
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TUWien, Vienna, Austria

Technical Report AC-TR-15-001
September 2015

Community Structure
Inspired Algorithms for
SAT and #SAT

Robert Ganian and Stefan Szeider

This is the author’s copy of a paper that appears in the proceedings of SAT 2015,
pp. 223–237, LNCS 9340, Springer, 2015.

www.ac.tuwien.ac.at/tr

Community Structure Inspired Algorithms for
SAT and #SAT?

Robert Ganian and Stefan Szeider

Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract. We introduce h-modularity, a structural parameter of CNF formulas,
and present algorithms that render the decision problem SAT and the model count-
ing problem #SAT fixed-parameter tractable when parameterized by h-modularity.
The new parameter is defined in terms of a partition of clauses of the given CNF
formula into strongly interconnected communities which are sparsely intercon-
nected with each other. Each community forms a hitting formula, whereas the
interconnections between communities form a graph of small treewidth. Our al-
gorithms first identify the community structure and then use them for an efficient
solution of SAT and #SAT, respectively. We further show that h-modularity is in-
comparable with known parameters under which SAT or #SAT is fixed-parameter
tractable.

1 Introduction

Large networks often exhibit a certain structure, where nodes form strongly intercon-
nected communities which are sparsely connected with each other; to what extent a
network exhibits such a structure can be measured by its modularity [17,18,19,31].
Recently the community structure and modularity of practical SAT instances has been
empirically studied, revealing an interesting correlation between the modularity and
the solving time of state-of-the art SAT solvers. Interestingly, learnt clauses tend to lie
within communities and learnt clauses of low Literal Block Distance (LBD) are shared
by few communities [1,20]. These findings contribute towards a better understanding
of the spectacular performance of today’s SAT solvers on practical instances, which is
generally not well understood and remains a challenge for the research community [29].

However, the presence of a community structure with low modularity is not a
guarantee for an instance to be easy; instead, the correlation between modularity and
solving time is of statistical nature. In fact, it is not difficult to show that SAT remains
NP-hard for highly modular instances. More specifically, given any SAT formula F , one
can use a padding process (i.e., the addition of multiple variable-disjoint dense satisfiable
subformulas) to create an equisatisfiable formula F ′ whose size is linear in F and whose
modularity can be better than any arbitrarily fixed threshold.

In this paper we propose the notion of h-modularity for SAT instances that provides a
worst-case performance guarantee for SAT decision. The h-modularity of a SAT instance
is an integer-valued parameter, where instances with small h-modularity can provably be
solved quickly. More precisely, we propose an algorithm that, given a SAT instance F of
? Supported by the Austrian Science Fund (FWF), project P26696.

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

input length ` and h-modularity k, decides the satisfiability of F in time f(k)`2, where f
is singly exponential function in the parameter k. In other words, SAT is fixed-parameter
tractably (FPT) in the parameter h-modularity. We also provide an FPT algorithm for
propositional model counting (i.e., #SAT) parameterized by h-modularity. The parameter
dependency is single-exponential for SAT and double-exponential for #SAT.

Our parameter is defined based on the partition of the set of clauses into subsets,
which we call h-communities. Each h-community forms a strongly interconnected set
of clauses. This is ensured by the requirement that any two clauses of an h-community
clash in at least one variable (i.e., h-communities are so-called “hitting formulas”
[11,12,13,22]). Furthermore, the h-communities are sparsely interconnected with each
other, which is ensured by the requirement that a certain graph which represents the
interaction between h-communities has small treewidth as well as h-communities are
of small degree (graphs of small treewidth are sparse [24,14]). A formal definition of
h-modularity is given in Section 3. We show that h-modularity is incomparable with
the parameters signed clique-width and clustering-width, hence h-modularity is not
dominated by well-known parameters that admit fixed-parameter tractability of SAT or
#SAT. As a consequence, our parameter pushes the frontiers of tractability for SAT and
exploits a type of structure not accessible to known FPT algorithms.

2 Preliminaries

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), represented as
sets of clauses. That is, a literal is a (propositional) variable x or a negated variable
x; a clause is a finite set of literals not containing a complementary pair x and x; a
formula is a finite set of clauses. For a literal l = x we write l = x; for a clause C we
set C = { l | l ∈ C }. For a clause C, var(C) denotes the set of variables x with x ∈ C
or x ∈ C. Similarly, for a formula F we write var(F) =

⋃
C∈F var(C). The length of a

formula F is defined as
∑
C∈F |C|.

We say that two clauses C,D overlap if C ∩D 6= ∅; we say that C and D clash if
C and D overlap. Note that two clauses can clash and overlap at the same time. Two
clauses C,D are adjacent if var(C) ∩ var(D) 6= ∅ (i.e., if C and D clash or overlap),
and the degree deg(C) of C in a formula F is the number of clauses D ∈ F adjacent
to C. The dual graph of a formula F is the graph whose vertices are clauses of F and
whose edges are defined by the adjacency relation of clauses. The dual graph allows us
to use standard graph terminology, such as neighborhood and edge-disjoint paths, when
speaking about a formula.

We will also use the primal graph of a formula F , specifically in the proof of
Theorem 3. The primal graph of F is the graph whose vertices are variables of F and
where two variables a, b are adjacent iff there exists a clause C such that a, b ∈ C.

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1} defined
on some set X of variables. We extend τ to literals by setting τ(x) = 1 − τ(x) for
x ∈ X . F [τ] denotes the formula obtained from F by removing all clauses that contain
a literal x with τ(x) = 1 and by removing from the remaining clauses all literals y with

2

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

τ(y) = 0; F [τ] is the restriction of F to τ . Note that var(F [τ])∩X = ∅ holds for every
assignment τ : X → {0, 1} and every formula F . A truth assignment τ : X → {0, 1}
satisfies a formula F if F [τ] = ∅. A truth assignment τ : var(F)→ {0, 1} that satisfies
F is a model of F . We denote by #(F) the number of models of F . A formula F is
satisfiable if #(F) > 0.

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts of
parameterized complexity. For an in-depth treatment of the subject we refer the reader to
other sources [7,21].

The instances of a parameterized problem can be considered as pairs (I, k) where I
is the main part of the instance and k is the parameter of the instance; the latter is usually
a non-negative integer. A parameterized problem is fixed-parameter tractable (FPT) if
instances (I, k) of size n (with respect to some reasonable encoding) can be solved in
time O(f(k)nc) where f is a computable function and c is a constant independent of k.
The function f is called the parameter dependence.

2.3 Hitting Formulas

A hitting formula is a CNF formula with the property that any two of its clauses clash
(see [11,12,22]). The same notion for DNF formulas is termed orthogonality [5]. The
following result makes hitting formulas particularly attractive in the context of SAT and
#SAT.

Fact 1 ([10]). A hitting formula F with n variables has exactly 2n −∑
C∈F 2n−|C|

models.

The following observation will be implicitly used in several of our proofs.

Fact 2. Let F be a hitting formula, and let F ′ be obtained from F by an arbitrary
sequence of clause deletions and restrictions under truth assignments. Then F ′ is also a
hitting formula.

2.4 Treewidth

Let G be a simple, undirected, finite graph with vertex set V = V (G) and edge set
E = E(G). For standard graph-theoretic notions not defined here, we refer to [6]. A
tree decomposition of G is a pair ({Xi : i ∈ I}, T) where Xi ⊆ V , i ∈ I , and T is a
tree with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , the set { i ∈ I | v ∈ Xi } induces a (connected) subtree in T

with at least one node.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth [14,23] of G is the
minimum width taken over all tree decompositions of G and it is denoted by tw(G).

3

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

Fact 3 ([3]). There exists an algorithm which, given a graph G and an integer k, runs in
time 2k

O(1) · (|V (G)|+ |E(G)|), and either outputs a tree decomposition of G of width
at most k or correctly determines that tw(G) > k.

It is well known that, for every clique over Z ⊆ V (G) in G, it holds that every tree
decomposition of G contains an element Xi such that Z ⊆ Xi [14]. Furthermore, an
n-vertex graph of treewidth k is sparse and has O(nk) edges [14,24].

3 h-Communities and h-Modularity

Let F be a formula. We call a hitting formula H ⊆ F a hitting community (or h-
community in brief) in F . The degree deg(H) of an h-community H is the number of
edges in the dual graph of F between a clause in H and a clause outside of H . A hitting
community structure (or h-structure in brief) P is a partitioning of F into h-communities,
and the degree deg(P) of P is max{deg(H) | H ∈ P }.

To measure the treewidth of an h-structure P , we construct a community graph G
as follows. The vertices of G are the h-communities in P , and two vertices A,B in G
are joined by an edge if and only if there exist clauses C ∈ A and D ∈ B which are
adjacent. Then we let tw(P) = tw(G).

We define the h-modularity of an h-structure P as the maximum over deg(P) and
tw(P). The h-modularity h-mod(F) of a formula F is then defined as the minimum
h-mod(P) over all h-structures P of F .

Observe that this definition ensures that clauses in individual h-communities are
strongly interconnected (since they form hitting formulas), but each h-community is
only sparsely connected to other h-communities (due to the community graph having
small treewidth and degree). At the same time we will prove that, unlike modularity,
h-modularity is a parameter that guarantees the existence of structure which can be
algorithmically exploited to establish the fixed-parameter tractability of SAT and #SAT.

Example: Consider the formula F = {xya, xya, xy, xy, abc, b, cdef , de, fgh, hi,
ij, jklmn, uvgklmn, uvl, uv}. Figure 1 (left) then illustrates the dual graph of F with
the indicated partition P = {H1, . . . ,H6} of F into h-communities H1 = {xya, xya,
xy, xy}, H2 = {abc, b}, H3 = {cdef , de}, H4 = {fgh, hi}, H5 = {ij, jklmn}, and
H6 = {uvgklmn, uvl, uv}. Figure 1 (right) shows the community graph of P ; it is easy
to verify that this graph has treewidth 2 [14] (observe, for instance, that the deletion
of a single vertex turns it into a tree). The h-communities H1 and H3 have degree 2,
and all other h-communities have degree 3. Therefore the h-modularity of F is at most
max(3, 2) = 3.

H1

H6

H2

H3

H4

H5

H1

H6

H2

H3

H4

H5

Fig. 1. The dual graph (left) and community graph (right) of the formula F and the h-structure P .

4

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

An h-structureP of F is called a witness of h-mod(F) ≤ k if h-mod(P) ≤ k. Given
an h-structure P of F and a subformula F ′ ⊆ F , we denote by P[F ′] the h-structure
induced by P on F ′; observe that h-mod(P[F ′]) ≤ h-mod(P).

We introduce some additional notation which will be useful later, always w.r.t. a
fixed h-structure. A clause C ∈ H is a bridge clause if there exists a clause outside of H
adjacent toC. A variable x is a bridge variable if it occurs in a clause in one h-community
and at least one other clause in another h-community. Notice that every clause containing
a bridge variable is a bridge clause, and that h-structures of low h-modularity can still
contain a large number of bridge variables, even in a single h-community.

We can now formalize the parameterized problems we are solving and present our
main results.

#SAT[h-mod]
Instance: A formula F of length ` and an integer k ≥ 0.
Task: Either compute the number of models of F , or correctly determine that
h-mod(F) > k.
Parameter: k.

The problem SAT[h-mod] is then defined analogously to #SAT[h-mod], with the
distinction that the task is only to determine whether the number of models is non-zero
(in which case we say that F is satisfiable).

Theorem 1. #SAT[h-mod] and SAT[h-mod] are fixed parameter tractable.

Our approach for proving Theorem 1 can be separated into two main tasks: first, we
compute an h-structure P of small h-modularity, and then we use P to solve the problem.
Our techniques to achieve this are discussed in detail in the following two sections. We
remark that the parameter dependence is single-exponential for our SAT algorithm and
double-exponential for our #SAT algorithm.

Before proceeding, we make a short digression comparing the new notion of h-
modularity to established parameters for SAT. We say that parameter X dominates
parameter Y if there exists a computable function f such that for each formula F
we have X(F) ≤ f(Y (F)) [25]. In particular, if X dominates Y and SAT is FPT
parameterized by X , then SAT is FPT parameterized by Y [25]. We say that two
parameters are incomparable if neither dominates the other. In the following, we show
that h-modularity is incomparable with the signed clique-width (the clique-width of
the signed incidence graph [28,4]) and with clustering-width (the smallest number of
variables whose deletion results in a variable-disjoint union of hitting formulas) [22]. We
remark that the former claim implies that h-modularity is not dominated by the treewidth
of neither the incidence nor the primal graph, since these parameters are dominated by
signed clique-width [28]. Furthermore, h-modularity is also not dominated by signed
rank-width [9], which both dominates and is dominated by signed clique-width.

Proposition 1. The following claims hold.

1. Signed clique-width and h-modularity are incomparable.
2. Clustering-width and h-modularity are incomparable.

5

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

Proof. We prove both claims by showing that there exist classes of formulas such that
each formula in the class has one parameter bounded while the other parameter can grow
arbitrarily. For a formula F , let scw(F) and clu(F) denote its signed clique-width and
clustering width, respectively. Our proof does not require a formal definition of these
parameters, as we refer to known properties of these notions.

Let N be the set of positive integers, and let us choose an arbitrary i ∈ N. For the first
claim, it is known that already the class of all hitting formulas has unbounded scw [22].
In particular, this means that there exists a hitting formula F1 such that scw(F1) ≥ i.
Recall that, since F1 is a hitting formula, clearly h-mod(F1) = 0.

Conversely, consider the following formula F2 = {C,C1, . . . , Ci+2}. The formula
contains variables x1, . . . xi+2, and each variable xj occurs (either positively or neg-
atively) in clause C and Cj . Then the incidence graph of F2 is a tree and hence has
treewidth 1. Since signed clique-width dominates the treewidth of the incidence graph, it
follows that there exists a constant c independent of i such that scw(F2) ≤ c (in particu-
lar, one can check from the definition of scw that c ≤ 2). On the other hand, the degree
of any h-community H containing C is at least i+ 1, and hence h-mod(F2) ≥ i+ 1.

We proceed similarly for the second claim; let i ∈ N. Let F ′′1 be a hitting formula, let
F ′1 be constructed by adding a new variable z into an arbitrary clause in F ′′1 and adding a
clause Z containing only z (both occurrences can either be positive or negative). Observe
that clu(F ′1) = h-mod(F ′1) = 1. Let F1 then contain i+ 2 disjoint copies of F ′1; clearly,
clu(F1) = i+2. However, since the h-modularity of a formula is equal to the maximum
h-modularity over all of its connected components, it holds that h-mod(F1) = 1.

Conversely, let F ′2 and F ′′2 be variable-disjoint hitting formulas containing at least
i+ 2 clauses each, and let F2 be obtained from a disjoint union of F ′2 and F ′′2 by adding
a variable z which occurs (either positively or negatively) in bi/2c clauses in F ′2 and
in bi/2c clauses in F ′′2 . While F2 is not a hitting formula, deleting z results in two
variable-disjoint hitting formulas and hence clu(F2) = 1. On the other hand, the three
inclusion-maximal h-communities in F2 are F ′2, F ′′2 and possibly the set of clauses where
z occurs; each of these have a degree which is greater than i. Consequently, it holds that
h-mod(F2) ≥ i+ 1. ut

4 Finding h-Structures

Our approach for finding h-structures of small h-modularity consists of two steps. Gen-
erally speaking, we introduce a preprocessing procedure which we exhaustively apply
until all clauses have a sufficiently small degree (Lemma 1), and once the degree of all
clauses is sufficiently small we compute a tree decomposition of the dual graph and use
it to find a suitable h-structure (Lemma 2). The result is an FPT-approximation algo-
rithm [16]. One of the technical obstacles we have to overcome is that the preprocessing
procedure given by Lemma 1 only guarantees the preservation of h-modularity up to a
certain bound. This bound then represents an additional constraint on the approximation
algorithm presented in Lemma 2.

Lemma 1. There exists an algorithm which, given q ∈ N and a formula F of length `
containing a clause C such that deg(C) > 3q + 2, runs in time O(`2) and either

6

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

correctly determines that h-mod(F) > q, or outputs a strictly smaller subformula
F ′ with the following property: if h-mod(F ′) ≤ q, then h-mod(F) = h-mod(F ′).
Furthermore, a witness P of h-mod(F) can be computed from F , F ′ and a witness P ′
of h-mod(F ′) ≤ q in linear time.

Proof. Let Z0 be the set containing C and all clauses which are neighbors of C, let Z1

be the subset of Z0 containing clauses which have a neighbor outside of Z0, and let
Z = Z0 \ Z1. Let W be the subset of Z containing clauses which have at least q + 2
neighbors in Z. We now make a series of tests:

1. if Z1 > q, then h-mod(F) > q;
2. if |W | < q + 3, then h-mod(F) > q;
3. if W is not a hitting formula, then h-mod(F) > q;
4. if Z contains a clause which clashes with exactly |W | − 1 clauses in W , then

h-mod(F) > q;
5. let B ∈ W be a clause with no neighbors outside W ; if no such B exists, then

h-mod(F) > q.

Otherwise we set F ′ = F \B.
We prove correctness. Observe that if |Z1| > q then there exists no P of h-modularity

at most q. Indeed, for each neighbor D of Z1 outside of Z0, it holds that D and C cannot
be in the same h-community, since they are not adjacent. Hence each element of Z1

increases the degree of the h-community containing C by at least 1; either due to the
edge between C and that element, or the edge between D and that element. Hence we
can assume that |Z| ≥ 2q + 3.

For the second test, observe that if |W | < q+3 then there exists noP of h-modularity
at most q. Indeed, since the number of neighbors of C in Z is at least 2q + 2, at least
q + 2 of these neighbors must be in the same h-community as C if h-mod(P) ≤ q. This
implies that at least q + 2 of these neighbors would have to be pairwise-adjacent, and
in particular would each have at least q + 2 neighbors in Z. Then W necessarily must
contain C and at least q + 2 neighbors of C.

For the third test, ifW is not a hitting formula, then any h-structureP of h-modularity
at most q would need to partition W into (subsets of) at least two h-structures; let HC

be the hypothetical h-community containing C, and let D ∈ W \ HC . Since D has
q + 2 neighbors in Z, there are at least q + 2 edge-disjoint paths between D and C, and
each of these paths contributes at least 1 to the degree of HC . But then it follows that
deg(HC) ≥ q + 2, which would contradict h-mod(P) ≤ q, and hence W must be a
hitting formula. Observe that this argument also implies that every clause in W is in fact
adjacent to every other clause in W , and that every P of h-modularity at most q must
contain an h-community HC which contains W .

For the fourth test, assume there exists a clause D which clashes with exactly
|W | − 1 clauses in W . Consider any witness P of h-mod(F) ≤ q, and let HC be the
h-community containing C. Since D 6∈ HC and there are at least q + 1 edge-disjoint
paths between D and C, the existence of D would imply that deg(HC) ≥ q + 1.

For the fifth test, recall that for any clause Q ∈ Z \W it holds that W ∪ {Q} cannot
be a hitting formula because Q cannot be adjacent to every clause in W . Hence every
clause in W with a neighbor outside of W contributes at least 1 to the degree of any

7

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

h-community containing W . Together with |W | > q + 2 this implies that if no clause B
exists, then h-mod(F) > q.

Finally, assume there exists a clause B ∈ W with no neighbors outside of W and
let F ′ = F \ B. If h-mod(F ′) > q then the lemma already holds, so assume there
exists a witness P ′ of h-mod(F ′) ≤ q. Let W ′ = W \ B. Observe that W ′ must be
contained in a single h-community H ′ ∈ P ′, since otherwise the fact that each clause
of W ′ is adjacent to every other clause of W ′ would contradict the degree bound given
by h-mod(P ′) ≤ q. Then let P be obtained from P ′ by adding B to H ′. Observe that
there cannot exist a clause D ∈ H ′ such that D and B do not clash; since D clashes
with every other clause in W , it follows that D would clash with |W | − 1 clauses in W .
Hence B ∪H ′ is still an h-community. Furthermore, by our choice of B it holds that B
contains no neighbors outside of W ′, and hence deg(H ′) = deg(H ′ ∪ {B}) and in turn
deg(P ′) = deg(P).

Finally, observe that, if we are given a witness P ′ of h-mod(F ′) ≤ q, we can
construct a witness of h-mod(F) by adding B back into the unique h-community in P
containing the neighbors of B (i.e., W ′). ut

Lemma 2. There exists an algorithm which, given k ∈ N and a formula F of length `
such that deg(F) ≤ 12k2+2, runs in time 2k

O(1) ·`, and either outputs an h-structure P
of F such that h-mod(P) ≤ k2 + k, or correctly determines that h-mod(F) > k.

Proof. We first test whether the treewidth of the dual graph G of F is at most k ·
(12k2 + 3); if not, then h-mod(F) > k, and if yes, we compute a tree decomposition
of F . This can be achieved in time at most 2k

O(1) · ` by Fact 3. Next, we enumerate
every inclusion-maximal clique in G of cardinality at least k + 2 in time O(k3) · ` by
a simple traversal of the tree decomposition. Let L be the set of all such cliques. For
each clique K ∈ L we test whether K is a hitting formula and whether deg(K) ≤ k;
if not, then h-mod(F) > k. For each pair of cliques K1,K2 ∈ L we test that they are
pairwise disjoint; if not, then h-mod(F) > k. Let G′ be the graph obtained from G by
contracting each clique in L into a single vertex; that is, each K ∈ L is replaced by a
vertex adjacent to all neighbors of K. We test that deg(G′) ≤ 2k and tw(G′) ≤ k2 + k;
if not, then h-mod(F) > k. Finally, let P ′ be the vertex set of G′. Then P ′ is an
h-structure witnessing h-mod(F) ≤ k2 + k.

We prove correctness. First, assume for a contradiction that tw(G) > k · (12k2 + 3)
and that there exists a witness P ′ of h-mod(F) ≤ k. Since deg(F) ≤ 12k2 + 2, every
h-community in P ′ must have size at most 12k2 + 3. Let (β, T) be a width-k tree
decomposition of the community graph of P ′, and let β′ be obtained by replacing each
h-community H ∈ P ′ with

⋃
C∈H C. Then (β′, T) is a tree decomposition of G of

width at most k · (12k2 + 3), contradicting our assumptions.
Next, assume that there exists a clique K ∈ L which is not a hitting formula. Then

any hypothetical h-structure P of F must partition K into several h-communities. Let
C,D ∈ K and H ∈ P be such that C ∈ H and D 6∈ H . Since there exist k + 1
edge-disjoint paths between C and D, this implies that deg(H) ≥ k + 1 and hence
h-mod(P) > k.

Similarly, assume that there exist inclusion-maximal cliques K1,K2 ∈ L which
intersect in some clause C. Then any hypothetical h-structure P must contain an h-

8

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

community H containing C, and there must exist a clause D ∈ K1 ∪ K2 such that
D 6∈ H . As in the previous case, this gives rise to at least k + 1 edge-disjoint paths
between C and D and hence h-mod(P) > k. In particular, we conclude that each
element of L must form an h-community in any hypothetical witness of h-mod(F) ≤ k.
This in turn implies that if there exists an h-community K ∈ L of degree at least k + 1,
then h-mod(F) > k.

We proceed by considering the graph G′. Assume it contains a vertex v of degree at
least 2k+1. If v is a clause in F , then at most k neighbors of v can form an h-community
with v (since we have contracted all cliques of cardinality at least k + 2). This means
that at least k + 1 neighbors of v would contribute to the degree of the h-community
containing v, which guarantees h-mod(F) > k. On the other hand, if v is an element
of L, then we already know that v itself must be an h-community in any witness of
h-mod(F) ≤ k, and hence v having more than k neighbors also implies h-mod(F) > k.

Next, consider the case tw(G′) > k2 + k. Observe that each hitting subformula of F
not contained in L contains at most k+1 clauses. Consider a width-k tree decomposition
(β, T) of the community graph Q of a hypothetical witness of h-mod(F) ≤ k. By
replacing, in β, each h-communityH ∈ V (Q)\L with the set of clauses contained inH ,
we would obtain a tree decomposition of G′ of width at most k · (k + 1), contradicting
our assumption. Hence we conclude that h-mod(F) > k.

Finally, we summarize why P ′ is indeed an h-structure of G such that h-mod(P ′) ≤
k2 + k. The fact that P ′ is an h-structure follows by construction; indeed, each element
in P ′ is either a single clause, or an element of L which is guaranteed to be a hitting
formula. Regarding the h-modularity of P ′, recall that G′ is the community graph of
P ′ and that tw(G′) ≤ k2 + k. As for the degree bound, each vertex v in G′ is either a
clause C in F , which means that deg(v) ≤ 2k, or an element of K, in which case we
have already tested that deg(v) ≤ k. ut

Theorem 2. There exists an algorithm which, given k ∈ N and a formula F of length `,
runs in time O(`3) + 2k

O(1) · `, and either outputs an h-structure P of F such that
h-mod(P) ≤ k2 + k, or correctly determines that h-mod(F) > k.

Proof. We begin by exhaustively applying Lemma 1 on F for q = 4k2; let us denote
the resulting formula F ′. Then we apply Lemma 2 on F ′ to find an h-structure P ′ of
F ′ such that h-mod(P ′) ≤ k2 + k ≤ q. Finally, we use Lemma 1 to convert P ′ into an
h-structure P of F . Correctness follows from the correctness of Lemmas 1 and 2. ut

5 Using h-Structures

With Theorem 2 in hand, we proceed to show how the identified h-structure of small
h-modularity can be used to obtain fixed-parameter tractability of SAT and #SAT. The
general strategy is to replace each h-community by a suitable object that represents all
the satisfying assignments of this h-community. This way, variables only appearing in a
single h-community are eliminated. In case of SAT, we represent an h-community by
a set of clauses over the bridge variables of the h-community, and in the case of #SAT,
we represent an h-community by a so-called valued constraint. This way, we reduce
the problems SAT and #SAT parameterized by h-modularity to certain problems (SAT

9

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

and SUMPROD, respectively) parameterized by primal treewidth. For solving the latter
problems we can use known algorithms.

For making this general strategy work, we have to overcome the difficulty that the
number of bridge variables of a single h-community can be arbitrarily large even when
the input formula has small h-modularity. In the case of SAT we can handle this by
replacing the input formula with a satisfiability-equivalent subformula using a known
construction. This approach does not work for #SAT since this replacement does not
preserve the number of models. However, by replacing equivalence classes of variables
that appear in the same way in all clauses by 3-valued variables (which represent the
three possibilities that all variables in the module are set to true, all are set to false,
or some are set to true and some to false, respectively), we can reduce the number of
variables for a single valued constraint so that we can make our overall strategy work.

We begin with the conceptually simpler case of SAT. Our solution relies on the
following folklore result.

Fact 4 ([26]). There exists an algorithm which takes as input a formula F of length `
and a tree decomposition of the primal graph of F of width k, runs in time 2O(k) · `2,
and determines whether F is satisfiable.

Theorem 3. Given a formula F ′ of length ` and an h-structure P ′ of F ′, we can decide
whether F ′ is satisfiable in time 2O(h-mod(P′)2) · `2.

Proof. Our algorithm has three steps. First, we compute an equisatisfiable subformula
F of F ′ where F has the following property: for every nonempty set X of variables of
F there are at least |X|+ 1 clauses C of F such that some variable in X occurs in C.
Formulas with this property are called 1-expanding or matching-lean, and it is known
that for any formula F ′ of length `, an equisatisfiable 1-expanding subformula F can
be computed in time O(`3/2) [8,15,27]. We set P = P ′[F] and k = h-mod(P ′); note
that h-mod(P) = h-mod(P ′[F]) ≤ h-mod(P ′) = k. Observe that since each H ∈ P
satisfies deg(H) ≤ k, it follows that the number of bridge variables which occur in any
clause in H is upper-bounded by k.

For the second step, we construct a formula I as follows. The variable set of I
consists of all the bridge variables of P . For each h-community H ∈ P containing
bridge variables XH = {x1, . . . , xp} and for each assignment α of variables in XH , we
test whether α satisfies H; if it does not, we add the clause Cα over Xα into I , where
Cα is the unique clause which is not satisfied by α.

For the final third step, we compute a tree decomposition of the primal graph of I
with width at most k2+ k by Fact 3, and then decide whether I is satisfiable by Fact 4. If
it is, we output “YES”, and otherwise we output “NO”. The rest of the proof is dedicated
to verifying the bound on the treewidth of I and arguing correctness.

We argue that the treewidth of the primal graph of I at most k2 + k. Let (β, T) be a
tree decomposition of the community graph G of P of width at most k. Consider the
tree decomposition (γ, T) obtained from (β, T) by replacing each h-community H in β
by XH . Since F is 1-expanding and the variables of XH only appear in at most k + 1
clauses of F due to the degree bound, the cardinality of each XH is upper-bounded by
k + 1. Consequently, the cardinality of each element in γ is at most k2 + k.

10

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

Next, we show that (γ, T) is indeed a tree decomposition of the primal graph of I .
For every edge ab in this graph, there exists at least one clause C ∈ H which contains
both variable a and variable b in its scope, and hence a, b are both bridge variables for
H , which in turn means that a, b will both be present in every element of γ which used
to contain H; this proves that the first property of tree decompositions is satisfied. For
every bridge variable a, let Da denote the set of h-communities which contain a. Since
each pair of h-communities containing a are adjacent in the community graph of P , Da
forms a clique in the community graph of P and hence there must exist an element θa
of β which contains every h-community in Da. Since a occurs in an element of γ if
and only if this originated from an element of β containing an h-community in Da, and
since all h-communities in Da occur in θa, we conclude that the nodes of T containing a
are connected in (γ, T); this proves that the second property of tree decompositions is
satisfied.

Finally, we argue that I is satisfiable if and only if F is satisfiable. Let τI be a
satisfying assignment for I , and consider the assignment τ which assigns each bridge
variable in F based on τI . The resulting instance F [τ] consists of variable-disjoint
h-communities. Furthermore, by the construction of each constraint in I , it holds that
each h-commnunity in F [τ] is satisfiable, and hence both F [τ] and F are satisfiable. On
the other hand, let τF be a satisfying assignment for F , and consider the restriction τ of
τF to the set of bridge variables. Then applying τ on F once again results in a satisfiable
formula F [τ] consisting of variable-disjoint h-communities. Furthermore, since each
such h-community is satisfiable, it follows that τ also satisfies every clause in I . ut

Our next goal is to show how h-structures of low h-modularity can be used to
solve #SAT. To this end, we will make use of a reduction to the SUMPROD (Sum of
Products) problem [2], sometimes also called VALUED #CSP [30], which can be viewed
as a generalization of the CONSTRAINT SATISFACTION problem. An instance I of
SUMPROD is a triple (V,D, C), where V is a finite set of variables, D is a finite set
of domain values, and C is a finite set of valued constraints. Each valued constraint
C in C is a tuple (SC , fC), where SC , the constraint scope, is a non-empty sequence
s1, s2, . . . , sr of distinct variables of V , and fC , the cost function, is a function from Dr

to N ∪ {0}.
An assignment is a mapping ψ : V → D. Each assignment ψ results in a cost, fC(ψ),

being assigned to each constraint C, where fC(ψ) = fC((ψ(s1), ψ(s2), . . . , ψ(sr))).
The task in the SUMPROD problem is to compute the value cost(I), defined as the sum
over all assignments of the products of cost functions for that assignment. In other words,
cost(I) =

∑
ψ:V→D

∏
C∈C fC(ψ).

The primal graph G of a SUMPROD instance I is defined as follows. The vertices
of G are the variables of I , and two vertices a, b of G are adjacent if and only if there
exists a constraint whose scope contains both a and b. The primal treewidth of I , denoted
ptw(I), is the treewidth of the primal graph of I . The crucial property which we exploit is
that primal treewidth allows a straightforward dynamic programming FPT algorithm for
SUMPROD over a fixed and finite domain D. The following fact assumes that arithmetic
operations can be carried out in polynomial time in the number of variables.

11

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

Fact 5 ([2]). Let D be a fixed set. There exists an algorithm which takes as input an
n-variable instance I = (V,D, C) of SUMPROD and a tree decomposition of the primal
graph of I of width k, runs in time 2O(k) · nO(1), and correctly outputs cost(I).

Lemma 3. There exists an algorithm which, given a formula F of length ` and an
h-structure P of F , runs in time O(3h-mod(P) · `O(1)), and computes an instance I =
(V,D, C) of SUMPROD such that ptw(I) ≤ 2O(h-mod(P)), D = {0, 1,mix}, |V | ≤ `
and cost(I) is the number of models of F .

Proof (Sketch). Our goal is to capture the contribution of an h-community H to the total
number of models of F by using only a small number of variables in I; specifically, the
number of these variables should depend only on h-mod(P). Unlike in Theorem 3, here
we cannot directly use 1-expanding subformulas, since these do not preserve the number
of models. So instead we group bridge variables into equivalence classes, where two
bridge variables are in the same equivalence class iff they occur in the same way in the
same clauses; crucially, the number of equivalence classes which intersect with eachH is
bounded by a function of h-mod(P). Furthermore, every “mixed” assignment (mapping
at least one variable to 0 and at least one to 1) of an equivalence class satisfies the same
clauses as any other mixed assignment of that equivalence class, allowing us to aggregate
all such assignments without loss of information. Then we construct our instance I so
that each of its variables represents one equivalence class, and each constraint represents
one h-community. An assignment ψ of I then corresponds to determining whether all
bridge variables of F in each equivalence class are assigned to 0, to 1, or mix.

The cost function is then constructed so as to capture the contribution of each h-
community to the total number of models. However, since many assignments in F can
be aggregated into a single assignment in I due to the mix value, the cost function
also needs to reflect this. To this end, each equivalence class is assigned (arbitrarily) to
some valued constraint C and whenever that equivalence class is mapped to mix, fC is
increased by a factor corresponding to the number of assignments in F aggregated into
this mixed assignment.

The desired running time follows by showing that equivalence classes can be
computed in at most O(`3) time and that the number of equivalence classes which
occur in the same h-community is upper-bounded by 3h-mod(P)+1. The lemma then
follows from the following two claims, whose proofs are omitted in this version:
(i) ptw(I) ≤ 2O(h-mod(P)), and (ii) cost(I) is the number of models of F . ut
Theorem 4. Given a formula F of length ` and an h-structure P of F , we can count
the number of models of F in time 22

O(h-mod(P)) · `O(1).

Proof. Let k = h-mod(P). We apply Lemma 3 to obtain an instance I = (V,D, C)
of SUMPROD such that ptw(I) ≤ 2O(k) and cost(I) is the number of models of F .
Next, we compute a tree decomposition of the primal graph of I of width 2O(k): either
by observing that the algorithm of Lemma 3 implicitly also computes such a tree
decomposition of I , or in time 22

O(k) · ` by Fact 3. Finally, we use Fact 5 to solve I in
time 22

O(k) · `O(1). ut
Proof (of Theorem 1). Let F be the given CNF formula and k the parameter. First we
apply Theorem 2 to either find an h-structure P of F of h-modularity at most k2 + k,

12

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

or correctly determine that h-mod(F) > k. To decide whether F is satisfiable, we now
use Theorem 3. This establishes that SAT[h-mod(F)] is fixed parameter tractable. To
compute the number of models of F , we use Theorem 4. This establishes the fixed
parameter tractability of #SAT[h-mod(F)] and concludes the proof. ut

6 Concluding Notes

We have introduced the notion of an h-community structure in CNF formulas and
the associated parameter h-modularity. Furthermore, we have shown that it is fixed-
parameter tractable to find a suitable h-community structure and to use it to solve the
problems SAT and #SAT, all parameterized by the h-modularity (Theorems 2, 3, and 4,
respectively). Since the h-modularity is small for formulas where other known parameters
can be arbitrarily large (Proposition 1), our FPT results provide worst-case performance
guarantees for instances that are not accessible by known methods. Our results give rise
to the question of how the notion of h-community structure can be further generalized,
for example by using a suitably defined property for the communities that generalizes
hitting formulas. This way, we hope that ultimately one can build bridges between
empirically observed problem hardness and theoretical worst case upper bounds.

References

1. C. Ansótegui, M. L. Bonet, J. Giráldez-Cru, and J. Levy. The fractal dimension of SAT
formulas. In S. Demri, D. Kapur, and C. Weidenbach, editors, Automated Reasoning - 7th
International Joint Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings, volume 8562 of Lecture Notes in
Computer Science, pages 107–121. Springer Verlag, 2014.

2. F. Bacchus, S. Dalmao, and T. Pitassi. Solving #SAT and Bayesian inference with backtracking
search. J. Artif. Intell. Res., 34:391–442, 2009.

3. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996.

4. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discr. Appl. Math., 108(1-
2):23–52, 2001.

5. Y. Crama and P. L. Hammer. Boolean functions, volume 142 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, Cambridge, 2011. Theory, algorithms, and
applications.

6. R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer Verlag,
New York, 4th edition, 2010.

7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

8. H. Fleischner, O. Kullmann, and S. Szeider. Polynomial-time recognition of minimal un-
satisfiable formulas with fixed clause-variable difference. Theoretical Computer Science,
289(1):503–516, 2002.

9. R. Ganian, P. Hlinený, and J. Obdrzálek. Better algorithms for satisfiability problems for
formulas of bounded rank-width. Fund. Inform., 123(1):59–76, 2013.

10. K. Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM J. Comput.,
18(2):385–391, 1989.

13

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

11. H. Kleine Büning and O. Kullmann. Minimal unsatisfiability and autarkies. In A. Biere,
M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, chapter 11, pages 339–401. IOS Press,
2009.

12. H. Kleine Büning and X. Zhao. Satisfiable formulas closed under replacement. In H. Kautz and
B. Selman, editors, Proceedings for the Workshop on Theory and Applications of Satisfiability,
volume 9 of Electronic Notes in Discrete Mathematics. Elsevier Science Publishers, North-
Holland, 2001.

13. H. Kleine Büning and X. Zhao. On the structure of some classes of minimal unsatisfiable
formulas. Discr. Appl. Math., 130(2):185–207, 2003.

14. T. Kloks. Treewidth: Computations and Approximations. Springer Verlag, Berlin, 1994.
15. O. Kullmann. Lean clause-sets: Generalizations of minimally unsatisfiable clause-sets. Discr.

Appl. Math., 130(2):209–249, 2003.
16. D. Marx. Parameterized complexity and approximation algorithms. The Computer Journal,

51(1):60–78, 2008.
17. M. E. J. Newman. The structure and function of complex networks. SIAM Review,

45(2):167256, 2003.
18. M. E. J. Newman. Modularity and community structure in networks. Proceedings of the

National Academy of Sciences, 103(23):85778582, 2006.
19. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, Feb. 2004.
20. Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and L. Simon. Impact of community

structure on SAT solver performance. In C. Sinz and U. Egly, editors, Theory and Applications
of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of
Lecture Notes in Computer Science, pages 252–268. Springer Verlag, 2014.

21. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-
matics and its Applications. Oxford University Press, Oxford, 2006.

22. N. Nishimura, P. Ragde, and S. Szeider. Solving #SAT using vertex covers. Acta Informatica,
44(7-8):509–523, 2007.

23. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

24. D. J. Rose. On simple characterizations of k-trees. Discrete Math., 7:317–322, 1974.
25. M. Samer and S. Szeider. Fixed-parameter tractability. In A. Biere, M. Heule, H. van Maaren,

and T. Walsh, editors, Handbook of Satisfiability, chapter 13, pages 425–454. IOS Press, 2009.
26. M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algorithms,

8(1):50–64, 2010.
27. S. Szeider. Minimal unsatisfiable formulas with bounded clause-variable difference are

fixed-parameter tractable. J. of Computer and System Sciences, 69(4):656–674, 2004.
28. S. Szeider. On fixed-parameter tractable parameterizations of SAT. In E. Giunchiglia and

A. Tacchella, editors, Theory and Applications of Satisfiability, 6th International Conference,
SAT 2003, Selected and Revised Papers, volume 2919 of Lecture Notes in Computer Science,
pages 188–202. Springer Verlag, 2004.

29. M. Y. Vardi. Boolean satisfiability: theory and engineering. Communications of the ACM,
57(3):5, 2014.

30. S. Živný. The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies.
Springer, 2012.

31. W. Zhang, G. Pan, Z. Wu, and S. Li. Online community detection for large complex networks.
In F. Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference on
Artificial Intelligence, Beijing, China, August 3-9, 2013. IJCAI/AAAI, 2013.

14

Te
ch
ni
ca
lR
ep
or
tA
C-
TR
-1
5-
00
1

