

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

Machen Sie die folgenden Angabe	n bitte in	deutlicher	Blockschr	ift:	
Nachname:		Vornan	me:		
Matrikelnummer:		Studier	nkennzahl	:	
Anzahl abgegebener Zusatzblätter	::	Unterse	chrift:		
Legen Sie während der Prüfung Ils Sie können die Lösungen entweder schreiben, die Sie von der Aufsicht eigenes Papier zu verwenden. Die Verwendung von Taschenrech Büchern, Mitschriften, Ausarbeitu	r direkt æ erhalten. ner, Mob	uf die Anga Es ist nicht iltelefonen,	abeblätter zulässig, o PDAs, Di	oder auf Z eventuell m gitalkamera	Jusatzblätte itgebrachte as, Skripten
_ dollo:11, 1:11000112110011, 1:1000110 0:100	A1:	A2:	A3:	Summe:	4111 4114 4114
Erreichbare Punkte:	16	16	18	50	
Erreichte Punkte:					

Viel Erfolg!

a) (10 Punkte)

Gegeben sei die folgende Funktion:

$$f(n) = \begin{cases} \frac{n}{3^n} + \frac{1}{\sqrt{n}} + \log_3 n, & \text{wenn } n > 1000 \text{ und gerade} \\ \\ \frac{n}{\sqrt{5^n}} + \log_2(n^3), & \text{wenn } n > 1000 \text{ und prim} \\ \\ 4n \cdot \log_2(4^n), & \text{sonst} \end{cases}$$

Kreuzen Sie in der folgenden Tabelle die zutreffenden Felder an:

f(n) ist	O(.)	$\Omega(.)$	$\Theta(.)$	keines
$n^2 \log n$				
n				
$\log n$				
n^2				
\sqrt{n}				

Jede Zeile wird nur dann gewertet, wenn sie vollständig richtig ist.

b) (6 Punkte)

Beweisen oder widerlegen Sie, dass für beliebige positive Funktionen f(n) und g(n) die folgende Beziehung gilt:

$$g(n) = \Omega(f(n)) \quad \Rightarrow \quad g(n) = O(n^2 \cdot f(n))$$

Aufgabe 2.A: Sortierverfahren und Datenstrukturen

(16 Punkte)

In der Vorlesung haben Sie das Sortierverfahren Heapsort kennengelernt, mit dem unter Zuhilfenahme eines Maximum-Heaps eine beliebige Folge aufsteigend sortiert werden kann. Analog dazu kann ein Minimum-Heap für absteigendes Sortieren verwendet werden. In diesem Fall wird das jeweilige Minimum mit der letzten Stelle der betrachteten Folge vertauscht.

Definition: Wir nennen eine Folge $F = \langle k_1, k_2, \dots, k_n \rangle$ von Schlüsseln einen *Minimum-Heap*, wenn für alle $i \in \{2, 3, \dots, n\}$ gilt $k_i \geq k_{\lfloor \frac{i}{2} \rfloor}$. Anders ausgedrückt: Falls $2i \leq n$ bzw. $2i + 1 \leq n$, dann muss gelten: $k_i \leq k_{2i}$ bzw. $k_i \leq k_{2i+1}$.

• (6 Punkte) Erfüllen die folgenden Zahlenfolgen die Eigenschaften eines Maximumbzw. Minimum-Heaps? Kreuzen Sie in der folgenden Tabelle die zutreffenden Felder an. Jede Zeile wird nur dann gewertet, wenn sie vollständig richtig ist.

	Maximum-Heap	Minimum-Heap	keines
10, 7, 9, 5, 3, 6, 8, 1, 4, 2			
1, 4, 2, 5, 8, 3, 7, 9, 10, 6			
1, 4, 2, 8, 5, 3, 7, 9, 10, 6			
10, 6, 9, 5, 7, 3, 8, 1, 4, 2			
10, 6, 9, 4, 5, 8, 7, 3, 2, 1			
1, 3, 2, 8, 5, 4, 7, 9, 10, 6			

• (10 Punkte) Führen Sie auf die Zahlenfolge (5, 10, 3, 8, 6, 9, 4, 1, 7, 2) den Algoritmus Heapsort aus, um die Zahlenfolge unter Verwendung eines Minimum-Heaps absteigend zu sortieren. Geben sie das Feld nach dem Aufruf von ErstelleHeap() und dann nach jedem Versickerungschritt an (die graphische Darstellung des Heaps reicht *nicht*).

	5, 10, 3, 8, 6, 9, 4, 1, 7, 2
nach ErstelleHeap()	

Gegeben sind zwei doppelt verkettete, azyklische Listen A und B.

a) (16 Punkte)

Schreiben Sie in detailliertem Pseudocode eine Funktion split_and_concat(A, x, B), welche die ersten x (mit $x \ge 1$) Elemente aus der Liste A entfernt und **vorne** an die Liste B hängt.

b) (2 Punkte)

Geben Sie die Laufzeit Ihres Algorithmus in Θ -Notation an.

Beachten Sie folgende Punkte:

- Sie können davon ausgehen, dass die Listen nicht leer sind.
- Die Zeiger A.begin bzw. B.begin verweisen auf das erste Element der Liste A bzw. B.
- Ein Listenelement a speichert neben verschiedenen anderen Daten jeweils einen Zeiger auf seinen Vorgänger (a.pred) und Nachfolger (a.next). Für das erste bzw. letzte Element gilt a.pred = NULL bzw. a.next = NULL.
- Wenn die Liste A aus weniger als x + 1 Elementen besteht, soll der Algorithmus eine Fehlermeldung ausgeben und abbrechen.
- Die Länge einer Liste kann nur durch Abzählen der Elemente bestimmt werden.

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

Machen Sie die folgenden Angaber	n bitte in	deutlicher	Blockschr	ift:	
Nachname:		Vornan	me:		
Matrikelnummer:		Studie	nkennzahl	:	
Anzahl abgegebener Zusatzblätter	::	Unterse	chrift:		
Legen Sie während der Prüfung Ih Sie können die Lösungen entweder schreiben, die Sie von der Aufsicht eigenes Papier zu verwenden. Die Verwendung von Taschenrecht Büchern, Mitschriften, Ausarbeitu	r direkt a erhalten. ner, Mob	uf die Anga Es ist nicht iltelefonen,	abeblätter zulässig, PDAs, Di	oder auf Z eventuell m	usatzblätter itgebrachter as, Skripten
	B1:	B2:	B3:	Summe:	
Erreichbare Punkte:	16	16	18	50	
Erreichte Punkte:					

Viel Glück!

Aufgabe 1.B: Sortierverfahren und Datenstrukturen

(16 Punkte)

In der Vorlesung haben Sie das Sortierverfahren Heapsort kennengelernt, mit dem unter Zuhilfenahme eines Maximum-Heaps eine beliebige Folge aufsteigend sortiert werden kann. Analog dazu kann ein Minimum-Heap für absteigendes Sortieren verwendet werden. In diesem Fall wird das jeweilige Minimum mit der letzten Stelle der betrachteten Folge vertauscht.

Definition: Wir nennen eine Folge $F = \langle k_1, k_2, \dots, k_n \rangle$ von Schlüsseln einen *Minimum-Heap*, wenn für alle $i \in \{2, 3, \dots, n\}$ gilt $k_i \geq k_{\lfloor \frac{i}{2} \rfloor}$. Anders ausgedrückt: Falls $2i \leq n$ bzw. $2i + 1 \leq n$, dann muss gelten: $k_i \leq k_{2i}$ bzw. $k_i \leq k_{2i+1}$.

• (6 Punkte) Erfüllen die folgenden Zahlenfolgen die Eigenschaften eines Maximumbzw. Minimum-Heaps? Kreuzen Sie in der folgenden Tabelle die zutreffenden Felder an. Jede Zeile wird nur dann gewertet, wenn sie vollständig richtig ist.

	Maximum-Heap	Minimum-Heap	keines
1, 2, 7, 5, 3, 8, 9, 10, 6, 4			
10, 6, 9, 4, 5, 8, 3, 7, 2, 1			
10, 9, 8, 7, 4, 1, 3, 6, 2, 5			
1, 2, 5, 7, 3, 8, 9, 10, 6, 4			
10, 9, 4, 7, 8, 1, 3, 6, 2, 5			
1, 3, 2, 5, 8, 10, 4, 7, 6, 9			

• (10 Punkte) Führen Sie auf die Zahlenfolge (7,5,4,10,3,8,2,1,9,6) den Algoritmus Heapsort aus, um die Zahlenfolge unter Verwendung eines Minimum-Heaps absteigend zu sortieren. Geben sie das Feld nach dem Aufruf von ErstelleHeap() und dann nach jedem Versickerungschritt an (die graphische Darstellung des Heaps reicht nicht).

	7, 5, 4, 10, 3, 8, 2, 1, 9, 6		
nach ErstelleHeap()			

a) (10 Punkte)

Gegeben sei die folgende Funktion:

$$f(n) = \begin{cases} \frac{n}{\sqrt{5^n}} + \log_2(n^3), & \text{wenn } n > 1000 \text{ und prim} \\ \frac{1}{\sqrt{n}} + \frac{n}{3^n} + \log_3 n, & \text{wenn } n > 1000 \text{ und gerade} \\ 4n \cdot \log_2(4^n), & \text{sonst} \end{cases}$$

Kreuzen Sie in der folgenden Tabelle die zutreffenden Felder an:

f(n) ist	O(.)	$\Omega(.)$	$\Theta(.)$	keines
n				
$\log n$				
\sqrt{n}				
$n^2 \log n$				
n^2				

Jede Zeile wird nur dann gewertet, wenn sie vollständig richtig ist.

b) (6 Punkte)

Beweisen oder widerlegen Sie, dass für beliebige positive Funktionen f(n) und g(n) die folgende Beziehung gilt:

$$g(n) = O(f(n)) \implies n^2 \cdot g(n) = \Omega(f(n))$$

Gegeben sind zwei doppelt verkettete, azyklische Listen A und B.

a) (16 Punkte)

Schreiben Sie in detailliertem Pseudocode eine Funktion $split_and_concat(A, x, B)$, welche die ersten x (mit $x \ge 1$) Elemente aus der Liste A entfernt und **vorne** an die Liste B hängt.

b) (2 Punkte)

Geben Sie die Laufzeit Ihres Algorithmus in Θ -Notation an.

Beachten Sie folgende Punkte:

- Sie können davon ausgehen, dass die Listen nicht leer sind.
- Die Zeiger A.begin bzw. B.begin verweisen auf das erste Element der Liste A bzw. B.
- Ein Listenelement a speichert neben verschiedenen anderen Daten jeweils einen Zeiger auf seinen Vorgänger (a.pred) und Nachfolger (a.next). Für das erste bzw. letzte Element gilt a.pred = NULL bzw. a.next = NULL.
- Wenn die Liste A aus weniger als x + 1 Elementen besteht, soll der Algorithmus eine Fehlermeldung ausgeben und abbrechen.
- Die Länge einer Liste kann nur durch Abzählen der Elemente bestimmt werden.