) over the set P ∪{z} as follows. We let α′0(p) = α0(p)
for all p ∈ P , and we let α′0(z) = 1 if and only if α0 |= ψ. Then, we define ϕ′R by letting:

ϕ′R(x, z, x′, z′) = ϕR(x, x′) ∧ (z′ ↔ ψ(x)).

The isomorphism ρ can then be constructed as follows. For each state α in M, ρ(α) =
α ∪ {z 7→ 1} if α |= ψ, and ρ(α) = α ∪ {z 7→ 0} if α 6|= ψ. J

Proof of Theorem 6 (continued). We first show how to constructM = (ϕR, α0). Remem-
ber that P = {x1, . . . , xn, y1, . . . , yn, a1, al, ar, a

′
1, a
′
l, a
′
r, e1, e2, e

′
1, e
′
2, f, g}. We let α0 be the

assignment that sets only the propositional variables a1, e
′
2 to true, and all other proposi-

tional variables to false. Then, we define ϕR(p?, p) to be the conjunction of the following
subformulas. The first conjunct

(g ↔ e′1 ∧
∧

p∈P\{e′1,g}
¬p)

ensures that g is only true in the sink state, and the second conjunct

(g → (a1 ∧ e′2 ∧
∧

p∈P\{a1,e′2}
¬p))

ensures that the sink state is only reachable from the initial state. Next, we make sure that
the states in the tree have the correct truth values for the propositional variables y1, . . . , yn,
i.e., that for each node in the i-th level of the tree, exactly the variables y1, . . . , yi are true.
This is ensured by the following conjuncts:

∧
1<i≤n

(yi → yi−1),
∧

1≤i<n
(¬yi → ¬yi+1), and

∧
1≤i<n

(¬(yi ∧ yi+1 ∧ ¬y?i ∧ ¬y?i+1) ∧ ¬(y?i ∧ y?i+1 ∧ ¬yi ∧ ¬yi+1)).

We ensure that the propositional variable f is true exactly in the leafs of the tree, using the
conjunct:

(f ↔
∧

1≤i≤n
yi).

Then, we ensure that each node at the i-th level of the tree corresponds to a partial truth assign-
ment to the variables x1, . . . , xi that agrees with its parent node on the variables x1, . . . , xi−1.
We do so by means of the following conjuncts:

∧
1≤i≤n

(¬yi → ¬xi), and
∧

1≤i≤n
((yi ↔ y?i )→ (xi ↔ x?i )).
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R. de Haan and S. Szeider 19

Finally, we enforce the intended truth values for the propositional variables in A =
{a1, al, ar, a

′
1, a
′
l, a
′
r} and in E = {e1, e2, e

′
1, e
′
2}. In order to do so, we introduce two auxiliary

formulas ϕl-ch and ϕr-ch, that encode whether a node in the tree is a left or a right child:

ϕl-ch(p) =
∨

1≤i≤n
(yi ∧ ¬yi+1 ∧ ¬xi) ∨ (yn ∧ ¬xn), and

ϕr-ch(p) =
∨

1≤i≤n
(yi ∧ ¬yi+1 ∧ xi) ∨ (yn ∧ xn).

Moreover, we introduce another auxiliary formula ϕdown(p?, p), that encodes whether the
transition goes down the tree:

ϕdown(p?, p) =
∨

1≤i≤n
(¬yi ∧ y?i ).

Using these auxiliary formulas, we construct the following conjuncts of ϕR, that enforce the
intended interpretation of the propositional variables in A and E:

(¬g ∧ ϕdown(p?, p) ∧ a?1 ∧ ϕl-ch(p))→ (al ∧ e1),
(¬g ∧ ϕdown(p?, p) ∧ a?1 ∧ ϕr-ch(p))→ (ar ∧ e1),
(¬g ∧ ϕdown(p?, p) ∧ (a′1)? ∧ ϕl-ch(p))→ (a′l ∧ e′1),
(¬g ∧ ϕdown(p?, p) ∧ (a′1)? ∧ ϕr-ch(p))→ (a′r ∧ e′1),
(¬g ∧ ϕdown(p?, p) ∧ e?1)→ (e2 ∧ a′1),
(¬g ∧ ϕdown(p?, p) ∧ (e′1)?)→ (e′2 ∧ a1),
(¬g ∧ ¬ϕdown(p?, p) ∧ a?1 ∧ ϕl-ch(p))→ (a′l ∧ e′1),
(¬g ∧ ¬ϕdown(p?, p) ∧ a?1 ∧ ϕr-ch(p))→ (a′r ∧ e′1),
(¬g ∧ ¬ϕdown(p?, p) ∧ (a′1)? ∧ ϕl-ch(p))→ (al ∧ e1),
(¬g ∧ ¬ϕdown(p?, p) ∧ (a′1)? ∧ ϕr-ch(p))→ (ar ∧ e1),
(¬g ∧ ¬ϕdown(p?, p) ∧ e?1 → (a1 ∧ e′2),
(¬g ∧ ¬ϕdown(p?, p) ∧ (e′1)? → (a′1 ∧ e2),∧
c∈A

(c→ ∧
c′∈A\{c}

¬c′), and
∧
c∈E

(c→ ∧
c′∈E\{c}

¬c′).

This concludes our construction of the Kripke structureM as depicted in Figure 2.
Next, we give a detailed specification of the LTL formula ϕ, that enforces a traversal

of the tree M corresponding to a QBF model of the formula ϕ0. The LTL formula ϕ

consists of a conjunction of several subformulas. The first conjunct of ϕ is Xal, which
ensures that the path starts by going down to the left child of the root of the tree. The
next conjuncts are G[(a1 ∧Xe1 ∧ ¬Xf)→ XXe2] and G[(a′1 ∧Xe′1 ∧ ¬Xf)→ XXe′2], which
ensure that after a transition corresponding to setting a universal variable to some value,
the path goes further down the tree (if possible). The conjuncts G[(e1 ∧ Xe2) → XXa′l]
and G[(e′1 ∧ Xe′2) → XXal] ensure that after setting an existential variable to some value,
the path goes further down the tree by setting the next universal variable to 0. The
conjunct G[(a1 ∧Xe1 ∧Xf)→ XXa1] ensures that after reaching a leaf of the tree, the path
goes back up. The conjuncts G[(al ∧Xa1)→ XXar] and G[(a′l ∧Xa′1)→ XXa′r] ensure that
after the path goes back up a transition corresponding to setting a universal variable xi to 0,
the path continues (downwards) with the transition corresponding to setting the variable xi
to 1. The conjuncts G[(ar ∧Xa1)→ XXe′1] and G[(a′r ∧Xa′1)→ XXe1] ensure that after the
path goes back up a transition corresponding to setting a universal variable xi to 0, the path
continues (upwards) by going back up on the transition corresponding to setting variable xi−1.
The conjuncts G[(e2 ∧ Xe1) → XXa1] and G[(e′2 ∧ Xe′1 ∧ X¬g) → XXa′1] ensure that after
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the path goes back up a transition corresponding to setting an existential variable xi to some
value, the path continues (upwards) by going back up on the transition corresponding to
setting variable xi−1 (if possible).

Finally, we need to ensure that this tree traversal corresponds to a QBF model for the
formula ϕ0, i.e., that all total assignments that appear along the path satisfy the matrix ψ
of ϕ0. We do so by adding a last conjunct to ϕ. However, to keep the LTL formula ϕ
of constant size, we need to introduce a propositional variable that abbreviates the truth
of ψ. By Lemma 10, we may assume without loss of generality that there is a propositional
variable zψ in P that in each state is set to 1 if and only if this state sets the formula ψ to
true. We then let the final conjunct of ϕ be G[f → zψ]. Clearly, the size of ϕ is constant. J
Proof of Theorem 8 (continued). First, we show how to construct the Kripke structureM =
(ϕR, α0). Remember that P = X1 ∪ · · · ∪Xk ∪ {l0, l1, . . . , lk} (for the sake of simplicity, we
leave treatment of the propositional variable zψ to the technique discussed in the proof of
Lemma 10). We let α0 be the truth assignment that sets only the propositional variable l0
to true, and all other propositional variables to false. Then, we define ϕR(p, p′) as the
conjunction of several subformulas. The first conjuncts ensure that in each level of the tree,
the propositional variables li get the right truth value:

∧

0≤i<k
li → l′i+1, (lk → l′k) and

∧

0≤i<i′≤k
¬(l′i ∧ l′i′).

The following conjunct ensures that the partial truth assignment of a node at the i-th level
of the tree agrees with its parent on all variables in X1, . . . , Xi−1.

∧

1≤i≤n
(l′i →

∧

x∈X1∪···∪Xi−1

(x↔ x′)).

This concludes our construction of the Kripke structureM as depicted in Figure 3.
In order to prove membership in PH(level), we show that Symbolic-MC?[CTL] can

be decided in fpt-time by an ATM M that is f(k)-alternating. The algorithm implemented
by M takes a different approach than the well-known dynamic programming algorithm for
CTL model checking for explicitly encoded Kripke structures (see, e.g., [2, Section 6.4.1]).
Since symbolically represented Kripke structures can be of size exponential in the input,
this bottom-up algorithm would require exponential time. Instead, we employ a top-down
approach, using (existential and universal) non-determinism to quantify over the possibly
exponential number of states.

We consider the function CTL-MC, given in pseudo-code in Algorithm 1, which takes as
input the Kripke structureM in form of its representation (ϕR, α0), a state α inM, a CTL
formula Φ and the recurrence diameter rd(M) ofM (in unary), and outputs 1 if and only
if α makes Φ true. Note that in this algorithm, we omit the case for the operator F, as any
CTL formula ∃FΦ is equivalent to ∃>UΦ. It is readily verified that this algorithm correctly
computes whether M, α |= Φ. Therefore, M |= Φ if and only if CTL-MC(M, α0, Φ, m)
returns 1, where m is the unary encoding of rd(M).

It remains to verify that the algorithm CTL-MC can be implemented in fpt-time by an
f(k)-alternating ATM M. We can construct M in such a way that the existential guesses are
done using the existential non-deterministic states of M, and the universal guesses by the
universal non-deterministic states. Note that the recursive call in the case for ¬Φ1 is preceded
by a negation, so the existential and universal non-determinism swaps within this recursive
call. The recursion depth of the algorithm is bounded by |Φ| = k, since each recursive call
strictly decreases the size of the CTL formula used. Moreover, in each call of the function
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Algorithm 1: Recursive CTL model checking using bounded alternation.
function CTL-MC(M, α, Φ, m):

switch Φ do
case p ∈ P : return α(p) ; /* Boolean cases */
case ¬Φ1 : return not CTL-MC(M, α, Φ1, m) ;
case Φ1 ∧ Φ2 : return CTL-MC(M, α, Φ1, m) and CTL-MC(M, α, Φ2, m) ;
case ∃XΦ1 :

(existentially) pick a state α′ inM ; /* guess successor state */
if ϕR(α, α′) is false then return 0 ; /* check transition */
return CTL-MC(M, α′, Φ1, m) ; /* recurse */

case ∃Φ1UΦ2 :
(existentially) pick some m′ ≤ m ; /* guess length of path */
(existentially) pick states α1, . . . , αm′ inM ; /* guess path */
(universally) pick some 1 ≤ j < m′ ; /* check all states in path */
if ϕR(αj , αj+1) is false then return 0 ; /* check transition */
if CTL-MC(M, αj, Φ1, m) = 0 then return 0 ; /* recurse */
return CTL-MC(M, αm′ , Φ2, m) ; /* recurse */

CTL-MC, at most two recursive calls are made (not counting recursive calls at deeper levels of
recursion). Therefore, the running time of M is bounded by 2kpoly(n), where n is the input
size. Also, since in each call of the function at most two alternations between existential and
universal non-determinism are used (again, not counting at deeper levels of recursion), we
know that M is 2k-alternating. (This bound on the number of alternations needed can be
improved with a more careful analysis and some optimizations to the algorithm.) J
Proof of Theorem 9. Hardness for PH(level) follows from Theorem 8. We show mem-
bership in PH(level), by describing an algorithm A to solve the problem that can be
implemented by an ATM M that runs in fpt-time and that is f(k)-alternating. The algorithm
works similarly to Algorithm 1, described in the proof of Theorem 8, and recursively decides
the truth of a CTL? formula in a state. The difference with Algorithm 1 is that it does not
look only at the outermost temporal operators of the CTL? formula in a recursive step, but
considers possibly larger subformulas in each recursive step. Let ∃ϕ be a CTL? formula, and
let s be a state inM. The algorithm A then considers all maximal subformulas ψ1, . . . , ψ`
of ϕ that are CTL? state formulas as atomic propositions p1, . . . , p`, turning the formula ϕ into
an LTL formula. Since ϕ does not contain the operators U and X, we know that in order to
check the existence of an infinite path satisfying ϕ, it suffices to look for lasso-shaped paths of
bounded length (linear in rd(M) and exponential in the size of ϕ), i.e., a finite path followed
by a finite cycle [22]. The algorithm A then uses (existential) nondeterminism to guess such
a lasso-shaped path π, and to guess for each state which of the propositions p1, . . . , p` are
true, and verifies that π witnesses truth of ∃ϕ. Then, in order to ensure that it correctly
determines whether ∃ϕ is true, the algorithm needs to verify that it guessed the right truth
values for p1, . . . , p` in π. It does so by recursively determining, for each state s′ in the
lasso-shaped path π, and each pi, whether ψi is true in s′ if and only it guessed pi to be true
in s′. (In order to ensure that in each level of recursion there are only a constant number
of recursive calls, like Algorithm 1, the algorithm A uses universal nondeterminism iterate
over each pi and each s′.) The algorithm then reports that ∃ϕ is true in s if and only if (1)
the guesses for π and the truth values of p1, . . . , p` together form a correct witness for truth
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of ∃ϕ, and (2) for each pi and each s′ it holds that pi was guessed to be true in s′ if and
only if ψi is in fact true in s′. The recursive cases for CTL? formulas where the outermost
operator is not temporal are analogous to Algorithm 1. Like Algorithm 1, the algorithm runs
in fpt-time and is 2k-alternating. J
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